blob: 058aa4cf36c7fe82f2fd300d7e26ea2965bacd44 [file] [log] [blame]
Alexandre Lision67916dd2014-01-24 13:33:04 -05001/*
2 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
3 * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
4 * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
5 */
6
7/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/short_term.c,v 1.2 1994/05/10 20:18:47 jutta Exp $ */
8
9#include "config.h"
10#include <stdio.h>
11#include <assert.h>
12
13#include "private.h"
14
15#include "gsm.h"
16#include "proto.h"
17
18/*
19 * SHORT TERM ANALYSIS FILTERING SECTION
20 */
21
22/* 4.2.8 */
23
24static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp),
25 word * LARc, /* coded log area ratio [0..7] IN */
26 word * LARpp) /* out: decoded .. */
27{
28 register word temp1 /* , temp2 */;
29 register long ltmp; /* for GSM_ADD */
30
31 /* This procedure requires for efficient implementation
32 * two tables.
33 *
34 * INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
35 * MIC[1..8] = minimum value of the LARc[1..8]
36 */
37
38 /* Compute the LARpp[1..8]
39 */
40
41 /* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
42 *
43 * temp1 = GSM_ADD( *LARc, *MIC ) << 10;
44 * temp2 = *B << 1;
45 * temp1 = GSM_SUB( temp1, temp2 );
46 *
47 * assert(*INVA != MIN_WORD);
48 *
49 * temp1 = GSM_MULT_R( *INVA, temp1 );
50 * *LARpp = GSM_ADD( temp1, temp1 );
51 * }
52 */
53
54#undef STEP
55#define STEP( B, MIC, INVA ) \
56 temp1 = GSM_ADD( *LARc++, MIC ) << 10; \
57 temp1 = GSM_SUB( temp1, B << 1 ); \
58 temp1 = GSM_MULT_R( INVA, temp1 ); \
59 *LARpp++ = GSM_ADD( temp1, temp1 );
60
61 STEP( 0, -32, 13107 );
62 STEP( 0, -32, 13107 );
63 STEP( 2048, -16, 13107 );
64 STEP( -2560, -16, 13107 );
65
66 STEP( 94, -8, 19223 );
67 STEP( -1792, -8, 17476 );
68 STEP( -341, -4, 31454 );
69 STEP( -1144, -4, 29708 );
70
71 /* NOTE: the addition of *MIC is used to restore
72 * the sign of *LARc.
73 */
74}
75
76/* 4.2.9 */
77/* Computation of the quantized reflection coefficients
78 */
79
80/* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8]
81 */
82
83/*
84 * Within each frame of 160 analyzed speech samples the short term
85 * analysis and synthesis filters operate with four different sets of
86 * coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
87 * and the actual set of decoded LARs (LARpp(j))
88 *
89 * (Initial value: LARpp(j-1)[1..8] = 0.)
90 */
91
92static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp),
93 register word * LARpp_j_1,
94 register word * LARpp_j,
95 register word * LARp)
96{
97 register int i;
98 register longword ltmp;
99
100 for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {
101 *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
102 *LARp = GSM_ADD( *LARp, SASR( *LARpp_j_1, 1));
103 }
104}
105
106static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp),
107 register word * LARpp_j_1,
108 register word * LARpp_j,
109 register word * LARp)
110{
111 register int i;
112 register longword ltmp;
113 for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
114 *LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));
115 }
116}
117
118static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp),
119 register word * LARpp_j_1,
120 register word * LARpp_j,
121 register word * LARp)
122{
123 register int i;
124 register longword ltmp;
125
126 for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
127 *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
128 *LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));
129 }
130}
131
132
133static void Coefficients_40_159 P2((LARpp_j, LARp),
134 register word * LARpp_j,
135 register word * LARp)
136{
137 register int i;
138
139 for (i = 1; i <= 8; i++, LARp++, LARpp_j++)
140 *LARp = *LARpp_j;
141}
142
143/* 4.2.9.2 */
144
145static void LARp_to_rp P1((LARp),
146 register word * LARp) /* [0..7] IN/OUT */
147/*
148 * The input of this procedure is the interpolated LARp[0..7] array.
149 * The reflection coefficients, rp[i], are used in the analysis
150 * filter and in the synthesis filter.
151 */
152{
153 register int i;
154 register word temp;
155 register longword ltmp;
156
157 for (i = 1; i <= 8; i++, LARp++) {
158
159 /* temp = GSM_ABS( *LARp );
160 *
161 * if (temp < 11059) temp <<= 1;
162 * else if (temp < 20070) temp += 11059;
163 * else temp = GSM_ADD( temp >> 2, 26112 );
164 *
165 * *LARp = *LARp < 0 ? -temp : temp;
166 */
167
168 if (*LARp < 0) {
169 temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);
170 *LARp = - ((temp < 11059) ? temp << 1
171 : ((temp < 20070) ? temp + 11059
172 : GSM_ADD( temp >> 2, 26112 )));
173 } else {
174 temp = *LARp;
175 *LARp = (temp < 11059) ? temp << 1
176 : ((temp < 20070) ? temp + 11059
177 : GSM_ADD( temp >> 2, 26112 ));
178 }
179 }
180}
181
182
183/* 4.2.10 */
184static void Short_term_analysis_filtering P4((S,rp,k_n,s),
185 struct gsm_state * S,
186 register word * rp, /* [0..7] IN */
187 register int k_n, /* k_end - k_start */
188 register word * s /* [0..n-1] IN/OUT */
189)
190/*
191 * This procedure computes the short term residual signal d[..] to be fed
192 * to the RPE-LTP loop from the s[..] signal and from the local rp[..]
193 * array (quantized reflection coefficients). As the call of this
194 * procedure can be done in many ways (see the interpolation of the LAR
195 * coefficient), it is assumed that the computation begins with index
196 * k_start (for arrays d[..] and s[..]) and stops with index k_end
197 * (k_start and k_end are defined in 4.2.9.1). This procedure also
198 * needs to keep the array u[0..7] in memory for each call.
199 */
200{
201 register word * u = S->u;
202 register int i;
203 register word di, zzz, ui, sav, rpi;
204 register longword ltmp;
205
206 for (; k_n--; s++) {
207
208 di = sav = *s;
209
210 for (i = 0; i < 8; i++) { /* YYY */
211
212 ui = u[i];
213 rpi = rp[i];
214 u[i] = sav;
215
216 zzz = GSM_MULT_R(rpi, di);
217 sav = GSM_ADD( ui, zzz);
218
219 zzz = GSM_MULT_R(rpi, ui);
220 di = GSM_ADD( di, zzz );
221 }
222
223 *s = di;
224 }
225}
226
227#if defined(USE_FLOAT_MUL) && defined(FAST)
228
229static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s),
230 struct gsm_state * S,
231 register word * rp, /* [0..7] IN */
232 register int k_n, /* k_end - k_start */
233 register word * s /* [0..n-1] IN/OUT */
234)
235{
236 register word * u = S->u;
237 register int i;
238
239 float uf[8],
240 rpf[8];
241
242 register float scalef = 3.0517578125e-5;
243 register float sav, di, temp;
244
245 for (i = 0; i < 8; ++i) {
246 uf[i] = u[i];
247 rpf[i] = rp[i] * scalef;
248 }
249 for (; k_n--; s++) {
250 sav = di = *s;
251 for (i = 0; i < 8; ++i) {
252 register float rpfi = rpf[i];
253 register float ufi = uf[i];
254
255 uf[i] = sav;
256 temp = rpfi * di + ufi;
257 di += rpfi * ufi;
258 sav = temp;
259 }
260 *s = di;
261 }
262 for (i = 0; i < 8; ++i) u[i] = uf[i];
263}
264#endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */
265
266static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
267 struct gsm_state * S,
268 register word * rrp, /* [0..7] IN */
269 register int k, /* k_end - k_start */
270 register word * wt, /* [0..k-1] IN */
271 register word * sr /* [0..k-1] OUT */
272)
273{
274 register word * v = S->v;
275 register int i;
276 register word sri, tmp1, tmp2;
277 register longword ltmp; /* for GSM_ADD & GSM_SUB */
278
279 while (k--) {
280 sri = *wt++;
281 for (i = 8; i--;) {
282
283 /* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
284 */
285 tmp1 = rrp[i];
286 tmp2 = v[i];
287 tmp2 = ( tmp1 == MIN_WORD && tmp2 == MIN_WORD
288 ? MAX_WORD
289 : 0x0FFFF & (( (longword)tmp1 * (longword)tmp2
290 + 16384) >> 15)) ;
291
292 sri = GSM_SUB( sri, tmp2 );
293
294 /* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
295 */
296 tmp1 = ( tmp1 == MIN_WORD && sri == MIN_WORD
297 ? MAX_WORD
298 : 0x0FFFF & (( (longword)tmp1 * (longword)sri
299 + 16384) >> 15)) ;
300
301 v[i+1] = GSM_ADD( v[i], tmp1);
302 }
303 *sr++ = v[0] = sri;
304 }
305}
306
307
308#if defined(FAST) && defined(USE_FLOAT_MUL)
309
310static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
311 struct gsm_state * S,
312 register word * rrp, /* [0..7] IN */
313 register int k, /* k_end - k_start */
314 register word * wt, /* [0..k-1] IN */
315 register word * sr /* [0..k-1] OUT */
316)
317{
318 register word * v = S->v;
319 register int i;
320
321 float va[9], rrpa[8];
322 register float scalef = 3.0517578125e-5, temp;
323
324 for (i = 0; i < 8; ++i) {
325 va[i] = v[i];
326 rrpa[i] = (float)rrp[i] * scalef;
327 }
328 while (k--) {
329 register float sri = *wt++;
330 for (i = 8; i--;) {
331 sri -= rrpa[i] * va[i];
332 if (sri < -32768.) sri = -32768.;
333 else if (sri > 32767.) sri = 32767.;
334
335 temp = va[i] + rrpa[i] * sri;
336 if (temp < -32768.) temp = -32768.;
337 else if (temp > 32767.) temp = 32767.;
338 va[i+1] = temp;
339 }
340 *sr++ = va[0] = sri;
341 }
342 for (i = 0; i < 9; ++i) v[i] = va[i];
343}
344
345#endif /* defined(FAST) && defined(USE_FLOAT_MUL) */
346
347void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s),
348
349 struct gsm_state * S,
350
351 word * LARc, /* coded log area ratio [0..7] IN */
352 word * s /* signal [0..159] IN/OUT */
353)
354{
355 word * LARpp_j = S->LARpp[ S->j ];
356 word * LARpp_j_1 = S->LARpp[ S->j ^= 1 ];
357
358 word LARp[8];
359
360#undef FILTER
361#if defined(FAST) && defined(USE_FLOAT_MUL)
362# define FILTER (* (S->fast \
363 ? Fast_Short_term_analysis_filtering \
364 : Short_term_analysis_filtering ))
365
366#else
367# define FILTER Short_term_analysis_filtering
368#endif
369
370 Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );
371
372 Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
373 LARp_to_rp( LARp );
374 FILTER( S, LARp, 13, s);
375
376 Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
377 LARp_to_rp( LARp );
378 FILTER( S, LARp, 14, s + 13);
379
380 Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
381 LARp_to_rp( LARp );
382 FILTER( S, LARp, 13, s + 27);
383
384 Coefficients_40_159( LARpp_j, LARp);
385 LARp_to_rp( LARp );
386 FILTER( S, LARp, 120, s + 40);
387}
388
389void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s),
390 struct gsm_state * S,
391
392 word * LARcr, /* received log area ratios [0..7] IN */
393 word * wt, /* received d [0..159] IN */
394
395 word * s /* signal s [0..159] OUT */
396)
397{
398 word * LARpp_j = S->LARpp[ S->j ];
399 word * LARpp_j_1 = S->LARpp[ S->j ^=1 ];
400
401 word LARp[8];
402
403#undef FILTER
404#if defined(FAST) && defined(USE_FLOAT_MUL)
405
406# define FILTER (* (S->fast \
407 ? Fast_Short_term_synthesis_filtering \
408 : Short_term_synthesis_filtering ))
409#else
410# define FILTER Short_term_synthesis_filtering
411#endif
412
413 Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
414
415 Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
416 LARp_to_rp( LARp );
417 FILTER( S, LARp, 13, wt, s );
418
419 Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
420 LARp_to_rp( LARp );
421 FILTER( S, LARp, 14, wt + 13, s + 13 );
422
423 Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
424 LARp_to_rp( LARp );
425 FILTER( S, LARp, 13, wt + 27, s + 27 );
426
427 Coefficients_40_159( LARpp_j, LARp );
428 LARp_to_rp( LARp );
429 FILTER(S, LARp, 120, wt + 40, s + 40);
430}