blob: b2d2d3f47c3b6232b4b76e0852c1ad783207683e [file] [log] [blame]
Alexandre Lisiond204ea52013-10-15 10:16:25 -04001/*
2 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
3 * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
4 * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
5 */
6
7/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/long_term.c,v 1.6 1996/07/02 12:33:19 jutta Exp $ */
8
9#include <stdio.h>
10#include <assert.h>
11
12#include "private.h"
13
14#include "gsm.h"
15#include "proto.h"
16
17/*
18 * 4.2.11 .. 4.2.12 LONG TERM PREDICTOR (LTP) SECTION
19 */
20
21
22/*
23 * This module computes the LTP gain (bc) and the LTP lag (Nc)
24 * for the long term analysis filter. This is done by calculating a
25 * maximum of the cross-correlation function between the current
26 * sub-segment short term residual signal d[0..39] (output of
27 * the short term analysis filter; for simplification the index
28 * of this array begins at 0 and ends at 39 for each sub-segment of the
29 * RPE-LTP analysis) and the previous reconstructed short term
30 * residual signal dp[ -120 .. -1 ]. A dynamic scaling must be
31 * performed to avoid overflow.
32 */
33
34 /* The next procedure exists in six versions. First two integer
35 * version (if USE_FLOAT_MUL is not defined); then four floating
36 * point versions, twice with proper scaling (USE_FLOAT_MUL defined),
37 * once without (USE_FLOAT_MUL and FAST defined, and fast run-time
38 * option used). Every pair has first a Cut version (see the -C
39 * option to toast or the LTP_CUT option to gsm_option()), then the
40 * uncut one. (For a detailed explanation of why this is altogether
41 * a bad idea, see Henry Spencer and Geoff Collyer, ``#ifdef Considered
42 * Harmful''.)
43 */
44
45#ifndef USE_FLOAT_MUL
46
47#ifdef LTP_CUT
48
49static void Cut_Calculation_of_the_LTP_parameters P5((st, d,dp,bc_out,Nc_out),
50
51 struct gsm_state * st,
52
53 register word * d, /* [0..39] IN */
54 register word * dp, /* [-120..-1] IN */
55 word * bc_out, /* OUT */
56 word * Nc_out /* OUT */
57)
58{
59 register int k, lambda;
60 word Nc, bc;
61 word wt[40];
62
63 longword L_result;
64 longword L_max, L_power;
65 word R, S, dmax, scal, best_k;
66 word ltp_cut;
67
68 register word temp, wt_k;
69
70 /* Search of the optimum scaling of d[0..39].
71 */
72 dmax = 0;
73 for (k = 0; k <= 39; k++) {
74 temp = d[k];
75 temp = GSM_ABS( temp );
76 if (temp > dmax) {
77 dmax = temp;
78 best_k = k;
79 }
80 }
81 temp = 0;
82 if (dmax == 0) scal = 0;
83 else {
84 assert(dmax > 0);
85 temp = gsm_norm( (longword)dmax << 16 );
86 }
87 if (temp > 6) scal = 0;
88 else scal = 6 - temp;
89 assert(scal >= 0);
90
91 /* Search for the maximum cross-correlation and coding of the LTP lag
92 */
93 L_max = 0;
94 Nc = 40; /* index for the maximum cross-correlation */
95 wt_k = SASR(d[best_k], scal);
96
97 for (lambda = 40; lambda <= 120; lambda++) {
98 L_result = (longword)wt_k * dp[best_k - lambda];
99 if (L_result > L_max) {
100 Nc = lambda;
101 L_max = L_result;
102 }
103 }
104 *Nc_out = Nc;
105 L_max <<= 1;
106
107 /* Rescaling of L_max
108 */
109 assert(scal <= 100 && scal >= -100);
110 L_max = L_max >> (6 - scal); /* sub(6, scal) */
111
112 assert( Nc <= 120 && Nc >= 40);
113
114 /* Compute the power of the reconstructed short term residual
115 * signal dp[..]
116 */
117 L_power = 0;
118 for (k = 0; k <= 39; k++) {
119
120 register longword L_temp;
121
122 L_temp = SASR( dp[k - Nc], 3 );
123 L_power += L_temp * L_temp;
124 }
125 L_power <<= 1; /* from L_MULT */
126
127 /* Normalization of L_max and L_power
128 */
129
130 if (L_max <= 0) {
131 *bc_out = 0;
132 return;
133 }
134 if (L_max >= L_power) {
135 *bc_out = 3;
136 return;
137 }
138
139 temp = gsm_norm( L_power );
140
141 R = SASR( L_max << temp, 16 );
142 S = SASR( L_power << temp, 16 );
143
144 /* Coding of the LTP gain
145 */
146
147 /* Table 4.3a must be used to obtain the level DLB[i] for the
148 * quantization of the LTP gain b to get the coded version bc.
149 */
150 for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
151 *bc_out = bc;
152}
153
154#endif /* LTP_CUT */
155
156static void Calculation_of_the_LTP_parameters P4((d,dp,bc_out,Nc_out),
157 register word * d, /* [0..39] IN */
158 register word * dp, /* [-120..-1] IN */
159 word * bc_out, /* OUT */
160 word * Nc_out /* OUT */
161)
162{
163 register int k, lambda;
164 word Nc, bc;
165 word wt[40];
166
167 longword L_max, L_power;
168 word R, S, dmax, scal;
169 register word temp;
170
171 /* Search of the optimum scaling of d[0..39].
172 */
173 dmax = 0;
174
175 for (k = 0; k <= 39; k++) {
176 temp = d[k];
177 temp = GSM_ABS( temp );
178 if (temp > dmax) dmax = temp;
179 }
180
181 temp = 0;
182 if (dmax == 0) scal = 0;
183 else {
184 assert(dmax > 0);
185 temp = gsm_norm( (longword)dmax << 16 );
186 }
187
188 if (temp > 6) scal = 0;
189 else scal = 6 - temp;
190
191 assert(scal >= 0);
192
193 /* Initialization of a working array wt
194 */
195
196 for (k = 0; k <= 39; k++) wt[k] = SASR( d[k], scal );
197
198 /* Search for the maximum cross-correlation and coding of the LTP lag
199 */
200 L_max = 0;
201 Nc = 40; /* index for the maximum cross-correlation */
202
203 for (lambda = 40; lambda <= 120; lambda++) {
204
205# undef STEP
206# define STEP(k) (longword)wt[k] * dp[k - lambda]
207
208 register longword L_result;
209
210 L_result = STEP(0) ; L_result += STEP(1) ;
211 L_result += STEP(2) ; L_result += STEP(3) ;
212 L_result += STEP(4) ; L_result += STEP(5) ;
213 L_result += STEP(6) ; L_result += STEP(7) ;
214 L_result += STEP(8) ; L_result += STEP(9) ;
215 L_result += STEP(10) ; L_result += STEP(11) ;
216 L_result += STEP(12) ; L_result += STEP(13) ;
217 L_result += STEP(14) ; L_result += STEP(15) ;
218 L_result += STEP(16) ; L_result += STEP(17) ;
219 L_result += STEP(18) ; L_result += STEP(19) ;
220 L_result += STEP(20) ; L_result += STEP(21) ;
221 L_result += STEP(22) ; L_result += STEP(23) ;
222 L_result += STEP(24) ; L_result += STEP(25) ;
223 L_result += STEP(26) ; L_result += STEP(27) ;
224 L_result += STEP(28) ; L_result += STEP(29) ;
225 L_result += STEP(30) ; L_result += STEP(31) ;
226 L_result += STEP(32) ; L_result += STEP(33) ;
227 L_result += STEP(34) ; L_result += STEP(35) ;
228 L_result += STEP(36) ; L_result += STEP(37) ;
229 L_result += STEP(38) ; L_result += STEP(39) ;
230
231 if (L_result > L_max) {
232
233 Nc = lambda;
234 L_max = L_result;
235 }
236 }
237
238 *Nc_out = Nc;
239
240 L_max <<= 1;
241
242 /* Rescaling of L_max
243 */
244 assert(scal <= 100 && scal >= -100);
245 L_max = L_max >> (6 - scal); /* sub(6, scal) */
246
247 assert( Nc <= 120 && Nc >= 40);
248
249 /* Compute the power of the reconstructed short term residual
250 * signal dp[..]
251 */
252 L_power = 0;
253 for (k = 0; k <= 39; k++) {
254
255 register longword L_temp;
256
257 L_temp = SASR( dp[k - Nc], 3 );
258 L_power += L_temp * L_temp;
259 }
260 L_power <<= 1; /* from L_MULT */
261
262 /* Normalization of L_max and L_power
263 */
264
265 if (L_max <= 0) {
266 *bc_out = 0;
267 return;
268 }
269 if (L_max >= L_power) {
270 *bc_out = 3;
271 return;
272 }
273
274 temp = gsm_norm( L_power );
275
276 R = SASR( L_max << temp, 16 );
277 S = SASR( L_power << temp, 16 );
278
279 /* Coding of the LTP gain
280 */
281
282 /* Table 4.3a must be used to obtain the level DLB[i] for the
283 * quantization of the LTP gain b to get the coded version bc.
284 */
285 for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
286 *bc_out = bc;
287}
288
289#else /* USE_FLOAT_MUL */
290
291#ifdef LTP_CUT
292
293static void Cut_Calculation_of_the_LTP_parameters P5((st, d,dp,bc_out,Nc_out),
294 struct gsm_state * st, /* IN */
295 register word * d, /* [0..39] IN */
296 register word * dp, /* [-120..-1] IN */
297 word * bc_out, /* OUT */
298 word * Nc_out /* OUT */
299)
300{
301 register int k, lambda;
302 word Nc, bc;
303 word ltp_cut;
304
305 float wt_float[40];
306 float dp_float_base[120], * dp_float = dp_float_base + 120;
307
308 longword L_max, L_power;
309 word R, S, dmax, scal;
310 register word temp;
311
312 /* Search of the optimum scaling of d[0..39].
313 */
314 dmax = 0;
315
316 for (k = 0; k <= 39; k++) {
317 temp = d[k];
318 temp = GSM_ABS( temp );
319 if (temp > dmax) dmax = temp;
320 }
321
322 temp = 0;
323 if (dmax == 0) scal = 0;
324 else {
325 assert(dmax > 0);
326 temp = gsm_norm( (longword)dmax << 16 );
327 }
328
329 if (temp > 6) scal = 0;
330 else scal = 6 - temp;
331
332 assert(scal >= 0);
333 ltp_cut = (longword)SASR(dmax, scal) * st->ltp_cut / 100;
334
335
336 /* Initialization of a working array wt
337 */
338
339 for (k = 0; k < 40; k++) {
340 register word w = SASR( d[k], scal );
341 if (w < 0 ? w > -ltp_cut : w < ltp_cut) {
342 wt_float[k] = 0.0;
343 }
344 else {
345 wt_float[k] = w;
346 }
347 }
348 for (k = -120; k < 0; k++) dp_float[k] = dp[k];
349
350 /* Search for the maximum cross-correlation and coding of the LTP lag
351 */
352 L_max = 0;
353 Nc = 40; /* index for the maximum cross-correlation */
354
355 for (lambda = 40; lambda <= 120; lambda += 9) {
356
357 /* Calculate L_result for l = lambda .. lambda + 9.
358 */
359 register float *lp = dp_float - lambda;
360
361 register float W;
362 register float a = lp[-8], b = lp[-7], c = lp[-6],
363 d = lp[-5], e = lp[-4], f = lp[-3],
364 g = lp[-2], h = lp[-1];
365 register float E;
366 register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
367 S5 = 0, S6 = 0, S7 = 0, S8 = 0;
368
369# undef STEP
370# define STEP(K, a, b, c, d, e, f, g, h) \
371 if ((W = wt_float[K]) != 0.0) { \
372 E = W * a; S8 += E; \
373 E = W * b; S7 += E; \
374 E = W * c; S6 += E; \
375 E = W * d; S5 += E; \
376 E = W * e; S4 += E; \
377 E = W * f; S3 += E; \
378 E = W * g; S2 += E; \
379 E = W * h; S1 += E; \
380 a = lp[K]; \
381 E = W * a; S0 += E; } else (a = lp[K])
382
383# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h)
384# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a)
385# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b)
386# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c)
387# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d)
388# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e)
389# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f)
390# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g)
391
392 STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
393 STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
394
395 STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
396 STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
397
398 STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
399 STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
400
401 STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
402 STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
403
404 STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
405 STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
406
407 if (S0 > L_max) { L_max = S0; Nc = lambda; }
408 if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
409 if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
410 if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
411 if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
412 if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
413 if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
414 if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
415 if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
416
417 }
418 *Nc_out = Nc;
419
420 L_max <<= 1;
421
422 /* Rescaling of L_max
423 */
424 assert(scal <= 100 && scal >= -100);
425 L_max = L_max >> (6 - scal); /* sub(6, scal) */
426
427 assert( Nc <= 120 && Nc >= 40);
428
429 /* Compute the power of the reconstructed short term residual
430 * signal dp[..]
431 */
432 L_power = 0;
433 for (k = 0; k <= 39; k++) {
434
435 register longword L_temp;
436
437 L_temp = SASR( dp[k - Nc], 3 );
438 L_power += L_temp * L_temp;
439 }
440 L_power <<= 1; /* from L_MULT */
441
442 /* Normalization of L_max and L_power
443 */
444
445 if (L_max <= 0) {
446 *bc_out = 0;
447 return;
448 }
449 if (L_max >= L_power) {
450 *bc_out = 3;
451 return;
452 }
453
454 temp = gsm_norm( L_power );
455
456 R = SASR( L_max << temp, 16 );
457 S = SASR( L_power << temp, 16 );
458
459 /* Coding of the LTP gain
460 */
461
462 /* Table 4.3a must be used to obtain the level DLB[i] for the
463 * quantization of the LTP gain b to get the coded version bc.
464 */
465 for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
466 *bc_out = bc;
467}
468
469#endif /* LTP_CUT */
470
471static void Calculation_of_the_LTP_parameters P4((d,dp,bc_out,Nc_out),
472 register word * d, /* [0..39] IN */
473 register word * dp, /* [-120..-1] IN */
474 word * bc_out, /* OUT */
475 word * Nc_out /* OUT */
476)
477{
478 register int k, lambda;
479 word Nc, bc;
480
481 float wt_float[40];
482 float dp_float_base[120], * dp_float = dp_float_base + 120;
483
484 longword L_max, L_power;
485 word R, S, dmax, scal;
486 register word temp;
487
488 /* Search of the optimum scaling of d[0..39].
489 */
490 dmax = 0;
491
492 for (k = 0; k <= 39; k++) {
493 temp = d[k];
494 temp = GSM_ABS( temp );
495 if (temp > dmax) dmax = temp;
496 }
497
498 temp = 0;
499 if (dmax == 0) scal = 0;
500 else {
501 assert(dmax > 0);
502 temp = gsm_norm( (longword)dmax << 16 );
503 }
504
505 if (temp > 6) scal = 0;
506 else scal = 6 - temp;
507
508 assert(scal >= 0);
509
510 /* Initialization of a working array wt
511 */
512
513 for (k = 0; k < 40; k++) wt_float[k] = SASR( d[k], scal );
514 for (k = -120; k < 0; k++) dp_float[k] = dp[k];
515
516 /* Search for the maximum cross-correlation and coding of the LTP lag
517 */
518 L_max = 0;
519 Nc = 40; /* index for the maximum cross-correlation */
520
521 for (lambda = 40; lambda <= 120; lambda += 9) {
522
523 /* Calculate L_result for l = lambda .. lambda + 9.
524 */
525 register float *lp = dp_float - lambda;
526
527 register float W;
528 register float a = lp[-8], b = lp[-7], c = lp[-6],
529 d = lp[-5], e = lp[-4], f = lp[-3],
530 g = lp[-2], h = lp[-1];
531 register float E;
532 register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
533 S5 = 0, S6 = 0, S7 = 0, S8 = 0;
534
535# undef STEP
536# define STEP(K, a, b, c, d, e, f, g, h) \
537 W = wt_float[K]; \
538 E = W * a; S8 += E; \
539 E = W * b; S7 += E; \
540 E = W * c; S6 += E; \
541 E = W * d; S5 += E; \
542 E = W * e; S4 += E; \
543 E = W * f; S3 += E; \
544 E = W * g; S2 += E; \
545 E = W * h; S1 += E; \
546 a = lp[K]; \
547 E = W * a; S0 += E
548
549# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h)
550# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a)
551# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b)
552# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c)
553# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d)
554# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e)
555# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f)
556# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g)
557
558 STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
559 STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
560
561 STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
562 STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
563
564 STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
565 STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
566
567 STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
568 STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
569
570 STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
571 STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
572
573 if (S0 > L_max) { L_max = S0; Nc = lambda; }
574 if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
575 if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
576 if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
577 if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
578 if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
579 if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
580 if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
581 if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
582 }
583 *Nc_out = Nc;
584
585 L_max <<= 1;
586
587 /* Rescaling of L_max
588 */
589 assert(scal <= 100 && scal >= -100);
590 L_max = L_max >> (6 - scal); /* sub(6, scal) */
591
592 assert( Nc <= 120 && Nc >= 40);
593
594 /* Compute the power of the reconstructed short term residual
595 * signal dp[..]
596 */
597 L_power = 0;
598 for (k = 0; k <= 39; k++) {
599
600 register longword L_temp;
601
602 L_temp = SASR( dp[k - Nc], 3 );
603 L_power += L_temp * L_temp;
604 }
605 L_power <<= 1; /* from L_MULT */
606
607 /* Normalization of L_max and L_power
608 */
609
610 if (L_max <= 0) {
611 *bc_out = 0;
612 return;
613 }
614 if (L_max >= L_power) {
615 *bc_out = 3;
616 return;
617 }
618
619 temp = gsm_norm( L_power );
620
621 R = SASR( L_max << temp, 16 );
622 S = SASR( L_power << temp, 16 );
623
624 /* Coding of the LTP gain
625 */
626
627 /* Table 4.3a must be used to obtain the level DLB[i] for the
628 * quantization of the LTP gain b to get the coded version bc.
629 */
630 for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
631 *bc_out = bc;
632}
633
634#ifdef FAST
635#ifdef LTP_CUT
636
637static void Cut_Fast_Calculation_of_the_LTP_parameters P5((st,
638 d,dp,bc_out,Nc_out),
639 struct gsm_state * st, /* IN */
640 register word * d, /* [0..39] IN */
641 register word * dp, /* [-120..-1] IN */
642 word * bc_out, /* OUT */
643 word * Nc_out /* OUT */
644)
645{
646 register int k, lambda;
647 register float wt_float;
648 word Nc, bc;
649 word wt_max, best_k, ltp_cut;
650
651 float dp_float_base[120], * dp_float = dp_float_base + 120;
652
653 register float L_result, L_max, L_power;
654
655 wt_max = 0;
656
657 for (k = 0; k < 40; ++k) {
658 if ( d[k] > wt_max) wt_max = d[best_k = k];
659 else if (-d[k] > wt_max) wt_max = -d[best_k = k];
660 }
661
662 assert(wt_max >= 0);
663 wt_float = (float)wt_max;
664
665 for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k];
666
667 /* Search for the maximum cross-correlation and coding of the LTP lag
668 */
669 L_max = 0;
670 Nc = 40; /* index for the maximum cross-correlation */
671
672 for (lambda = 40; lambda <= 120; lambda++) {
673 L_result = wt_float * dp_float[best_k - lambda];
674 if (L_result > L_max) {
675 Nc = lambda;
676 L_max = L_result;
677 }
678 }
679
680 *Nc_out = Nc;
681 if (L_max <= 0.) {
682 *bc_out = 0;
683 return;
684 }
685
686 /* Compute the power of the reconstructed short term residual
687 * signal dp[..]
688 */
689 dp_float -= Nc;
690 L_power = 0;
691 for (k = 0; k < 40; ++k) {
692 register float f = dp_float[k];
693 L_power += f * f;
694 }
695
696 if (L_max >= L_power) {
697 *bc_out = 3;
698 return;
699 }
700
701 /* Coding of the LTP gain
702 * Table 4.3a must be used to obtain the level DLB[i] for the
703 * quantization of the LTP gain b to get the coded version bc.
704 */
705 lambda = L_max / L_power * 32768.;
706 for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break;
707 *bc_out = bc;
708}
709
710#endif /* LTP_CUT */
711
712static void Fast_Calculation_of_the_LTP_parameters P4((d,dp,bc_out,Nc_out),
713 register word * d, /* [0..39] IN */
714 register word * dp, /* [-120..-1] IN */
715 word * bc_out, /* OUT */
716 word * Nc_out /* OUT */
717)
718{
719 register int k, lambda;
720 word Nc, bc;
721
722 float wt_float[40];
723 float dp_float_base[120], * dp_float = dp_float_base + 120;
724
725 register float L_max, L_power;
726
727 for (k = 0; k < 40; ++k) wt_float[k] = (float)d[k];
728 for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k];
729
730 /* Search for the maximum cross-correlation and coding of the LTP lag
731 */
732 L_max = 0;
733 Nc = 40; /* index for the maximum cross-correlation */
734
735 for (lambda = 40; lambda <= 120; lambda += 9) {
736
737 /* Calculate L_result for l = lambda .. lambda + 9.
738 */
739 register float *lp = dp_float - lambda;
740
741 register float W;
742 register float a = lp[-8], b = lp[-7], c = lp[-6],
743 d = lp[-5], e = lp[-4], f = lp[-3],
744 g = lp[-2], h = lp[-1];
745 register float E;
746 register float S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
747 S5 = 0, S6 = 0, S7 = 0, S8 = 0;
748
749# undef STEP
750# define STEP(K, a, b, c, d, e, f, g, h) \
751 W = wt_float[K]; \
752 E = W * a; S8 += E; \
753 E = W * b; S7 += E; \
754 E = W * c; S6 += E; \
755 E = W * d; S5 += E; \
756 E = W * e; S4 += E; \
757 E = W * f; S3 += E; \
758 E = W * g; S2 += E; \
759 E = W * h; S1 += E; \
760 a = lp[K]; \
761 E = W * a; S0 += E
762
763# define STEP_A(K) STEP(K, a, b, c, d, e, f, g, h)
764# define STEP_B(K) STEP(K, b, c, d, e, f, g, h, a)
765# define STEP_C(K) STEP(K, c, d, e, f, g, h, a, b)
766# define STEP_D(K) STEP(K, d, e, f, g, h, a, b, c)
767# define STEP_E(K) STEP(K, e, f, g, h, a, b, c, d)
768# define STEP_F(K) STEP(K, f, g, h, a, b, c, d, e)
769# define STEP_G(K) STEP(K, g, h, a, b, c, d, e, f)
770# define STEP_H(K) STEP(K, h, a, b, c, d, e, f, g)
771
772 STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
773 STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
774
775 STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
776 STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
777
778 STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
779 STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
780
781 STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
782 STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
783
784 STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
785 STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
786
787 if (S0 > L_max) { L_max = S0; Nc = lambda; }
788 if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
789 if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
790 if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
791 if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
792 if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
793 if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
794 if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
795 if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
796 }
797 *Nc_out = Nc;
798
799 if (L_max <= 0.) {
800 *bc_out = 0;
801 return;
802 }
803
804 /* Compute the power of the reconstructed short term residual
805 * signal dp[..]
806 */
807 dp_float -= Nc;
808 L_power = 0;
809 for (k = 0; k < 40; ++k) {
810 register float f = dp_float[k];
811 L_power += f * f;
812 }
813
814 if (L_max >= L_power) {
815 *bc_out = 3;
816 return;
817 }
818
819 /* Coding of the LTP gain
820 * Table 4.3a must be used to obtain the level DLB[i] for the
821 * quantization of the LTP gain b to get the coded version bc.
822 */
823 lambda = L_max / L_power * 32768.;
824 for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break;
825 *bc_out = bc;
826}
827
828#endif /* FAST */
829#endif /* USE_FLOAT_MUL */
830
831
832/* 4.2.12 */
833
834static void Long_term_analysis_filtering P6((bc,Nc,dp,d,dpp,e),
835 word bc, /* IN */
836 word Nc, /* IN */
837 register word * dp, /* previous d [-120..-1] IN */
838 register word * d, /* d [0..39] IN */
839 register word * dpp, /* estimate [0..39] OUT */
840 register word * e /* long term res. signal [0..39] OUT */
841)
842/*
843 * In this part, we have to decode the bc parameter to compute
844 * the samples of the estimate dpp[0..39]. The decoding of bc needs the
845 * use of table 4.3b. The long term residual signal e[0..39]
846 * is then calculated to be fed to the RPE encoding section.
847 */
848{
849 register int k;
850 register longword ltmp;
851
852# undef STEP
853# define STEP(BP) \
854 for (k = 0; k <= 39; k++) { \
855 dpp[k] = GSM_MULT_R( BP, dp[k - Nc]); \
856 e[k] = GSM_SUB( d[k], dpp[k] ); \
857 }
858
859 switch (bc) {
860 case 0: STEP( 3277 ); break;
861 case 1: STEP( 11469 ); break;
862 case 2: STEP( 21299 ); break;
863 case 3: STEP( 32767 ); break;
864 }
865}
866
867void Gsm_Long_Term_Predictor P7((S,d,dp,e,dpp,Nc,bc), /* 4x for 160 samples */
868
869 struct gsm_state * S,
870
871 word * d, /* [0..39] residual signal IN */
872 word * dp, /* [-120..-1] d' IN */
873
874 word * e, /* [0..39] OUT */
875 word * dpp, /* [0..39] OUT */
876 word * Nc, /* correlation lag OUT */
877 word * bc /* gain factor OUT */
878)
879{
880 assert( d ); assert( dp ); assert( e );
881 assert( dpp); assert( Nc ); assert( bc );
882
883#if defined(FAST) && defined(USE_FLOAT_MUL)
884 if (S->fast)
885#if defined (LTP_CUT)
886 if (S->ltp_cut)
887 Cut_Fast_Calculation_of_the_LTP_parameters(S,
888 d, dp, bc, Nc);
889 else
890#endif /* LTP_CUT */
891 Fast_Calculation_of_the_LTP_parameters(d, dp, bc, Nc );
892 else
893#endif /* FAST & USE_FLOAT_MUL */
894#ifdef LTP_CUT
895 if (S->ltp_cut)
896 Cut_Calculation_of_the_LTP_parameters(S, d, dp, bc, Nc);
897 else
898#endif
899 Calculation_of_the_LTP_parameters(d, dp, bc, Nc);
900
901 Long_term_analysis_filtering( *bc, *Nc, dp, d, dpp, e );
902}
903
904/* 4.3.2 */
905void Gsm_Long_Term_Synthesis_Filtering P5((S,Ncr,bcr,erp,drp),
906 struct gsm_state * S,
907
908 word Ncr,
909 word bcr,
910 register word * erp, /* [0..39] IN */
911 register word * drp /* [-120..-1] IN, [-120..40] OUT */
912)
913/*
914 * This procedure uses the bcr and Ncr parameter to realize the
915 * long term synthesis filtering. The decoding of bcr needs
916 * table 4.3b.
917 */
918{
919 register longword ltmp; /* for ADD */
920 register int k;
921 word brp, drpp, Nr;
922
923 /* Check the limits of Nr.
924 */
925 Nr = Ncr < 40 || Ncr > 120 ? S->nrp : Ncr;
926 S->nrp = Nr;
927 assert(Nr >= 40 && Nr <= 120);
928
929 /* Decoding of the LTP gain bcr
930 */
931 brp = gsm_QLB[ bcr ];
932
933 /* Computation of the reconstructed short term residual
934 * signal drp[0..39]
935 */
936 assert(brp != MIN_WORD);
937
938 for (k = 0; k <= 39; k++) {
939 drpp = GSM_MULT_R( brp, drp[ k - Nr ] );
940 drp[k] = GSM_ADD( erp[k], drpp );
941 }
942
943 /*
944 * Update of the reconstructed short term residual signal
945 * drp[ -1..-120 ]
946 */
947
948 for (k = 0; k <= 119; k++) drp[ -120 + k ] = drp[ -80 + k ];
949}