blob: f7829bae3920707b22be54fadc208f6ddd45f3d6 [file] [log] [blame]
Alexandre Lisiond204ea52013-10-15 10:16:25 -04001/*
2 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
3 * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
4 * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
5 */
6
7/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/short_term.c,v 1.2 1994/05/10 20:18:47 jutta Exp $ */
8
9#include <stdio.h>
10#include <assert.h>
11
12#include "private.h"
13
14#include "gsm.h"
15#include "proto.h"
16
17/*
18 * SHORT TERM ANALYSIS FILTERING SECTION
19 */
20
21/* 4.2.8 */
22
23static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp),
24 word * LARc, /* coded log area ratio [0..7] IN */
25 word * LARpp) /* out: decoded .. */
26{
27 register word temp1 /* , temp2 */;
28 register long ltmp; /* for GSM_ADD */
29
30 /* This procedure requires for efficient implementation
31 * two tables.
32 *
33 * INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
34 * MIC[1..8] = minimum value of the LARc[1..8]
35 */
36
37 /* Compute the LARpp[1..8]
38 */
39
40 /* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
41 *
42 * temp1 = GSM_ADD( *LARc, *MIC ) << 10;
43 * temp2 = *B << 1;
44 * temp1 = GSM_SUB( temp1, temp2 );
45 *
46 * assert(*INVA != MIN_WORD);
47 *
48 * temp1 = GSM_MULT_R( *INVA, temp1 );
49 * *LARpp = GSM_ADD( temp1, temp1 );
50 * }
51 */
52
53#undef STEP
54#define STEP( B, MIC, INVA ) \
55 temp1 = GSM_ADD( *LARc++, MIC ) << 10; \
56 temp1 = GSM_SUB( temp1, B << 1 ); \
57 temp1 = GSM_MULT_R( INVA, temp1 ); \
58 *LARpp++ = GSM_ADD( temp1, temp1 );
59
60 STEP( 0, -32, 13107 );
61 STEP( 0, -32, 13107 );
62 STEP( 2048, -16, 13107 );
63 STEP( -2560, -16, 13107 );
64
65 STEP( 94, -8, 19223 );
66 STEP( -1792, -8, 17476 );
67 STEP( -341, -4, 31454 );
68 STEP( -1144, -4, 29708 );
69
70 /* NOTE: the addition of *MIC is used to restore
71 * the sign of *LARc.
72 */
73}
74
75/* 4.2.9 */
76/* Computation of the quantized reflection coefficients
77 */
78
79/* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8]
80 */
81
82/*
83 * Within each frame of 160 analyzed speech samples the short term
84 * analysis and synthesis filters operate with four different sets of
85 * coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
86 * and the actual set of decoded LARs (LARpp(j))
87 *
88 * (Initial value: LARpp(j-1)[1..8] = 0.)
89 */
90
91static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp),
92 register word * LARpp_j_1,
93 register word * LARpp_j,
94 register word * LARp)
95{
96 register int i;
97 register longword ltmp;
98
99 for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {
100 *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
101 *LARp = GSM_ADD( *LARp, SASR( *LARpp_j_1, 1));
102 }
103}
104
105static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp),
106 register word * LARpp_j_1,
107 register word * LARpp_j,
108 register word * LARp)
109{
110 register int i;
111 register longword ltmp;
112 for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
113 *LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));
114 }
115}
116
117static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp),
118 register word * LARpp_j_1,
119 register word * LARpp_j,
120 register word * LARp)
121{
122 register int i;
123 register longword ltmp;
124
125 for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
126 *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
127 *LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));
128 }
129}
130
131
132static void Coefficients_40_159 P2((LARpp_j, LARp),
133 register word * LARpp_j,
134 register word * LARp)
135{
136 register int i;
137
138 for (i = 1; i <= 8; i++, LARp++, LARpp_j++)
139 *LARp = *LARpp_j;
140}
141
142/* 4.2.9.2 */
143
144static void LARp_to_rp P1((LARp),
145 register word * LARp) /* [0..7] IN/OUT */
146/*
147 * The input of this procedure is the interpolated LARp[0..7] array.
148 * The reflection coefficients, rp[i], are used in the analysis
149 * filter and in the synthesis filter.
150 */
151{
152 register int i;
153 register word temp;
154 register longword ltmp;
155
156 for (i = 1; i <= 8; i++, LARp++) {
157
158 /* temp = GSM_ABS( *LARp );
159 *
160 * if (temp < 11059) temp <<= 1;
161 * else if (temp < 20070) temp += 11059;
162 * else temp = GSM_ADD( temp >> 2, 26112 );
163 *
164 * *LARp = *LARp < 0 ? -temp : temp;
165 */
166
167 if (*LARp < 0) {
168 temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);
169 *LARp = - ((temp < 11059) ? temp << 1
170 : ((temp < 20070) ? temp + 11059
171 : GSM_ADD( temp >> 2, 26112 )));
172 } else {
173 temp = *LARp;
174 *LARp = (temp < 11059) ? temp << 1
175 : ((temp < 20070) ? temp + 11059
176 : GSM_ADD( temp >> 2, 26112 ));
177 }
178 }
179}
180
181
182/* 4.2.10 */
183static void Short_term_analysis_filtering P4((S,rp,k_n,s),
184 struct gsm_state * S,
185 register word * rp, /* [0..7] IN */
186 register int k_n, /* k_end - k_start */
187 register word * s /* [0..n-1] IN/OUT */
188)
189/*
190 * This procedure computes the short term residual signal d[..] to be fed
191 * to the RPE-LTP loop from the s[..] signal and from the local rp[..]
192 * array (quantized reflection coefficients). As the call of this
193 * procedure can be done in many ways (see the interpolation of the LAR
194 * coefficient), it is assumed that the computation begins with index
195 * k_start (for arrays d[..] and s[..]) and stops with index k_end
196 * (k_start and k_end are defined in 4.2.9.1). This procedure also
197 * needs to keep the array u[0..7] in memory for each call.
198 */
199{
200 register word * u = S->u;
201 register int i;
202 register word di, zzz, ui, sav, rpi;
203 register longword ltmp;
204
205 for (; k_n--; s++) {
206
207 di = sav = *s;
208
209 for (i = 0; i < 8; i++) { /* YYY */
210
211 ui = u[i];
212 rpi = rp[i];
213 u[i] = sav;
214
215 zzz = GSM_MULT_R(rpi, di);
216 sav = GSM_ADD( ui, zzz);
217
218 zzz = GSM_MULT_R(rpi, ui);
219 di = GSM_ADD( di, zzz );
220 }
221
222 *s = di;
223 }
224}
225
226#if defined(USE_FLOAT_MUL) && defined(FAST)
227
228static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s),
229 struct gsm_state * S,
230 register word * rp, /* [0..7] IN */
231 register int k_n, /* k_end - k_start */
232 register word * s /* [0..n-1] IN/OUT */
233)
234{
235 register word * u = S->u;
236 register int i;
237
238 float uf[8],
239 rpf[8];
240
241 register float scalef = 3.0517578125e-5;
242 register float sav, di, temp;
243
244 for (i = 0; i < 8; ++i) {
245 uf[i] = u[i];
246 rpf[i] = rp[i] * scalef;
247 }
248 for (; k_n--; s++) {
249 sav = di = *s;
250 for (i = 0; i < 8; ++i) {
251 register float rpfi = rpf[i];
252 register float ufi = uf[i];
253
254 uf[i] = sav;
255 temp = rpfi * di + ufi;
256 di += rpfi * ufi;
257 sav = temp;
258 }
259 *s = di;
260 }
261 for (i = 0; i < 8; ++i) u[i] = uf[i];
262}
263#endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */
264
265static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
266 struct gsm_state * S,
267 register word * rrp, /* [0..7] IN */
268 register int k, /* k_end - k_start */
269 register word * wt, /* [0..k-1] IN */
270 register word * sr /* [0..k-1] OUT */
271)
272{
273 register word * v = S->v;
274 register int i;
275 register word sri, tmp1, tmp2;
276 register longword ltmp; /* for GSM_ADD & GSM_SUB */
277
278 while (k--) {
279 sri = *wt++;
280 for (i = 8; i--;) {
281
282 /* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
283 */
284 tmp1 = rrp[i];
285 tmp2 = v[i];
286 tmp2 = ( tmp1 == MIN_WORD && tmp2 == MIN_WORD
287 ? MAX_WORD
288 : 0x0FFFF & (( (longword)tmp1 * (longword)tmp2
289 + 16384) >> 15)) ;
290
291 sri = GSM_SUB( sri, tmp2 );
292
293 /* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
294 */
295 tmp1 = ( tmp1 == MIN_WORD && sri == MIN_WORD
296 ? MAX_WORD
297 : 0x0FFFF & (( (longword)tmp1 * (longword)sri
298 + 16384) >> 15)) ;
299
300 v[i+1] = GSM_ADD( v[i], tmp1);
301 }
302 *sr++ = v[0] = sri;
303 }
304}
305
306
307#if defined(FAST) && defined(USE_FLOAT_MUL)
308
309static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
310 struct gsm_state * S,
311 register word * rrp, /* [0..7] IN */
312 register int k, /* k_end - k_start */
313 register word * wt, /* [0..k-1] IN */
314 register word * sr /* [0..k-1] OUT */
315)
316{
317 register word * v = S->v;
318 register int i;
319
320 float va[9], rrpa[8];
321 register float scalef = 3.0517578125e-5, temp;
322
323 for (i = 0; i < 8; ++i) {
324 va[i] = v[i];
325 rrpa[i] = (float)rrp[i] * scalef;
326 }
327 while (k--) {
328 register float sri = *wt++;
329 for (i = 8; i--;) {
330 sri -= rrpa[i] * va[i];
331 if (sri < -32768.) sri = -32768.;
332 else if (sri > 32767.) sri = 32767.;
333
334 temp = va[i] + rrpa[i] * sri;
335 if (temp < -32768.) temp = -32768.;
336 else if (temp > 32767.) temp = 32767.;
337 va[i+1] = temp;
338 }
339 *sr++ = va[0] = sri;
340 }
341 for (i = 0; i < 9; ++i) v[i] = va[i];
342}
343
344#endif /* defined(FAST) && defined(USE_FLOAT_MUL) */
345
346void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s),
347
348 struct gsm_state * S,
349
350 word * LARc, /* coded log area ratio [0..7] IN */
351 word * s /* signal [0..159] IN/OUT */
352)
353{
354 word * LARpp_j = S->LARpp[ S->j ];
355 word * LARpp_j_1 = S->LARpp[ S->j ^= 1 ];
356
357 word LARp[8];
358
359#undef FILTER
360#if defined(FAST) && defined(USE_FLOAT_MUL)
361# define FILTER (* (S->fast \
362 ? Fast_Short_term_analysis_filtering \
363 : Short_term_analysis_filtering ))
364
365#else
366# define FILTER Short_term_analysis_filtering
367#endif
368
369 Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );
370
371 Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
372 LARp_to_rp( LARp );
373 FILTER( S, LARp, 13, s);
374
375 Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
376 LARp_to_rp( LARp );
377 FILTER( S, LARp, 14, s + 13);
378
379 Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
380 LARp_to_rp( LARp );
381 FILTER( S, LARp, 13, s + 27);
382
383 Coefficients_40_159( LARpp_j, LARp);
384 LARp_to_rp( LARp );
385 FILTER( S, LARp, 120, s + 40);
386}
387
388void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s),
389 struct gsm_state * S,
390
391 word * LARcr, /* received log area ratios [0..7] IN */
392 word * wt, /* received d [0..159] IN */
393
394 word * s /* signal s [0..159] OUT */
395)
396{
397 word * LARpp_j = S->LARpp[ S->j ];
398 word * LARpp_j_1 = S->LARpp[ S->j ^=1 ];
399
400 word LARp[8];
401
402#undef FILTER
403#if defined(FAST) && defined(USE_FLOAT_MUL)
404
405# define FILTER (* (S->fast \
406 ? Fast_Short_term_synthesis_filtering \
407 : Short_term_synthesis_filtering ))
408#else
409# define FILTER Short_term_synthesis_filtering
410#endif
411
412 Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
413
414 Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
415 LARp_to_rp( LARp );
416 FILTER( S, LARp, 13, wt, s );
417
418 Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
419 LARp_to_rp( LARp );
420 FILTER( S, LARp, 14, wt + 13, s + 13 );
421
422 Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
423 LARp_to_rp( LARp );
424 FILTER( S, LARp, 13, wt + 27, s + 27 );
425
426 Coefficients_40_159( LARpp_j, LARp );
427 LARp_to_rp( LARp );
428 FILTER(S, LARp, 120, wt + 40, s + 40);
429}