blob: 4a4bcaf2835ac1bf1492d70f24d84d4f899b6820 [file] [log] [blame]
/**
* Copyright (C) 2020-2021 Savoir-faire Linux Inc.
*
* Author: Aline Gondim Santos <aline.gondimsantos@savoirfairelinux.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
* USA.
*/
#include "TFInference.h"
// Std libraries
#include <fstream>
#include <iostream>
#include <numeric>
#include <stdlib.h>
#ifdef TFLITE
// Tensorflow headers
#include <tensorflow/lite/builtin_op_data.h>
#include <tensorflow/lite/interpreter.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/model.h>
#include <tensorflow/lite/optional_debug_tools.h>
#else
#ifdef WIN32
#include <WinBase.h>
#endif
#include <tensorflow/core/graph/graph.h>
//#include <tensorflow/core/graph/default_device.h>
#include <tensorflow/core/platform/env.h>
#endif // TFLITE
#include <pluglog.h>
const char sep = separator();
const std::string TAG = "FORESEG";
namespace jami {
TensorflowInference::TensorflowInference(TFModel tfModel)
: tfModel(tfModel)
{}
TensorflowInference::~TensorflowInference() {}
bool
TensorflowInference::isAllocated() const
{
return allocated_;
}
#ifdef TFLITE
void
TensorflowInference::loadModel()
{
Plog::log(Plog::LogPriority::INFO, TAG, "inside loadModel()");
flatbufferModel = tflite::FlatBufferModel::BuildFromFile(tfModel.modelPath.c_str());
if (!flatbufferModel) {
std::runtime_error("Failed to load the model file");
}
Plog::log(Plog::LogPriority::INFO, "TENSOR", "MODEL LOADED");
}
void
TensorflowInference::buildInterpreter()
{
Plog::log(Plog::LogPriority::INFO, TAG, "inside buildInterpreter()");
// Build the interpreter
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder builder(*flatbufferModel, resolver);
builder(&interpreter);
if (interpreter) {
setInterpreterSettings();
Plog::log(Plog::LogPriority::INFO, "TENSOR", "INTERPRETER BUILT");
if (tfModel.useNNAPI) {
TfLiteDelegate* optionalNnApiDelegate = tflite::NnApiDelegate();
if (interpreter->ModifyGraphWithDelegate(optionalNnApiDelegate) != kTfLiteOk) {
Plog::log(Plog::LogPriority::INFO, "TENSOR", "INTERPRETER ERROR!!!");
} else {
Plog::log(Plog::LogPriority::INFO, "TENSOR", "INTERPRETER SET");
allocateTensors();
}
} else {
allocateTensors();
}
}
}
void
TensorflowInference::allocateTensors()
{
if (interpreter->AllocateTensors() != kTfLiteOk) {
std::runtime_error("Failed to allocate tensors!");
} else {
Plog::log(Plog::LogPriority::INFO, "TENSOR", "TENSORS ALLOCATED");
allocated_ = true;
}
}
void
TensorflowInference::describeModelTensors() const
{
// PrintInterpreterState(interpreter.get());
std::ostringstream oss;
oss << "=============== inputs/outputs dimensions ==============="
<< "\n";
const std::vector<int> inputs = interpreter->inputs();
const std::vector<int> outputs = interpreter->outputs();
oss << "number of inputs: " << inputs.size() << std::endl;
oss << "number of outputs: " << outputs.size() << std::endl;
Plog::log(Plog::LogPriority::INFO, "TENSOR", oss.str());
int input = interpreter->inputs()[0];
int output = interpreter->outputs()[0];
oss << "input 0 index: " << input << std::endl;
oss << "output 0 index: " << output << std::endl;
oss << "=============== input dimensions ===============" << std::endl;
Plog::log(Plog::LogPriority::INFO, "TENSOR", oss.str());
// get input dimension from the input tensor metadata
// assuming one input only
for (size_t i = 0; i < inputs.size(); i++) {
std::stringstream ss;
ss << "Input " << i << " ➛ ";
describeTensor(ss.str(), interpreter->inputs()[i]);
}
oss.str("");
oss << "=============== output dimensions ==============="
<< "\n";
Plog::log(Plog::LogPriority::INFO, "TENSOR", oss.str());
// get input dimension from the input tensor metadata
// assuming one input only
for (size_t i = 0; i < outputs.size(); i++) {
std::stringstream ss;
ss << "Output " << i << " ➛ ";
describeTensor(ss.str(), interpreter->outputs()[i]);
}
}
void
TensorflowInference::setInterpreterSettings()
{
// interpreter->UseNNAPI(tfModel.useNNAPI);
interpreter->SetAllowFp16PrecisionForFp32(tfModel.allowFp16PrecisionForFp32);
interpreter->SetNumThreads(static_cast<int>(tfModel.numberOfThreads));
}
void
TensorflowInference::describeTensor(std::string prefix, int index) const
{
std::vector<int> dimensions = getTensorDimensions(index);
size_t nbDimensions = dimensions.size();
std::ostringstream tensorDescription;
tensorDescription << prefix;
for (size_t i = 0; i < nbDimensions; i++) {
if (i == dimensions.size() - 1) {
tensorDescription << dimensions[i];
} else {
tensorDescription << dimensions[i] << " x ";
}
}
tensorDescription << std::endl;
Plog::log(Plog::LogPriority::INFO, "TENSOR", tensorDescription.str());
}
std::vector<int>
TensorflowInference::getTensorDimensions(int index) const
{
TfLiteIntArray* dims = interpreter->tensor(index)->dims;
size_t size = static_cast<size_t>(interpreter->tensor(index)->dims->size);
std::vector<int> result;
result.reserve(size);
for (size_t i = 0; i != size; i++) {
result.push_back(dims->data[i]);
}
dims = nullptr;
return result;
}
void
TensorflowInference::runGraph()
{
for (size_t i = 0; i < tfModel.numberOfRuns; i++) {
if (interpreter->Invoke() != kTfLiteOk) {
Plog::log(Plog::LogPriority::INFO,
"RUN GRAPH",
"A problem occured when running the graph");
}
}
}
void
TensorflowInference::init()
{
/// Loading the model
loadModel();
buildInterpreter();
describeModelTensors();
}
#else
// Reads a model graph definition from disk, and creates a session object you
// can use to run it.
void
TensorflowInference::LoadGraph()
{
tensorflow::GraphDef graph_def;
tensorflow::Status load_graph_status = tensorflow::ReadBinaryProto(tensorflow::Env::Default(),
tfModel.modelPath,
&graph_def);
if (!load_graph_status.ok()) {
allocated_ = false;
Plog::log(Plog::LogPriority::INFO, "LOAD GRAPH", "A problem occured when loading the graph");
return;
}
Plog::log(Plog::LogPriority::INFO, "LOAD GRAPH", "graph loaded");
// Plog::log(Plog::LogPriority::INFO, "GRAPH SIZE: ",
// std::to_string(graph_def.node_size())); for (auto& node :
// *graph_def.mutable_node())
// {
// Plog::log(Plog::LogPriority::INFO, "GRAPH NODE: ",
// node.name().c_str());
// // Plog::log(Plog::LogPriority::INFO, "\tNODE SIZE: ",
// node.().c_str());
// }
PluginParameters* parameters = getGlobalPluginParameters();
tensorflow::SessionOptions options;
if (parameters->useGPU) {
options.config.mutable_gpu_options()->set_allow_growth(true);
options.config.mutable_gpu_options()->set_per_process_gpu_memory_fraction(0.3);
} else {
#ifdef WIN32
options.config.mutable_device_count()->insert({"CPU", 1});
options.config.mutable_device_count()->insert({"GPU", 0});
#else
setenv("CUDA_VISIBLE_DEVICES", "", 1);
#endif
}
(&session)->reset(tensorflow::NewSession(options));
tensorflow::Status session_create_status = session->Create(graph_def);
if (!session_create_status.ok()) {
Plog::log(Plog::LogPriority::INFO,
"INIT SESSION",
"A problem occured when initializating session");
allocated_ = true;
return;
}
Plog::log(Plog::LogPriority::INFO, "INIT SESSION", "session initialized");
allocated_ = true;
}
void
TensorflowInference::runGraph()
{
for (size_t i = 0; i < tfModel.numberOfRuns; i++) {
// Actually run the image through the model.
tensorflow::Status run_status = session->Run({{tfModel.inputLayer, imageTensor}},
{tfModel.outputLayer},
{},
&outputs);
if (!run_status.ok()) {
Plog::log(Plog::LogPriority::INFO,
"RUN GRAPH",
"A problem occured when running the graph");
}
}
}
void
TensorflowInference::init()
{
// Loading the model
LoadGraph();
}
#endif
} // namespace jami