blob: cb2f5d013cff4535770505dc7be325aa6fc9b95f [file] [log] [blame]
Alexandre Lision744f7422013-09-25 11:39:37 -04001/* Copyright (c) 2002-2008 Jean-Marc Valin
2 Copyright (c) 2007-2008 CSIRO
3 Copyright (c) 2007-2009 Xiph.Org Foundation
4 Written by Jean-Marc Valin */
5/**
6 @file mathops.h
7 @brief Various math functions
8*/
9/*
10 Redistribution and use in source and binary forms, with or without
11 modification, are permitted provided that the following conditions
12 are met:
13
14 - Redistributions of source code must retain the above copyright
15 notice, this list of conditions and the following disclaimer.
16
17 - Redistributions in binary form must reproduce the above copyright
18 notice, this list of conditions and the following disclaimer in the
19 documentation and/or other materials provided with the distribution.
20
21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
25 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
28 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
29 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
30 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
31 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32*/
33
34#ifndef MATHOPS_H
35#define MATHOPS_H
36
37#include "arch.h"
38#include "entcode.h"
39#include "os_support.h"
40
41/* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
42#define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
43
44unsigned isqrt32(opus_uint32 _val);
45
46#ifndef FIXED_POINT
47
48#define PI 3.141592653f
49#define celt_sqrt(x) ((float)sqrt(x))
50#define celt_rsqrt(x) (1.f/celt_sqrt(x))
51#define celt_rsqrt_norm(x) (celt_rsqrt(x))
52#define celt_cos_norm(x) ((float)cos((.5f*PI)*(x)))
53#define celt_rcp(x) (1.f/(x))
54#define celt_div(a,b) ((a)/(b))
55#define frac_div32(a,b) ((float)(a)/(b))
56
57#ifdef FLOAT_APPROX
58
59/* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127
60 denorm, +/- inf and NaN are *not* handled */
61
62/** Base-2 log approximation (log2(x)). */
63static inline float celt_log2(float x)
64{
65 int integer;
66 float frac;
67 union {
68 float f;
69 opus_uint32 i;
70 } in;
71 in.f = x;
72 integer = (in.i>>23)-127;
73 in.i -= integer<<23;
74 frac = in.f - 1.5f;
75 frac = -0.41445418f + frac*(0.95909232f
76 + frac*(-0.33951290f + frac*0.16541097f));
77 return 1+integer+frac;
78}
79
80/** Base-2 exponential approximation (2^x). */
81static inline float celt_exp2(float x)
82{
83 int integer;
84 float frac;
85 union {
86 float f;
87 opus_uint32 i;
88 } res;
89 integer = floor(x);
90 if (integer < -50)
91 return 0;
92 frac = x-integer;
93 /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */
94 res.f = 0.99992522f + frac * (0.69583354f
95 + frac * (0.22606716f + 0.078024523f*frac));
96 res.i = (res.i + (integer<<23)) & 0x7fffffff;
97 return res.f;
98}
99
100#else
101#define celt_log2(x) ((float)(1.442695040888963387*log(x)))
102#define celt_exp2(x) ((float)exp(0.6931471805599453094*(x)))
103#endif
104
105#endif
106
107#ifdef FIXED_POINT
108
109#include "os_support.h"
110
111#ifndef OVERRIDE_CELT_ILOG2
112/** Integer log in base2. Undefined for zero and negative numbers */
113static inline opus_int16 celt_ilog2(opus_int32 x)
114{
115 celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers");
116 return EC_ILOG(x)-1;
117}
118#endif
119
120#ifndef OVERRIDE_CELT_MAXABS16
121static inline opus_val32 celt_maxabs16(const opus_val16 *x, int len)
122{
123 int i;
124 opus_val16 maxval = 0;
125 opus_val16 minval = 0;
126 for (i=0;i<len;i++)
127 {
128 maxval = MAX16(maxval, x[i]);
129 minval = MIN16(minval, x[i]);
130 }
131 return MAX32(EXTEND32(maxval),-EXTEND32(minval));
132}
133#endif
134
135#ifndef OVERRIDE_CELT_MAXABS32
136static inline opus_val32 celt_maxabs32(opus_val32 *x, int len)
137{
138 int i;
139 opus_val32 maxval = 0;
140 for (i=0;i<len;i++)
141 maxval = MAX32(maxval, ABS32(x[i]));
142 return maxval;
143}
144#endif
145
146/** Integer log in base2. Defined for zero, but not for negative numbers */
147static inline opus_int16 celt_zlog2(opus_val32 x)
148{
149 return x <= 0 ? 0 : celt_ilog2(x);
150}
151
152opus_val16 celt_rsqrt_norm(opus_val32 x);
153
154opus_val32 celt_sqrt(opus_val32 x);
155
156opus_val16 celt_cos_norm(opus_val32 x);
157
158static inline opus_val16 celt_log2(opus_val32 x)
159{
160 int i;
161 opus_val16 n, frac;
162 /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
163 0.15530808010959576, -0.08556153059057618 */
164 static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401};
165 if (x==0)
166 return -32767;
167 i = celt_ilog2(x);
168 n = VSHR32(x,i-15)-32768-16384;
169 frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4]))))))));
170 return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT);
171}
172
173/*
174 K0 = 1
175 K1 = log(2)
176 K2 = 3-4*log(2)
177 K3 = 3*log(2) - 2
178*/
179#define D0 16383
180#define D1 22804
181#define D2 14819
182#define D3 10204
183/** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */
184static inline opus_val32 celt_exp2(opus_val16 x)
185{
186 int integer;
187 opus_val16 frac;
188 integer = SHR16(x,10);
189 if (integer>14)
190 return 0x7f000000;
191 else if (integer < -15)
192 return 0;
193 frac = SHL16(x-SHL16(integer,10),4);
194 frac = ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac))))));
195 return VSHR32(EXTEND32(frac), -integer-2);
196}
197
198opus_val32 celt_rcp(opus_val32 x);
199
200#define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
201
202opus_val32 frac_div32(opus_val32 a, opus_val32 b);
203
204#define M1 32767
205#define M2 -21
206#define M3 -11943
207#define M4 4936
208
209/* Atan approximation using a 4th order polynomial. Input is in Q15 format
210 and normalized by pi/4. Output is in Q15 format */
211static inline opus_val16 celt_atan01(opus_val16 x)
212{
213 return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
214}
215
216#undef M1
217#undef M2
218#undef M3
219#undef M4
220
221/* atan2() approximation valid for positive input values */
222static inline opus_val16 celt_atan2p(opus_val16 y, opus_val16 x)
223{
224 if (y < x)
225 {
226 opus_val32 arg;
227 arg = celt_div(SHL32(EXTEND32(y),15),x);
228 if (arg >= 32767)
229 arg = 32767;
230 return SHR16(celt_atan01(EXTRACT16(arg)),1);
231 } else {
232 opus_val32 arg;
233 arg = celt_div(SHL32(EXTEND32(x),15),y);
234 if (arg >= 32767)
235 arg = 32767;
236 return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
237 }
238}
239
240#endif /* FIXED_POINT */
241#endif /* MATHOPS_H */