blob: 242844d5b30d5a12ad707f926b63bdd995d03a7e [file] [log] [blame]
/* $Id$ */
/*
* Digital Audio Resampling Home Page located at
* http://www-ccrma.stanford.edu/~jos/resample/.
*
* SOFTWARE FOR SAMPLING-RATE CONVERSION AND FIR DIGITAL FILTER DESIGN
*
* Snippet from the resample.1 man page:
*
* HISTORY
*
* The first version of this software was written by Julius O. Smith III
* <jos@ccrma.stanford.edu> at CCRMA <http://www-ccrma.stanford.edu> in
* 1981. It was called SRCONV and was written in SAIL for PDP-10
* compatible machines. The algorithm was first published in
*
* Smith, Julius O. and Phil Gossett. ``A Flexible Sampling-Rate
* Conversion Method,'' Proceedings (2): 19.4.1-19.4.4, IEEE Conference
* on Acoustics, Speech, and Signal Processing, San Diego, March 1984.
*
* An expanded tutorial based on this paper is available at the Digital
* Audio Resampling Home Page given above.
*
* Circa 1988, the SRCONV program was translated from SAIL to C by
* Christopher Lee Fraley working with Roger Dannenberg at CMU.
*
* Since then, the C version has been maintained by jos.
*
* Sndlib support was added 6/99 by John Gibson <jgg9c@virginia.edu>.
*
* The resample program is free software distributed in accordance
* with the Lesser GNU Public License (LGPL). There is NO warranty; not
* even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
/* PJMEDIA modification:
* - remove resample(), just use SrcUp, SrcUD, and SrcLinear directly.
* - move FilterUp() and FilterUD() from filterkit.c
* - move stddefs.h and resample.h to this file.
* - const correctness.
*/
#include <resamplesubs.h>
#include "config.h"
#include "stddefs.h"
#include "resample.h"
#ifdef _MSC_VER
# pragma warning(push, 3)
//# pragma warning(disable: 4245) // Conversion from uint to ushort
# pragma warning(disable: 4244) // Conversion from double to uint
# pragma warning(disable: 4146) // unary minus operator applied to unsigned type, result still unsigned
# pragma warning(disable: 4761) // integral size mismatch in argument; conversion supplied
#endif
#if defined(RESAMPLE_HAS_SMALL_FILTER) && RESAMPLE_HAS_SMALL_FILTER!=0
# include "smallfilter.h"
#else
# define SMALL_FILTER_NMULT 0
# define SMALL_FILTER_SCALE 0
# define SMALL_FILTER_NWING 0
# define SMALL_FILTER_IMP NULL
# define SMALL_FILTER_IMPD NULL
#endif
#if defined(RESAMPLE_HAS_LARGE_FILTER) && RESAMPLE_HAS_LARGE_FILTER!=0
# include "largefilter.h"
#else
# define LARGE_FILTER_NMULT 0
# define LARGE_FILTER_SCALE 0
# define LARGE_FILTER_NWING 0
# define LARGE_FILTER_IMP NULL
# define LARGE_FILTER_IMPD NULL
#endif
#undef INLINE
#define INLINE
#define HAVE_FILTER 0
#ifndef NULL
# define NULL 0
#endif
static INLINE RES_HWORD WordToHword(RES_WORD v, int scl)
{
RES_HWORD out;
RES_WORD llsb = (1<<(scl-1));
v += llsb; /* round */
v >>= scl;
if (v>MAX_HWORD) {
v = MAX_HWORD;
} else if (v < MIN_HWORD) {
v = MIN_HWORD;
}
out = (RES_HWORD) v;
return out;
}
/* Sampling rate conversion using linear interpolation for maximum speed.
*/
static int
SrcLinear(const RES_HWORD X[], RES_HWORD Y[], double pFactor, RES_UHWORD nx)
{
RES_HWORD iconst;
RES_UWORD time = 0;
const RES_HWORD *xp;
RES_HWORD *Ystart, *Yend;
RES_WORD v,x1,x2;
double dt; /* Step through input signal */
RES_UWORD dtb; /* Fixed-point version of Dt */
RES_UWORD endTime; /* When time reaches EndTime, return to user */
dt = 1.0/pFactor; /* Output sampling period */
dtb = dt*(1<<Np) + 0.5; /* Fixed-point representation */
Ystart = Y;
Yend = Ystart + (unsigned)(nx * pFactor);
endTime = time + (1<<Np)*(RES_WORD)nx;
while (time < endTime)
{
iconst = (time) & Pmask;
xp = &X[(time)>>Np]; /* Ptr to current input sample */
x1 = *xp++;
x2 = *xp;
x1 *= ((1<<Np)-iconst);
x2 *= iconst;
v = x1 + x2;
*Y++ = WordToHword(v,Np); /* Deposit output */
time += dtb; /* Move to next sample by time increment */
}
return (Y - Ystart); /* Return number of output samples */
}
static RES_WORD FilterUp(const RES_HWORD Imp[], const RES_HWORD ImpD[],
RES_UHWORD Nwing, RES_BOOL Interp,
const RES_HWORD *Xp, RES_HWORD Ph, RES_HWORD Inc)
{
const RES_HWORD *Hp;
const RES_HWORD *Hdp = NULL;
const RES_HWORD *End;
RES_HWORD a = 0;
RES_WORD v, t;
v=0;
Hp = &Imp[Ph>>Na];
End = &Imp[Nwing];
if (Interp) {
Hdp = &ImpD[Ph>>Na];
a = Ph & Amask;
}
if (Inc == 1) /* If doing right wing... */
{ /* ...drop extra coeff, so when Ph is */
End--; /* 0.5, we don't do too many mult's */
if (Ph == 0) /* If the phase is zero... */
{ /* ...then we've already skipped the */
Hp += Npc; /* first sample, so we must also */
Hdp += Npc; /* skip ahead in Imp[] and ImpD[] */
}
}
if (Interp)
while (Hp < End) {
t = *Hp; /* Get filter coeff */
t += (((RES_WORD)*Hdp)*a)>>Na; /* t is now interp'd filter coeff */
Hdp += Npc; /* Filter coeff differences step */
t *= *Xp; /* Mult coeff by input sample */
if (t & (1<<(Nhxn-1))) /* Round, if needed */
t += (1<<(Nhxn-1));
t >>= Nhxn; /* Leave some guard bits, but come back some */
v += t; /* The filter output */
Hp += Npc; /* Filter coeff step */
Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
}
else
while (Hp < End) {
t = *Hp; /* Get filter coeff */
t *= *Xp; /* Mult coeff by input sample */
if (t & (1<<(Nhxn-1))) /* Round, if needed */
t += (1<<(Nhxn-1));
t >>= Nhxn; /* Leave some guard bits, but come back some */
v += t; /* The filter output */
Hp += Npc; /* Filter coeff step */
Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
}
return(v);
}
static RES_WORD FilterUD(const RES_HWORD Imp[], const RES_HWORD ImpD[],
RES_UHWORD Nwing, RES_BOOL Interp,
const RES_HWORD *Xp, RES_HWORD Ph, RES_HWORD Inc, RES_UHWORD dhb)
{
RES_HWORD a;
const RES_HWORD *Hp, *Hdp, *End;
RES_WORD v, t;
RES_UWORD Ho;
v=0;
Ho = (Ph*(RES_UWORD)dhb)>>Np;
End = &Imp[Nwing];
if (Inc == 1) /* If doing right wing... */
{ /* ...drop extra coeff, so when Ph is */
End--; /* 0.5, we don't do too many mult's */
if (Ph == 0) /* If the phase is zero... */
Ho += dhb; /* ...then we've already skipped the */
} /* first sample, so we must also */
/* skip ahead in Imp[] and ImpD[] */
if (Interp)
while ((Hp = &Imp[Ho>>Na]) < End) {
t = *Hp; /* Get IR sample */
Hdp = &ImpD[Ho>>Na]; /* get interp (lower Na) bits from diff table*/
a = Ho & Amask; /* a is logically between 0 and 1 */
t += (((RES_WORD)*Hdp)*a)>>Na; /* t is now interp'd filter coeff */
t *= *Xp; /* Mult coeff by input sample */
if (t & 1<<(Nhxn-1)) /* Round, if needed */
t += 1<<(Nhxn-1);
t >>= Nhxn; /* Leave some guard bits, but come back some */
v += t; /* The filter output */
Ho += dhb; /* IR step */
Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
}
else
while ((Hp = &Imp[Ho>>Na]) < End) {
t = *Hp; /* Get IR sample */
t *= *Xp; /* Mult coeff by input sample */
if (t & 1<<(Nhxn-1)) /* Round, if needed */
t += 1<<(Nhxn-1);
t >>= Nhxn; /* Leave some guard bits, but come back some */
v += t; /* The filter output */
Ho += dhb; /* IR step */
Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
}
return(v);
}
/* Sampling rate up-conversion only subroutine;
* Slightly faster than down-conversion;
*/
static int SrcUp(const RES_HWORD X[], RES_HWORD Y[], double pFactor,
RES_UHWORD nx, RES_UHWORD pNwing, RES_UHWORD pLpScl,
const RES_HWORD pImp[], const RES_HWORD pImpD[], RES_BOOL Interp)
{
const RES_HWORD *xp;
RES_HWORD *Ystart, *Yend;
RES_WORD v;
double dt; /* Step through input signal */
RES_UWORD dtb; /* Fixed-point version of Dt */
RES_UWORD time = 0;
RES_UWORD endTime; /* When time reaches EndTime, return to user */
dt = 1.0/pFactor; /* Output sampling period */
dtb = dt*(1<<Np) + 0.5; /* Fixed-point representation */
Ystart = Y;
Yend = Ystart + (unsigned)(nx * pFactor);
endTime = time + (1<<Np)*(RES_WORD)nx;
// Integer round down in dtb calculation may cause (endTime % dtb > 0),
// so it may cause resample write pass the output buffer (Y >= Yend).
// while (time < endTime)
while (Y < Yend)
{
xp = &X[time>>Np]; /* Ptr to current input sample */
/* Perform left-wing inner product */
v = 0;
v = FilterUp(pImp, pImpD, pNwing, Interp, xp, (RES_HWORD)(time&Pmask),-1);
/* Perform right-wing inner product */
v += FilterUp(pImp, pImpD, pNwing, Interp, xp+1, (RES_HWORD)((-time)&Pmask),1);
v >>= Nhg; /* Make guard bits */
v *= pLpScl; /* Normalize for unity filter gain */
*Y++ = WordToHword(v,NLpScl); /* strip guard bits, deposit output */
time += dtb; /* Move to next sample by time increment */
}
return (Y - Ystart); /* Return the number of output samples */
}
/* Sampling rate conversion subroutine */
static int SrcUD(const RES_HWORD X[], RES_HWORD Y[], double pFactor,
RES_UHWORD nx, RES_UHWORD pNwing, RES_UHWORD pLpScl,
const RES_HWORD pImp[], const RES_HWORD pImpD[], RES_BOOL Interp)
{
const RES_HWORD *xp;
RES_HWORD *Ystart, *Yend;
RES_WORD v;
double dh; /* Step through filter impulse response */
double dt; /* Step through input signal */
RES_UWORD time = 0;
RES_UWORD endTime; /* When time reaches EndTime, return to user */
RES_UWORD dhb, dtb; /* Fixed-point versions of Dh,Dt */
dt = 1.0/pFactor; /* Output sampling period */
dtb = dt*(1<<Np) + 0.5; /* Fixed-point representation */
dh = MIN(Npc, pFactor*Npc); /* Filter sampling period */
dhb = dh*(1<<Na) + 0.5; /* Fixed-point representation */
Ystart = Y;
Yend = Ystart + (unsigned)(nx * pFactor);
endTime = time + (1<<Np)*(RES_WORD)nx;
// Integer round down in dtb calculation may cause (endTime % dtb > 0),
// so it may cause resample write pass the output buffer (Y >= Yend).
// while (time < endTime)
while (Y < Yend)
{
xp = &X[time>>Np]; /* Ptr to current input sample */
v = FilterUD(pImp, pImpD, pNwing, Interp, xp, (RES_HWORD)(time&Pmask),
-1, dhb); /* Perform left-wing inner product */
v += FilterUD(pImp, pImpD, pNwing, Interp, xp+1, (RES_HWORD)((-time)&Pmask),
1, dhb); /* Perform right-wing inner product */
v >>= Nhg; /* Make guard bits */
v *= pLpScl; /* Normalize for unity filter gain */
*Y++ = WordToHword(v,NLpScl); /* strip guard bits, deposit output */
time += dtb; /* Move to next sample by time increment */
}
return (Y - Ystart); /* Return the number of output samples */
}
DECL(int) res_SrcLinear(const RES_HWORD X[], RES_HWORD Y[],
double pFactor, RES_UHWORD nx)
{
return SrcLinear(X, Y, pFactor, nx);
}
DECL(int) res_Resample(const RES_HWORD X[], RES_HWORD Y[], double pFactor,
RES_UHWORD nx, RES_BOOL LargeF, RES_BOOL Interp)
{
if (pFactor >= 1) {
if (LargeF)
return SrcUp(X, Y, pFactor, nx,
LARGE_FILTER_NWING, LARGE_FILTER_SCALE,
LARGE_FILTER_IMP, LARGE_FILTER_IMPD, Interp);
else
return SrcUp(X, Y, pFactor, nx,
SMALL_FILTER_NWING, SMALL_FILTER_SCALE,
SMALL_FILTER_IMP, SMALL_FILTER_IMPD, Interp);
} else {
if (LargeF)
return SrcUD(X, Y, pFactor, nx,
LARGE_FILTER_NWING, LARGE_FILTER_SCALE * pFactor + 0.5,
LARGE_FILTER_IMP, LARGE_FILTER_IMPD, Interp);
else
return SrcUD(X, Y, pFactor, nx,
SMALL_FILTER_NWING, SMALL_FILTER_SCALE * pFactor + 0.5,
SMALL_FILTER_IMP, SMALL_FILTER_IMPD, Interp);
}
}
DECL(int) res_GetXOFF(double pFactor, RES_BOOL LargeF)
{
if (LargeF)
return (LARGE_FILTER_NMULT + 1) / 2.0 *
MAX(1.0, 1.0/pFactor);
else
return (SMALL_FILTER_NMULT + 1) / 2.0 *
MAX(1.0, 1.0/pFactor);
}