blob: 90563dbef15da93fe25035f25fb83aca19e92fa8 [file] [log] [blame]
Benny Prijonoa4bf0212006-02-10 15:57:08 +00001/*
2 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
3 * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
4 * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
5 */
6
7/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/rpe.c,v 1.3 1994/05/10 20:18:46 jutta Exp $ */
8
9#include <stdio.h>
10#include <assert.h>
11
12#include "private.h"
13
14#include "gsm.h"
15#include "proto.h"
16
17/* 4.2.13 .. 4.2.17 RPE ENCODING SECTION
18 */
19
20/* 4.2.13 */
21
22static void Weighting_filter P2((e, x),
23 register word * e, /* signal [-5..0.39.44] IN */
24 word * x /* signal [0..39] OUT */
25)
26/*
27 * The coefficients of the weighting filter are stored in a table
28 * (see table 4.4). The following scaling is used:
29 *
30 * H[0..10] = integer( real_H[ 0..10] * 8192 );
31 */
32{
33 /* word wt[ 50 ]; */
34
35 register longword L_result;
36 register int k /* , i */ ;
37
38 /* Initialization of a temporary working array wt[0...49]
39 */
40
41 /* for (k = 0; k <= 4; k++) wt[k] = 0;
42 * for (k = 5; k <= 44; k++) wt[k] = *e++;
43 * for (k = 45; k <= 49; k++) wt[k] = 0;
44 *
45 * (e[-5..-1] and e[40..44] are allocated by the caller,
46 * are initially zero and are not written anywhere.)
47 */
48 e -= 5;
49
50 /* Compute the signal x[0..39]
51 */
52 for (k = 0; k <= 39; k++) {
53
54 L_result = 8192 >> 1;
55
56 /* for (i = 0; i <= 10; i++) {
57 * L_temp = GSM_L_MULT( wt[k+i], gsm_H[i] );
58 * L_result = GSM_L_ADD( L_result, L_temp );
59 * }
60 */
61
62#undef STEP
63#define STEP( i, H ) (e[ k + i ] * (longword)H)
64
65 /* Every one of these multiplications is done twice --
66 * but I don't see an elegant way to optimize this.
67 * Do you?
68 */
69
70#ifdef STUPID_COMPILER
71 L_result += STEP( 0, -134 ) ;
72 L_result += STEP( 1, -374 ) ;
73 /* + STEP( 2, 0 ) */
74 L_result += STEP( 3, 2054 ) ;
75 L_result += STEP( 4, 5741 ) ;
76 L_result += STEP( 5, 8192 ) ;
77 L_result += STEP( 6, 5741 ) ;
78 L_result += STEP( 7, 2054 ) ;
79 /* + STEP( 8, 0 ) */
80 L_result += STEP( 9, -374 ) ;
81 L_result += STEP( 10, -134 ) ;
82#else
83 L_result +=
84 STEP( 0, -134 )
85 + STEP( 1, -374 )
86 /* + STEP( 2, 0 ) */
87 + STEP( 3, 2054 )
88 + STEP( 4, 5741 )
89 + STEP( 5, 8192 )
90 + STEP( 6, 5741 )
91 + STEP( 7, 2054 )
92 /* + STEP( 8, 0 ) */
93 + STEP( 9, -374 )
94 + STEP(10, -134 )
95 ;
96#endif
97
98 /* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x2) *)
99 * L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x4) *)
100 *
101 * x[k] = SASR( L_result, 16 );
102 */
103
104 /* 2 adds vs. >>16 => 14, minus one shift to compensate for
105 * those we lost when replacing L_MULT by '*'.
106 */
107
108 L_result = SASR( L_result, 13 );
109 x[k] = ( L_result < MIN_WORD ? MIN_WORD
110 : (L_result > MAX_WORD ? MAX_WORD : L_result ));
111 }
112}
113
114/* 4.2.14 */
115
116static void RPE_grid_selection P3((x,xM,Mc_out),
117 word * x, /* [0..39] IN */
118 word * xM, /* [0..12] OUT */
119 word * Mc_out /* OUT */
120)
121/*
122 * The signal x[0..39] is used to select the RPE grid which is
123 * represented by Mc.
124 */
125{
126 /* register word temp1; */
127 register int /* m, */ i;
128 register longword L_result, L_temp;
129 longword EM; /* xxx should be L_EM? */
130 word Mc;
131
132 longword L_common_0_3;
133
134 EM = 0;
135 Mc = 0;
136
137 /* for (m = 0; m <= 3; m++) {
138 * L_result = 0;
139 *
140 *
141 * for (i = 0; i <= 12; i++) {
142 *
143 * temp1 = SASR( x[m + 3*i], 2 );
144 *
145 * assert(temp1 != MIN_WORD);
146 *
147 * L_temp = GSM_L_MULT( temp1, temp1 );
148 * L_result = GSM_L_ADD( L_temp, L_result );
149 * }
150 *
151 * if (L_result > EM) {
152 * Mc = m;
153 * EM = L_result;
154 * }
155 * }
156 */
157
158#undef STEP
159#define STEP( m, i ) L_temp = SASR( x[m + 3 * i], 2 ); \
160 L_result += L_temp * L_temp;
161
162 /* common part of 0 and 3 */
163
164 L_result = 0;
165 STEP( 0, 1 ); STEP( 0, 2 ); STEP( 0, 3 ); STEP( 0, 4 );
166 STEP( 0, 5 ); STEP( 0, 6 ); STEP( 0, 7 ); STEP( 0, 8 );
167 STEP( 0, 9 ); STEP( 0, 10); STEP( 0, 11); STEP( 0, 12);
168 L_common_0_3 = L_result;
169
170 /* i = 0 */
171
172 STEP( 0, 0 );
173 L_result <<= 1; /* implicit in L_MULT */
174 EM = L_result;
175
176 /* i = 1 */
177
178 L_result = 0;
179 STEP( 1, 0 );
180 STEP( 1, 1 ); STEP( 1, 2 ); STEP( 1, 3 ); STEP( 1, 4 );
181 STEP( 1, 5 ); STEP( 1, 6 ); STEP( 1, 7 ); STEP( 1, 8 );
182 STEP( 1, 9 ); STEP( 1, 10); STEP( 1, 11); STEP( 1, 12);
183 L_result <<= 1;
184 if (L_result > EM) {
185 Mc = 1;
186 EM = L_result;
187 }
188
189 /* i = 2 */
190
191 L_result = 0;
192 STEP( 2, 0 );
193 STEP( 2, 1 ); STEP( 2, 2 ); STEP( 2, 3 ); STEP( 2, 4 );
194 STEP( 2, 5 ); STEP( 2, 6 ); STEP( 2, 7 ); STEP( 2, 8 );
195 STEP( 2, 9 ); STEP( 2, 10); STEP( 2, 11); STEP( 2, 12);
196 L_result <<= 1;
197 if (L_result > EM) {
198 Mc = 2;
199 EM = L_result;
200 }
201
202 /* i = 3 */
203
204 L_result = L_common_0_3;
205 STEP( 3, 12 );
206 L_result <<= 1;
207 if (L_result > EM) {
208 Mc = 3;
209 EM = L_result;
210 }
211
212 /**/
213
214 /* Down-sampling by a factor 3 to get the selected xM[0..12]
215 * RPE sequence.
216 */
217 for (i = 0; i <= 12; i ++) xM[i] = x[Mc + 3*i];
218 *Mc_out = Mc;
219}
220
221/* 4.12.15 */
222
223static void APCM_quantization_xmaxc_to_exp_mant P3((xmaxc,exp_out,mant_out),
224 word xmaxc, /* IN */
225 word * exp_out, /* OUT */
226 word * mant_out ) /* OUT */
227{
228 word exp, mant;
229
230 /* Compute exponent and mantissa of the decoded version of xmaxc
231 */
232
233 exp = 0;
234 if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1;
235 mant = xmaxc - (exp << 3);
236
237 if (mant == 0) {
238 exp = -4;
239 mant = 7;
240 }
241 else {
242 while (mant <= 7) {
243 mant = mant << 1 | 1;
244 exp--;
245 }
246 mant -= 8;
247 }
248
249 assert( exp >= -4 && exp <= 6 );
250 assert( mant >= 0 && mant <= 7 );
251
252 *exp_out = exp;
253 *mant_out = mant;
254}
255
256static void APCM_quantization P5((xM,xMc,mant_out,exp_out,xmaxc_out),
257 word * xM, /* [0..12] IN */
258
259 word * xMc, /* [0..12] OUT */
260 word * mant_out, /* OUT */
261 word * exp_out, /* OUT */
262 word * xmaxc_out /* OUT */
263)
264{
265 int i, itest;
266
267 word xmax, xmaxc, temp, temp1, temp2;
268 word exp, mant;
269
270
271 /* Find the maximum absolute value xmax of xM[0..12].
272 */
273
274 xmax = 0;
275 for (i = 0; i <= 12; i++) {
276 temp = xM[i];
277 temp = GSM_ABS(temp);
278 if (temp > xmax) xmax = temp;
279 }
280
281 /* Qantizing and coding of xmax to get xmaxc.
282 */
283
284 exp = 0;
285 temp = SASR( xmax, 9 );
286 itest = 0;
287
288 for (i = 0; i <= 5; i++) {
289
290 itest |= (temp <= 0);
291 temp = SASR( temp, 1 );
292
293 assert(exp <= 5);
294 if (itest == 0) exp++; /* exp = add (exp, 1) */
295 }
296
297 assert(exp <= 6 && exp >= 0);
298 temp = exp + 5;
299
300 assert(temp <= 11 && temp >= 0);
Benny Prijono20fd34a2006-06-19 12:09:20 +0000301 xmaxc = gsm_add( (word)SASR(xmax, temp), (word)(exp << 3) );
Benny Prijonoa4bf0212006-02-10 15:57:08 +0000302
303 /* Quantizing and coding of the xM[0..12] RPE sequence
304 * to get the xMc[0..12]
305 */
306
307 APCM_quantization_xmaxc_to_exp_mant( xmaxc, &exp, &mant );
308
309 /* This computation uses the fact that the decoded version of xmaxc
310 * can be calculated by using the exponent and the mantissa part of
311 * xmaxc (logarithmic table).
312 * So, this method avoids any division and uses only a scaling
313 * of the RPE samples by a function of the exponent. A direct
314 * multiplication by the inverse of the mantissa (NRFAC[0..7]
315 * found in table 4.5) gives the 3 bit coded version xMc[0..12]
316 * of the RPE samples.
317 */
318
319
320 /* Direct computation of xMc[0..12] using table 4.5
321 */
322
323 assert( exp <= 4096 && exp >= -4096);
324 assert( mant >= 0 && mant <= 7 );
325
326 temp1 = 6 - exp; /* normalization by the exponent */
327 temp2 = gsm_NRFAC[ mant ]; /* inverse mantissa */
328
329 for (i = 0; i <= 12; i++) {
330
331 assert(temp1 >= 0 && temp1 < 16);
332
333 temp = xM[i] << temp1;
334 temp = GSM_MULT( temp, temp2 );
335 temp = SASR(temp, 12);
336 xMc[i] = temp + 4; /* see note below */
337 }
338
339 /* NOTE: This equation is used to make all the xMc[i] positive.
340 */
341
342 *mant_out = mant;
343 *exp_out = exp;
344 *xmaxc_out = xmaxc;
345}
346
347/* 4.2.16 */
348
349static void APCM_inverse_quantization P4((xMc,mant,exp,xMp),
350 register word * xMc, /* [0..12] IN */
351 word mant,
352 word exp,
353 register word * xMp) /* [0..12] OUT */
354/*
355 * This part is for decoding the RPE sequence of coded xMc[0..12]
356 * samples to obtain the xMp[0..12] array. Table 4.6 is used to get
357 * the mantissa of xmaxc (FAC[0..7]).
358 */
359{
360 int i;
361 word temp, temp1, temp2, temp3;
362 longword ltmp;
363
364 assert( mant >= 0 && mant <= 7 );
365
366 temp1 = gsm_FAC[ mant ]; /* see 4.2-15 for mant */
367 temp2 = gsm_sub( 6, exp ); /* see 4.2-15 for exp */
368 temp3 = gsm_asl( 1, gsm_sub( temp2, 1 ));
369
370 for (i = 13; i--;) {
371
372 assert( *xMc <= 7 && *xMc >= 0 ); /* 3 bit unsigned */
373
374 /* temp = gsm_sub( *xMc++ << 1, 7 ); */
375 temp = (*xMc++ << 1) - 7; /* restore sign */
376 assert( temp <= 7 && temp >= -7 ); /* 4 bit signed */
377
378 temp <<= 12; /* 16 bit signed */
379 temp = GSM_MULT_R( temp1, temp );
380 temp = GSM_ADD( temp, temp3 );
381 *xMp++ = gsm_asr( temp, temp2 );
382 }
383}
384
385/* 4.2.17 */
386
387static void RPE_grid_positioning P3((Mc,xMp,ep),
388 word Mc, /* grid position IN */
389 register word * xMp, /* [0..12] IN */
390 register word * ep /* [0..39] OUT */
391)
392/*
393 * This procedure computes the reconstructed long term residual signal
394 * ep[0..39] for the LTP analysis filter. The inputs are the Mc
395 * which is the grid position selection and the xMp[0..12] decoded
396 * RPE samples which are upsampled by a factor of 3 by inserting zero
397 * values.
398 */
399{
400 int i = 13;
401
402 assert(0 <= Mc && Mc <= 3);
403
404 switch (Mc) {
405 case 3: *ep++ = 0;
406 case 2: do {
407 *ep++ = 0;
408 case 1: *ep++ = 0;
409 case 0: *ep++ = *xMp++;
410 } while (--i);
411 }
412 while (++Mc < 4) *ep++ = 0;
413
414 /*
415
416 int i, k;
417 for (k = 0; k <= 39; k++) ep[k] = 0;
418 for (i = 0; i <= 12; i++) {
419 ep[ Mc + (3*i) ] = xMp[i];
420 }
421 */
422}
423
424/* 4.2.18 */
425
426/* This procedure adds the reconstructed long term residual signal
427 * ep[0..39] to the estimated signal dpp[0..39] from the long term
428 * analysis filter to compute the reconstructed short term residual
429 * signal dp[-40..-1]; also the reconstructed short term residual
430 * array dp[-120..-41] is updated.
431 */
432
433#if 0 /* Has been inlined in code.c */
434void Gsm_Update_of_reconstructed_short_time_residual_signal P3((dpp, ep, dp),
435 word * dpp, /* [0...39] IN */
436 word * ep, /* [0...39] IN */
437 word * dp) /* [-120...-1] IN/OUT */
438{
439 int k;
440
441 for (k = 0; k <= 79; k++)
442 dp[ -120 + k ] = dp[ -80 + k ];
443
444 for (k = 0; k <= 39; k++)
445 dp[ -40 + k ] = gsm_add( ep[k], dpp[k] );
446}
447#endif /* Has been inlined in code.c */
448
449void Gsm_RPE_Encoding P5((S,e,xmaxc,Mc,xMc),
450
451 struct gsm_state * S,
452
453 word * e, /* -5..-1][0..39][40..44 IN/OUT */
454 word * xmaxc, /* OUT */
455 word * Mc, /* OUT */
456 word * xMc) /* [0..12] OUT */
457{
458 word x[40];
459 word xM[13], xMp[13];
460 word mant, exp;
461
462 Weighting_filter(e, x);
463 RPE_grid_selection(x, xM, Mc);
464
465 APCM_quantization( xM, xMc, &mant, &exp, xmaxc);
466 APCM_inverse_quantization( xMc, mant, exp, xMp);
467
468 RPE_grid_positioning( *Mc, xMp, e );
469
470}
471
472void Gsm_RPE_Decoding P5((S, xmaxcr, Mcr, xMcr, erp),
473 struct gsm_state * S,
474
475 word xmaxcr,
476 word Mcr,
477 word * xMcr, /* [0..12], 3 bits IN */
478 word * erp /* [0..39] OUT */
479)
480{
481 word exp, mant;
482 word xMp[ 13 ];
483
484 APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant );
485 APCM_inverse_quantization( xMcr, mant, exp, xMp );
486 RPE_grid_positioning( Mcr, xMp, erp );
487
488}