blob: dd611795d2ad721dfe66ef1d7071a5b8a98dfc84 [file] [log] [blame]
Alexandre Lision8af73cb2013-12-10 14:11:20 -05001/*
2 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
3 * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
4 * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
5 */
6
7/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/rpe.c,v 1.3 1994/05/10 20:18:46 jutta Exp $ */
8
9#include "config.h"
10#include <stdio.h>
11#include <assert.h>
12
13#include "private.h"
14
15#include "gsm.h"
16#include "proto.h"
17
18/* 4.2.13 .. 4.2.17 RPE ENCODING SECTION
19 */
20
21/* 4.2.13 */
22
23static void Weighting_filter P2((e, x),
24 register word * e, /* signal [-5..0.39.44] IN */
25 word * x /* signal [0..39] OUT */
26)
27/*
28 * The coefficients of the weighting filter are stored in a table
29 * (see table 4.4). The following scaling is used:
30 *
31 * H[0..10] = integer( real_H[ 0..10] * 8192 );
32 */
33{
34 /* word wt[ 50 ]; */
35
36 register longword L_result;
37 register int k /* , i */ ;
38
39 /* Initialization of a temporary working array wt[0...49]
40 */
41
42 /* for (k = 0; k <= 4; k++) wt[k] = 0;
43 * for (k = 5; k <= 44; k++) wt[k] = *e++;
44 * for (k = 45; k <= 49; k++) wt[k] = 0;
45 *
46 * (e[-5..-1] and e[40..44] are allocated by the caller,
47 * are initially zero and are not written anywhere.)
48 */
49 e -= 5;
50
51 /* Compute the signal x[0..39]
52 */
53 for (k = 0; k <= 39; k++) {
54
55 L_result = 8192 >> 1;
56
57 /* for (i = 0; i <= 10; i++) {
58 * L_temp = GSM_L_MULT( wt[k+i], gsm_H[i] );
59 * L_result = GSM_L_ADD( L_result, L_temp );
60 * }
61 */
62
63#undef STEP
64#define STEP( i, H ) (e[ k + i ] * (longword)H)
65
66 /* Every one of these multiplications is done twice --
67 * but I don't see an elegant way to optimize this.
68 * Do you?
69 */
70
71#ifdef STUPID_COMPILER
72 L_result += STEP( 0, -134 ) ;
73 L_result += STEP( 1, -374 ) ;
74 /* + STEP( 2, 0 ) */
75 L_result += STEP( 3, 2054 ) ;
76 L_result += STEP( 4, 5741 ) ;
77 L_result += STEP( 5, 8192 ) ;
78 L_result += STEP( 6, 5741 ) ;
79 L_result += STEP( 7, 2054 ) ;
80 /* + STEP( 8, 0 ) */
81 L_result += STEP( 9, -374 ) ;
82 L_result += STEP( 10, -134 ) ;
83#else
84 L_result +=
85 STEP( 0, -134 )
86 + STEP( 1, -374 )
87 /* + STEP( 2, 0 ) */
88 + STEP( 3, 2054 )
89 + STEP( 4, 5741 )
90 + STEP( 5, 8192 )
91 + STEP( 6, 5741 )
92 + STEP( 7, 2054 )
93 /* + STEP( 8, 0 ) */
94 + STEP( 9, -374 )
95 + STEP(10, -134 )
96 ;
97#endif
98
99 /* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x2) *)
100 * L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x4) *)
101 *
102 * x[k] = SASR( L_result, 16 );
103 */
104
105 /* 2 adds vs. >>16 => 14, minus one shift to compensate for
106 * those we lost when replacing L_MULT by '*'.
107 */
108
109 L_result = SASR( L_result, 13 );
110 x[k] = ( L_result < MIN_WORD ? MIN_WORD
111 : (L_result > MAX_WORD ? MAX_WORD : L_result ));
112 }
113}
114
115/* 4.2.14 */
116
117static void RPE_grid_selection P3((x,xM,Mc_out),
118 word * x, /* [0..39] IN */
119 word * xM, /* [0..12] OUT */
120 word * Mc_out /* OUT */
121)
122/*
123 * The signal x[0..39] is used to select the RPE grid which is
124 * represented by Mc.
125 */
126{
127 /* register word temp1; */
128 register int /* m, */ i;
129 register longword L_result, L_temp;
130 longword EM; /* xxx should be L_EM? */
131 word Mc;
132
133 longword L_common_0_3;
134
135 EM = 0;
136 Mc = 0;
137
138 /* for (m = 0; m <= 3; m++) {
139 * L_result = 0;
140 *
141 *
142 * for (i = 0; i <= 12; i++) {
143 *
144 * temp1 = SASR( x[m + 3*i], 2 );
145 *
146 * assert(temp1 != MIN_WORD);
147 *
148 * L_temp = GSM_L_MULT( temp1, temp1 );
149 * L_result = GSM_L_ADD( L_temp, L_result );
150 * }
151 *
152 * if (L_result > EM) {
153 * Mc = m;
154 * EM = L_result;
155 * }
156 * }
157 */
158
159#undef STEP
160#define STEP( m, i ) L_temp = SASR( x[m + 3 * i], 2 ); \
161 L_result += L_temp * L_temp;
162
163 /* common part of 0 and 3 */
164
165 L_result = 0;
166 STEP( 0, 1 ); STEP( 0, 2 ); STEP( 0, 3 ); STEP( 0, 4 );
167 STEP( 0, 5 ); STEP( 0, 6 ); STEP( 0, 7 ); STEP( 0, 8 );
168 STEP( 0, 9 ); STEP( 0, 10); STEP( 0, 11); STEP( 0, 12);
169 L_common_0_3 = L_result;
170
171 /* i = 0 */
172
173 STEP( 0, 0 );
174 L_result <<= 1; /* implicit in L_MULT */
175 EM = L_result;
176
177 /* i = 1 */
178
179 L_result = 0;
180 STEP( 1, 0 );
181 STEP( 1, 1 ); STEP( 1, 2 ); STEP( 1, 3 ); STEP( 1, 4 );
182 STEP( 1, 5 ); STEP( 1, 6 ); STEP( 1, 7 ); STEP( 1, 8 );
183 STEP( 1, 9 ); STEP( 1, 10); STEP( 1, 11); STEP( 1, 12);
184 L_result <<= 1;
185 if (L_result > EM) {
186 Mc = 1;
187 EM = L_result;
188 }
189
190 /* i = 2 */
191
192 L_result = 0;
193 STEP( 2, 0 );
194 STEP( 2, 1 ); STEP( 2, 2 ); STEP( 2, 3 ); STEP( 2, 4 );
195 STEP( 2, 5 ); STEP( 2, 6 ); STEP( 2, 7 ); STEP( 2, 8 );
196 STEP( 2, 9 ); STEP( 2, 10); STEP( 2, 11); STEP( 2, 12);
197 L_result <<= 1;
198 if (L_result > EM) {
199 Mc = 2;
200 EM = L_result;
201 }
202
203 /* i = 3 */
204
205 L_result = L_common_0_3;
206 STEP( 3, 12 );
207 L_result <<= 1;
208 if (L_result > EM) {
209 Mc = 3;
210 EM = L_result;
211 }
212
213 /**/
214
215 /* Down-sampling by a factor 3 to get the selected xM[0..12]
216 * RPE sequence.
217 */
218 for (i = 0; i <= 12; i ++) xM[i] = x[Mc + 3*i];
219 *Mc_out = Mc;
220}
221
222/* 4.12.15 */
223
224static void APCM_quantization_xmaxc_to_exp_mant P3((xmaxc,exp_out,mant_out),
225 word xmaxc, /* IN */
226 word * exp_out, /* OUT */
227 word * mant_out ) /* OUT */
228{
229 word exp, mant;
230
231 /* Compute exponent and mantissa of the decoded version of xmaxc
232 */
233
234 exp = 0;
235 if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1;
236 mant = xmaxc - (exp << 3);
237
238 if (mant == 0) {
239 exp = -4;
240 mant = 7;
241 }
242 else {
243 while (mant <= 7) {
244 mant = mant << 1 | 1;
245 exp--;
246 }
247 mant -= 8;
248 }
249
250 assert( exp >= -4 && exp <= 6 );
251 assert( mant >= 0 && mant <= 7 );
252
253 *exp_out = exp;
254 *mant_out = mant;
255}
256
257static void APCM_quantization P5((xM,xMc,mant_out,exp_out,xmaxc_out),
258 word * xM, /* [0..12] IN */
259
260 word * xMc, /* [0..12] OUT */
261 word * mant_out, /* OUT */
262 word * exp_out, /* OUT */
263 word * xmaxc_out /* OUT */
264)
265{
266 int i, itest;
267
268 word xmax, xmaxc, temp, temp1, temp2;
269 word exp, mant;
270
271
272 /* Find the maximum absolute value xmax of xM[0..12].
273 */
274
275 xmax = 0;
276 for (i = 0; i <= 12; i++) {
277 temp = xM[i];
278 temp = GSM_ABS(temp);
279 if (temp > xmax) xmax = temp;
280 }
281
282 /* Qantizing and coding of xmax to get xmaxc.
283 */
284
285 exp = 0;
286 temp = SASR( xmax, 9 );
287 itest = 0;
288
289 for (i = 0; i <= 5; i++) {
290
291 itest |= (temp <= 0);
292 temp = SASR( temp, 1 );
293
294 assert(exp <= 5);
295 if (itest == 0) exp++; /* exp = add (exp, 1) */
296 }
297
298 assert(exp <= 6 && exp >= 0);
299 temp = exp + 5;
300
301 assert(temp <= 11 && temp >= 0);
302 xmaxc = gsm_add( SASR(xmax, temp), exp << 3 );
303
304 /* Quantizing and coding of the xM[0..12] RPE sequence
305 * to get the xMc[0..12]
306 */
307
308 APCM_quantization_xmaxc_to_exp_mant( xmaxc, &exp, &mant );
309
310 /* This computation uses the fact that the decoded version of xmaxc
311 * can be calculated by using the exponent and the mantissa part of
312 * xmaxc (logarithmic table).
313 * So, this method avoids any division and uses only a scaling
314 * of the RPE samples by a function of the exponent. A direct
315 * multiplication by the inverse of the mantissa (NRFAC[0..7]
316 * found in table 4.5) gives the 3 bit coded version xMc[0..12]
317 * of the RPE samples.
318 */
319
320
321 /* Direct computation of xMc[0..12] using table 4.5
322 */
323
324 assert( exp <= 4096 && exp >= -4096);
325 assert( mant >= 0 && mant <= 7 );
326
327 temp1 = 6 - exp; /* normalization by the exponent */
328 temp2 = gsm_NRFAC[ mant ]; /* inverse mantissa */
329
330 for (i = 0; i <= 12; i++) {
331
332 assert(temp1 >= 0 && temp1 < 16);
333
334 temp = xM[i] << temp1;
335 temp = GSM_MULT( temp, temp2 );
336 temp = SASR(temp, 12);
337 xMc[i] = temp + 4; /* see note below */
338 }
339
340 /* NOTE: This equation is used to make all the xMc[i] positive.
341 */
342
343 *mant_out = mant;
344 *exp_out = exp;
345 *xmaxc_out = xmaxc;
346}
347
348/* 4.2.16 */
349
350static void APCM_inverse_quantization P4((xMc,mant,exp,xMp),
351 register word * xMc, /* [0..12] IN */
352 word mant,
353 word exp,
354 register word * xMp) /* [0..12] OUT */
355/*
356 * This part is for decoding the RPE sequence of coded xMc[0..12]
357 * samples to obtain the xMp[0..12] array. Table 4.6 is used to get
358 * the mantissa of xmaxc (FAC[0..7]).
359 */
360{
361 int i;
362 word temp, temp1, temp2, temp3;
363 longword ltmp;
364
365 assert( mant >= 0 && mant <= 7 );
366
367 temp1 = gsm_FAC[ mant ]; /* see 4.2-15 for mant */
368 temp2 = gsm_sub( 6, exp ); /* see 4.2-15 for exp */
369 temp3 = gsm_asl( 1, gsm_sub( temp2, 1 ));
370
371 for (i = 13; i--;) {
372
373 assert( *xMc <= 7 && *xMc >= 0 ); /* 3 bit unsigned */
374
375 /* temp = gsm_sub( *xMc++ << 1, 7 ); */
376 temp = (*xMc++ << 1) - 7; /* restore sign */
377 assert( temp <= 7 && temp >= -7 ); /* 4 bit signed */
378
379 temp <<= 12; /* 16 bit signed */
380 temp = GSM_MULT_R( temp1, temp );
381 temp = GSM_ADD( temp, temp3 );
382 *xMp++ = gsm_asr( temp, temp2 );
383 }
384}
385
386/* 4.2.17 */
387
388static void RPE_grid_positioning P3((Mc,xMp,ep),
389 word Mc, /* grid position IN */
390 register word * xMp, /* [0..12] IN */
391 register word * ep /* [0..39] OUT */
392)
393/*
394 * This procedure computes the reconstructed long term residual signal
395 * ep[0..39] for the LTP analysis filter. The inputs are the Mc
396 * which is the grid position selection and the xMp[0..12] decoded
397 * RPE samples which are upsampled by a factor of 3 by inserting zero
398 * values.
399 */
400{
401 int i = 13;
402
403 assert(0 <= Mc && Mc <= 3);
404
405 switch (Mc) {
406 case 3: *ep++ = 0;
407 case 2: do {
408 *ep++ = 0;
409 case 1: *ep++ = 0;
410 case 0: *ep++ = *xMp++;
411 } while (--i);
412 }
413 while (++Mc < 4) *ep++ = 0;
414
415 /*
416
417 int i, k;
418 for (k = 0; k <= 39; k++) ep[k] = 0;
419 for (i = 0; i <= 12; i++) {
420 ep[ Mc + (3*i) ] = xMp[i];
421 }
422 */
423}
424
425/* 4.2.18 */
426
427/* This procedure adds the reconstructed long term residual signal
428 * ep[0..39] to the estimated signal dpp[0..39] from the long term
429 * analysis filter to compute the reconstructed short term residual
430 * signal dp[-40..-1]; also the reconstructed short term residual
431 * array dp[-120..-41] is updated.
432 */
433
434#if 0 /* Has been inlined in code.c */
435void Gsm_Update_of_reconstructed_short_time_residual_signal P3((dpp, ep, dp),
436 word * dpp, /* [0...39] IN */
437 word * ep, /* [0...39] IN */
438 word * dp) /* [-120...-1] IN/OUT */
439{
440 int k;
441
442 for (k = 0; k <= 79; k++)
443 dp[ -120 + k ] = dp[ -80 + k ];
444
445 for (k = 0; k <= 39; k++)
446 dp[ -40 + k ] = gsm_add( ep[k], dpp[k] );
447}
448#endif /* Has been inlined in code.c */
449
450void Gsm_RPE_Encoding P5((S,e,xmaxc,Mc,xMc),
451
452 struct gsm_state * S,
453
454 word * e, /* -5..-1][0..39][40..44 IN/OUT */
455 word * xmaxc, /* OUT */
456 word * Mc, /* OUT */
457 word * xMc) /* [0..12] OUT */
458{
459 word x[40];
460 word xM[13], xMp[13];
461 word mant, exp;
462
463 Weighting_filter(e, x);
464 RPE_grid_selection(x, xM, Mc);
465
466 APCM_quantization( xM, xMc, &mant, &exp, xmaxc);
467 APCM_inverse_quantization( xMc, mant, exp, xMp);
468
469 RPE_grid_positioning( *Mc, xMp, e );
470
471}
472
473void Gsm_RPE_Decoding P5((S, xmaxcr, Mcr, xMcr, erp),
474 struct gsm_state * S,
475
476 word xmaxcr,
477 word Mcr,
478 word * xMcr, /* [0..12], 3 bits IN */
479 word * erp /* [0..39] OUT */
480)
481{
482 word exp, mant;
483 word xMp[ 13 ];
484
485 APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant );
486 APCM_inverse_quantization( xMcr, mant, exp, xMp );
487 RPE_grid_positioning( Mcr, xMp, erp );
488
489}