blob: daa5fd043e865eca2ce21c156ce646e4a4a43787 [file] [log] [blame]
Alexandre Lision744f7422013-09-25 11:39:37 -04001/***********************************************************************
2Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3Redistribution and use in source and binary forms, with or without
4modification, are permitted provided that the following conditions
5are met:
6- Redistributions of source code must retain the above copyright notice,
7this list of conditions and the following disclaimer.
8- Redistributions in binary form must reproduce the above copyright
9notice, this list of conditions and the following disclaimer in the
10documentation and/or other materials provided with the distribution.
11- Neither the name of Internet Society, IETF or IETF Trust, nor the
12names of specific contributors, may be used to endorse or promote
13products derived from this software without specific prior written
14permission.
15THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
16AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25POSSIBILITY OF SUCH DAMAGE.
26***********************************************************************/
27
28#ifndef SILK_SIGPROC_FIX_H
29#define SILK_SIGPROC_FIX_H
30
31#ifdef __cplusplus
32extern "C"
33{
34#endif
35
36/*#define silk_MACRO_COUNT */ /* Used to enable WMOPS counting */
37
38#define SILK_MAX_ORDER_LPC 16 /* max order of the LPC analysis in schur() and k2a() */
39
40#include <string.h> /* for memset(), memcpy(), memmove() */
41#include "typedef.h"
42#include "resampler_structs.h"
43#include "macros.h"
44
45
46/********************************************************************/
47/* SIGNAL PROCESSING FUNCTIONS */
48/********************************************************************/
49
50/*!
51 * Initialize/reset the resampler state for a given pair of input/output sampling rates
52*/
53opus_int silk_resampler_init(
54 silk_resampler_state_struct *S, /* I/O Resampler state */
55 opus_int32 Fs_Hz_in, /* I Input sampling rate (Hz) */
56 opus_int32 Fs_Hz_out, /* I Output sampling rate (Hz) */
57 opus_int forEnc /* I If 1: encoder; if 0: decoder */
58);
59
60/*!
61 * Resampler: convert from one sampling rate to another
62 */
63opus_int silk_resampler(
64 silk_resampler_state_struct *S, /* I/O Resampler state */
65 opus_int16 out[], /* O Output signal */
66 const opus_int16 in[], /* I Input signal */
67 opus_int32 inLen /* I Number of input samples */
68);
69
70/*!
71* Downsample 2x, mediocre quality
72*/
73void silk_resampler_down2(
74 opus_int32 *S, /* I/O State vector [ 2 ] */
75 opus_int16 *out, /* O Output signal [ len ] */
76 const opus_int16 *in, /* I Input signal [ floor(len/2) ] */
77 opus_int32 inLen /* I Number of input samples */
78);
79
80/*!
81 * Downsample by a factor 2/3, low quality
82*/
83void silk_resampler_down2_3(
84 opus_int32 *S, /* I/O State vector [ 6 ] */
85 opus_int16 *out, /* O Output signal [ floor(2*inLen/3) ] */
86 const opus_int16 *in, /* I Input signal [ inLen ] */
87 opus_int32 inLen /* I Number of input samples */
88);
89
90/*!
91 * second order ARMA filter;
92 * slower than biquad() but uses more precise coefficients
93 * can handle (slowly) varying coefficients
94 */
95void silk_biquad_alt(
96 const opus_int16 *in, /* I input signal */
97 const opus_int32 *B_Q28, /* I MA coefficients [3] */
98 const opus_int32 *A_Q28, /* I AR coefficients [2] */
99 opus_int32 *S, /* I/O State vector [2] */
100 opus_int16 *out, /* O output signal */
101 const opus_int32 len, /* I signal length (must be even) */
102 opus_int stride /* I Operate on interleaved signal if > 1 */
103);
104
105/* Variable order MA prediction error filter. */
106void silk_LPC_analysis_filter(
107 opus_int16 *out, /* O Output signal */
108 const opus_int16 *in, /* I Input signal */
109 const opus_int16 *B, /* I MA prediction coefficients, Q12 [order] */
110 const opus_int32 len, /* I Signal length */
111 const opus_int32 d /* I Filter order */
112);
113
114/* Chirp (bandwidth expand) LP AR filter */
115void silk_bwexpander(
116 opus_int16 *ar, /* I/O AR filter to be expanded (without leading 1) */
117 const opus_int d, /* I Length of ar */
118 opus_int32 chirp_Q16 /* I Chirp factor (typically in the range 0 to 1) */
119);
120
121/* Chirp (bandwidth expand) LP AR filter */
122void silk_bwexpander_32(
123 opus_int32 *ar, /* I/O AR filter to be expanded (without leading 1) */
124 const opus_int d, /* I Length of ar */
125 opus_int32 chirp_Q16 /* I Chirp factor in Q16 */
126);
127
128/* Compute inverse of LPC prediction gain, and */
129/* test if LPC coefficients are stable (all poles within unit circle) */
130opus_int32 silk_LPC_inverse_pred_gain( /* O Returns inverse prediction gain in energy domain, Q30 */
131 const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */
132 const opus_int order /* I Prediction order */
133);
134
135/* For input in Q24 domain */
136opus_int32 silk_LPC_inverse_pred_gain_Q24( /* O Returns inverse prediction gain in energy domain, Q30 */
137 const opus_int32 *A_Q24, /* I Prediction coefficients [order] */
138 const opus_int order /* I Prediction order */
139);
140
141/* Split signal in two decimated bands using first-order allpass filters */
142void silk_ana_filt_bank_1(
143 const opus_int16 *in, /* I Input signal [N] */
144 opus_int32 *S, /* I/O State vector [2] */
145 opus_int16 *outL, /* O Low band [N/2] */
146 opus_int16 *outH, /* O High band [N/2] */
147 const opus_int32 N /* I Number of input samples */
148);
149
150/********************************************************************/
151/* SCALAR FUNCTIONS */
152/********************************************************************/
153
154/* Approximation of 128 * log2() (exact inverse of approx 2^() below) */
155/* Convert input to a log scale */
156opus_int32 silk_lin2log(
157 const opus_int32 inLin /* I input in linear scale */
158);
159
160/* Approximation of a sigmoid function */
161opus_int silk_sigm_Q15(
162 opus_int in_Q5 /* I */
163);
164
165/* Approximation of 2^() (exact inverse of approx log2() above) */
166/* Convert input to a linear scale */
167opus_int32 silk_log2lin(
168 const opus_int32 inLog_Q7 /* I input on log scale */
169);
170
171/* Function that returns the maximum absolut value of the input vector */
172opus_int16 silk_int16_array_maxabs( /* O Maximum absolute value, max: 2^15-1 */
173 const opus_int16 *vec, /* I Input vector [len] */
174 const opus_int32 len /* I Length of input vector */
175);
176
177/* Compute number of bits to right shift the sum of squares of a vector */
178/* of int16s to make it fit in an int32 */
179void silk_sum_sqr_shift(
180 opus_int32 *energy, /* O Energy of x, after shifting to the right */
181 opus_int *shift, /* O Number of bits right shift applied to energy */
182 const opus_int16 *x, /* I Input vector */
183 opus_int len /* I Length of input vector */
184);
185
186/* Calculates the reflection coefficients from the correlation sequence */
187/* Faster than schur64(), but much less accurate. */
188/* uses SMLAWB(), requiring armv5E and higher. */
189opus_int32 silk_schur( /* O Returns residual energy */
190 opus_int16 *rc_Q15, /* O reflection coefficients [order] Q15 */
191 const opus_int32 *c, /* I correlations [order+1] */
192 const opus_int32 order /* I prediction order */
193);
194
195/* Calculates the reflection coefficients from the correlation sequence */
196/* Slower than schur(), but more accurate. */
197/* Uses SMULL(), available on armv4 */
198opus_int32 silk_schur64( /* O returns residual energy */
199 opus_int32 rc_Q16[], /* O Reflection coefficients [order] Q16 */
200 const opus_int32 c[], /* I Correlations [order+1] */
201 opus_int32 order /* I Prediction order */
202);
203
204/* Step up function, converts reflection coefficients to prediction coefficients */
205void silk_k2a(
206 opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */
207 const opus_int16 *rc_Q15, /* I Reflection coefficients [order] Q15 */
208 const opus_int32 order /* I Prediction order */
209);
210
211/* Step up function, converts reflection coefficients to prediction coefficients */
212void silk_k2a_Q16(
213 opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */
214 const opus_int32 *rc_Q16, /* I Reflection coefficients [order] Q16 */
215 const opus_int32 order /* I Prediction order */
216);
217
218/* Apply sine window to signal vector. */
219/* Window types: */
220/* 1 -> sine window from 0 to pi/2 */
221/* 2 -> sine window from pi/2 to pi */
222/* every other sample of window is linearly interpolated, for speed */
223void silk_apply_sine_window(
224 opus_int16 px_win[], /* O Pointer to windowed signal */
225 const opus_int16 px[], /* I Pointer to input signal */
226 const opus_int win_type, /* I Selects a window type */
227 const opus_int length /* I Window length, multiple of 4 */
228);
229
230/* Compute autocorrelation */
231void silk_autocorr(
232 opus_int32 *results, /* O Result (length correlationCount) */
233 opus_int *scale, /* O Scaling of the correlation vector */
234 const opus_int16 *inputData, /* I Input data to correlate */
235 const opus_int inputDataSize, /* I Length of input */
236 const opus_int correlationCount /* I Number of correlation taps to compute */
237);
238
239void silk_decode_pitch(
240 opus_int16 lagIndex, /* I */
241 opus_int8 contourIndex, /* O */
242 opus_int pitch_lags[], /* O 4 pitch values */
243 const opus_int Fs_kHz, /* I sampling frequency (kHz) */
244 const opus_int nb_subfr /* I number of sub frames */
245);
246
247opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 voiced, 1 unvoiced */
248 const opus_int16 *frame, /* I Signal of length PE_FRAME_LENGTH_MS*Fs_kHz */
249 opus_int *pitch_out, /* O 4 pitch lag values */
250 opus_int16 *lagIndex, /* O Lag Index */
251 opus_int8 *contourIndex, /* O Pitch contour Index */
252 opus_int *LTPCorr_Q15, /* I/O Normalized correlation; input: value from previous frame */
253 opus_int prevLag, /* I Last lag of previous frame; set to zero is unvoiced */
254 const opus_int32 search_thres1_Q16, /* I First stage threshold for lag candidates 0 - 1 */
255 const opus_int search_thres2_Q15, /* I Final threshold for lag candidates 0 - 1 */
256 const opus_int Fs_kHz, /* I Sample frequency (kHz) */
257 const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */
258 const opus_int nb_subfr /* I number of 5 ms subframes */
259);
260
261/* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients */
262/* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
263void silk_A2NLSF(
264 opus_int16 *NLSF, /* O Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
265 opus_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */
266 const opus_int d /* I Filter order (must be even) */
267);
268
269/* compute whitening filter coefficients from normalized line spectral frequencies */
270void silk_NLSF2A(
271 opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */
272 const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */
273 const opus_int d /* I filter order (should be even) */
274);
275
276void silk_insertion_sort_increasing(
277 opus_int32 *a, /* I/O Unsorted / Sorted vector */
278 opus_int *idx, /* O Index vector for the sorted elements */
279 const opus_int L, /* I Vector length */
280 const opus_int K /* I Number of correctly sorted positions */
281);
282
283void silk_insertion_sort_decreasing_int16(
284 opus_int16 *a, /* I/O Unsorted / Sorted vector */
285 opus_int *idx, /* O Index vector for the sorted elements */
286 const opus_int L, /* I Vector length */
287 const opus_int K /* I Number of correctly sorted positions */
288);
289
290void silk_insertion_sort_increasing_all_values_int16(
291 opus_int16 *a, /* I/O Unsorted / Sorted vector */
292 const opus_int L /* I Vector length */
293);
294
295/* NLSF stabilizer, for a single input data vector */
296void silk_NLSF_stabilize(
297 opus_int16 *NLSF_Q15, /* I/O Unstable/stabilized normalized LSF vector in Q15 [L] */
298 const opus_int16 *NDeltaMin_Q15, /* I Min distance vector, NDeltaMin_Q15[L] must be >= 1 [L+1] */
299 const opus_int L /* I Number of NLSF parameters in the input vector */
300);
301
302/* Laroia low complexity NLSF weights */
303void silk_NLSF_VQ_weights_laroia(
304 opus_int16 *pNLSFW_Q_OUT, /* O Pointer to input vector weights [D] */
305 const opus_int16 *pNLSF_Q15, /* I Pointer to input vector [D] */
306 const opus_int D /* I Input vector dimension (even) */
307);
308
309/* Compute reflection coefficients from input signal */
310void silk_burg_modified(
311 opus_int32 *res_nrg, /* O Residual energy */
312 opus_int *res_nrg_Q, /* O Residual energy Q value */
313 opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
314 const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
315 const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
316 const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
317 const opus_int nb_subfr, /* I Number of subframes stacked in x */
318 const opus_int D /* I Order */
319);
320
321/* Copy and multiply a vector by a constant */
322void silk_scale_copy_vector16(
323 opus_int16 *data_out,
324 const opus_int16 *data_in,
325 opus_int32 gain_Q16, /* I Gain in Q16 */
326 const opus_int dataSize /* I Length */
327);
328
329/* Some for the LTP related function requires Q26 to work.*/
330void silk_scale_vector32_Q26_lshift_18(
331 opus_int32 *data1, /* I/O Q0/Q18 */
332 opus_int32 gain_Q26, /* I Q26 */
333 opus_int dataSize /* I length */
334);
335
336/********************************************************************/
337/* INLINE ARM MATH */
338/********************************************************************/
339
340/* return sum( inVec1[i] * inVec2[i] ) */
341opus_int32 silk_inner_prod_aligned(
342 const opus_int16 *const inVec1, /* I input vector 1 */
343 const opus_int16 *const inVec2, /* I input vector 2 */
344 const opus_int len /* I vector lengths */
345);
346
347opus_int32 silk_inner_prod_aligned_scale(
348 const opus_int16 *const inVec1, /* I input vector 1 */
349 const opus_int16 *const inVec2, /* I input vector 2 */
350 const opus_int scale, /* I number of bits to shift */
351 const opus_int len /* I vector lengths */
352);
353
354opus_int64 silk_inner_prod16_aligned_64(
355 const opus_int16 *inVec1, /* I input vector 1 */
356 const opus_int16 *inVec2, /* I input vector 2 */
357 const opus_int len /* I vector lengths */
358);
359
360/********************************************************************/
361/* MACROS */
362/********************************************************************/
363
364/* Rotate a32 right by 'rot' bits. Negative rot values result in rotating
365 left. Output is 32bit int.
366 Note: contemporary compilers recognize the C expression below and
367 compile it into a 'ror' instruction if available. No need for inline ASM! */
368static inline opus_int32 silk_ROR32( opus_int32 a32, opus_int rot )
369{
370 opus_uint32 x = (opus_uint32) a32;
371 opus_uint32 r = (opus_uint32) rot;
372 opus_uint32 m = (opus_uint32) -rot;
373 if( rot == 0 ) {
374 return a32;
375 } else if( rot < 0 ) {
376 return (opus_int32) ((x << m) | (x >> (32 - m)));
377 } else {
378 return (opus_int32) ((x << (32 - r)) | (x >> r));
379 }
380}
381
382/* Allocate opus_int16 aligned to 4-byte memory address */
383#if EMBEDDED_ARM
384#define silk_DWORD_ALIGN __attribute__((aligned(4)))
385#else
386#define silk_DWORD_ALIGN
387#endif
388
389/* Useful Macros that can be adjusted to other platforms */
390#define silk_memcpy(dest, src, size) memcpy((dest), (src), (size))
391#define silk_memset(dest, src, size) memset((dest), (src), (size))
392#define silk_memmove(dest, src, size) memmove((dest), (src), (size))
393
394/* Fixed point macros */
395
396/* (a32 * b32) output have to be 32bit int */
397#define silk_MUL(a32, b32) ((a32) * (b32))
398
399/* (a32 * b32) output have to be 32bit uint */
400#define silk_MUL_uint(a32, b32) silk_MUL(a32, b32)
401
402/* a32 + (b32 * c32) output have to be 32bit int */
403#define silk_MLA(a32, b32, c32) silk_ADD32((a32),((b32) * (c32)))
404
405/* a32 + (b32 * c32) output have to be 32bit uint */
406#define silk_MLA_uint(a32, b32, c32) silk_MLA(a32, b32, c32)
407
408/* ((a32 >> 16) * (b32 >> 16)) output have to be 32bit int */
409#define silk_SMULTT(a32, b32) (((a32) >> 16) * ((b32) >> 16))
410
411/* a32 + ((a32 >> 16) * (b32 >> 16)) output have to be 32bit int */
412#define silk_SMLATT(a32, b32, c32) silk_ADD32((a32),((b32) >> 16) * ((c32) >> 16))
413
414#define silk_SMLALBB(a64, b16, c16) silk_ADD64((a64),(opus_int64)((opus_int32)(b16) * (opus_int32)(c16)))
415
416/* (a32 * b32) */
417#define silk_SMULL(a32, b32) ((opus_int64)(a32) * /*(opus_int64)*/(b32))
418
419/* Adds two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour
420 (just standard two's complement implementation-specific behaviour) */
421#define silk_ADD32_ovflw(a, b) ((opus_int32)((opus_uint32)(a) + (opus_uint32)(b)))
422/* Subtractss two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour
423 (just standard two's complement implementation-specific behaviour) */
424#define silk_SUB32_ovflw(a, b) ((opus_int32)((opus_uint32)(a) - (opus_uint32)(b)))
425
426/* Multiply-accumulate macros that allow overflow in the addition (ie, no asserts in debug mode) */
427#define silk_MLA_ovflw(a32, b32, c32) silk_ADD32_ovflw((a32), (opus_uint32)(b32) * (opus_uint32)(c32))
428#define silk_SMLABB_ovflw(a32, b32, c32) (silk_ADD32_ovflw((a32) , ((opus_int32)((opus_int16)(b32))) * (opus_int32)((opus_int16)(c32))))
429
430#define silk_DIV32_16(a32, b16) ((opus_int32)((a32) / (b16)))
431#define silk_DIV32(a32, b32) ((opus_int32)((a32) / (b32)))
432
433/* These macros enables checking for overflow in silk_API_Debug.h*/
434#define silk_ADD16(a, b) ((a) + (b))
435#define silk_ADD32(a, b) ((a) + (b))
436#define silk_ADD64(a, b) ((a) + (b))
437
438#define silk_SUB16(a, b) ((a) - (b))
439#define silk_SUB32(a, b) ((a) - (b))
440#define silk_SUB64(a, b) ((a) - (b))
441
442#define silk_SAT8(a) ((a) > silk_int8_MAX ? silk_int8_MAX : \
443 ((a) < silk_int8_MIN ? silk_int8_MIN : (a)))
444#define silk_SAT16(a) ((a) > silk_int16_MAX ? silk_int16_MAX : \
445 ((a) < silk_int16_MIN ? silk_int16_MIN : (a)))
446#define silk_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : \
447 ((a) < silk_int32_MIN ? silk_int32_MIN : (a)))
448
449#define silk_CHECK_FIT8(a) (a)
450#define silk_CHECK_FIT16(a) (a)
451#define silk_CHECK_FIT32(a) (a)
452
453#define silk_ADD_SAT16(a, b) (opus_int16)silk_SAT16( silk_ADD32( (opus_int32)(a), (b) ) )
454#define silk_ADD_SAT64(a, b) ((((a) + (b)) & 0x8000000000000000LL) == 0 ? \
455 ((((a) & (b)) & 0x8000000000000000LL) != 0 ? silk_int64_MIN : (a)+(b)) : \
456 ((((a) | (b)) & 0x8000000000000000LL) == 0 ? silk_int64_MAX : (a)+(b)) )
457
458#define silk_SUB_SAT16(a, b) (opus_int16)silk_SAT16( silk_SUB32( (opus_int32)(a), (b) ) )
459#define silk_SUB_SAT64(a, b) ((((a)-(b)) & 0x8000000000000000LL) == 0 ? \
460 (( (a) & ((b)^0x8000000000000000LL) & 0x8000000000000000LL) ? silk_int64_MIN : (a)-(b)) : \
461 ((((a)^0x8000000000000000LL) & (b) & 0x8000000000000000LL) ? silk_int64_MAX : (a)-(b)) )
462
463/* Saturation for positive input values */
464#define silk_POS_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : (a))
465
466/* Add with saturation for positive input values */
467#define silk_ADD_POS_SAT8(a, b) ((((a)+(b)) & 0x80) ? silk_int8_MAX : ((a)+(b)))
468#define silk_ADD_POS_SAT16(a, b) ((((a)+(b)) & 0x8000) ? silk_int16_MAX : ((a)+(b)))
469#define silk_ADD_POS_SAT32(a, b) ((((a)+(b)) & 0x80000000) ? silk_int32_MAX : ((a)+(b)))
470#define silk_ADD_POS_SAT64(a, b) ((((a)+(b)) & 0x8000000000000000LL) ? silk_int64_MAX : ((a)+(b)))
471
472#define silk_LSHIFT8(a, shift) ((opus_int8)((opus_uint8)(a)<<(shift))) /* shift >= 0, shift < 8 */
473#define silk_LSHIFT16(a, shift) ((opus_int16)((opus_uint16)(a)<<(shift))) /* shift >= 0, shift < 16 */
474#define silk_LSHIFT32(a, shift) ((opus_int32)((opus_uint32)(a)<<(shift))) /* shift >= 0, shift < 32 */
475#define silk_LSHIFT64(a, shift) ((opus_int64)((opus_uint64)(a)<<(shift))) /* shift >= 0, shift < 64 */
476#define silk_LSHIFT(a, shift) silk_LSHIFT32(a, shift) /* shift >= 0, shift < 32 */
477
478#define silk_RSHIFT8(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 8 */
479#define silk_RSHIFT16(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 16 */
480#define silk_RSHIFT32(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 32 */
481#define silk_RSHIFT64(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 64 */
482#define silk_RSHIFT(a, shift) silk_RSHIFT32(a, shift) /* shift >= 0, shift < 32 */
483
484/* saturates before shifting */
485#define silk_LSHIFT_SAT32(a, shift) (silk_LSHIFT32( silk_LIMIT( (a), silk_RSHIFT32( silk_int32_MIN, (shift) ), \
486 silk_RSHIFT32( silk_int32_MAX, (shift) ) ), (shift) ))
487
488#define silk_LSHIFT_ovflw(a, shift) ((opus_int32)((opus_uint32)(a) << (shift))) /* shift >= 0, allowed to overflow */
489#define silk_LSHIFT_uint(a, shift) ((a) << (shift)) /* shift >= 0 */
490#define silk_RSHIFT_uint(a, shift) ((a) >> (shift)) /* shift >= 0 */
491
492#define silk_ADD_LSHIFT(a, b, shift) ((a) + silk_LSHIFT((b), (shift))) /* shift >= 0 */
493#define silk_ADD_LSHIFT32(a, b, shift) silk_ADD32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */
494#define silk_ADD_LSHIFT_uint(a, b, shift) ((a) + silk_LSHIFT_uint((b), (shift))) /* shift >= 0 */
495#define silk_ADD_RSHIFT(a, b, shift) ((a) + silk_RSHIFT((b), (shift))) /* shift >= 0 */
496#define silk_ADD_RSHIFT32(a, b, shift) silk_ADD32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */
497#define silk_ADD_RSHIFT_uint(a, b, shift) ((a) + silk_RSHIFT_uint((b), (shift))) /* shift >= 0 */
498#define silk_SUB_LSHIFT32(a, b, shift) silk_SUB32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */
499#define silk_SUB_RSHIFT32(a, b, shift) silk_SUB32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */
500
501/* Requires that shift > 0 */
502#define silk_RSHIFT_ROUND(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
503#define silk_RSHIFT_ROUND64(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
504
505/* Number of rightshift required to fit the multiplication */
506#define silk_NSHIFT_MUL_32_32(a, b) ( -(31- (32-silk_CLZ32(silk_abs(a)) + (32-silk_CLZ32(silk_abs(b))))) )
507#define silk_NSHIFT_MUL_16_16(a, b) ( -(15- (16-silk_CLZ16(silk_abs(a)) + (16-silk_CLZ16(silk_abs(b))))) )
508
509
510#define silk_min(a, b) (((a) < (b)) ? (a) : (b))
511#define silk_max(a, b) (((a) > (b)) ? (a) : (b))
512
513/* Macro to convert floating-point constants to fixed-point */
514#define SILK_FIX_CONST( C, Q ) ((opus_int32)((C) * ((opus_int64)1 << (Q)) + 0.5))
515
516/* silk_min() versions with typecast in the function call */
517static inline opus_int silk_min_int(opus_int a, opus_int b)
518{
519 return (((a) < (b)) ? (a) : (b));
520}
521static inline opus_int16 silk_min_16(opus_int16 a, opus_int16 b)
522{
523 return (((a) < (b)) ? (a) : (b));
524}
525static inline opus_int32 silk_min_32(opus_int32 a, opus_int32 b)
526{
527 return (((a) < (b)) ? (a) : (b));
528}
529static inline opus_int64 silk_min_64(opus_int64 a, opus_int64 b)
530{
531 return (((a) < (b)) ? (a) : (b));
532}
533
534/* silk_min() versions with typecast in the function call */
535static inline opus_int silk_max_int(opus_int a, opus_int b)
536{
537 return (((a) > (b)) ? (a) : (b));
538}
539static inline opus_int16 silk_max_16(opus_int16 a, opus_int16 b)
540{
541 return (((a) > (b)) ? (a) : (b));
542}
543static inline opus_int32 silk_max_32(opus_int32 a, opus_int32 b)
544{
545 return (((a) > (b)) ? (a) : (b));
546}
547static inline opus_int64 silk_max_64(opus_int64 a, opus_int64 b)
548{
549 return (((a) > (b)) ? (a) : (b));
550}
551
552#define silk_LIMIT( a, limit1, limit2) ((limit1) > (limit2) ? ((a) > (limit1) ? (limit1) : ((a) < (limit2) ? (limit2) : (a))) \
553 : ((a) > (limit2) ? (limit2) : ((a) < (limit1) ? (limit1) : (a))))
554
555#define silk_LIMIT_int silk_LIMIT
556#define silk_LIMIT_16 silk_LIMIT
557#define silk_LIMIT_32 silk_LIMIT
558
559#define silk_abs(a) (((a) > 0) ? (a) : -(a)) /* Be careful, silk_abs returns wrong when input equals to silk_intXX_MIN */
560#define silk_abs_int(a) (((a) ^ ((a) >> (8 * sizeof(a) - 1))) - ((a) >> (8 * sizeof(a) - 1)))
561#define silk_abs_int32(a) (((a) ^ ((a) >> 31)) - ((a) >> 31))
562#define silk_abs_int64(a) (((a) > 0) ? (a) : -(a))
563
564#define silk_sign(a) ((a) > 0 ? 1 : ( (a) < 0 ? -1 : 0 ))
565
566/* PSEUDO-RANDOM GENERATOR */
567/* Make sure to store the result as the seed for the next call (also in between */
568/* frames), otherwise result won't be random at all. When only using some of the */
569/* bits, take the most significant bits by right-shifting. */
570#define silk_RAND(seed) (silk_MLA_ovflw(907633515, (seed), 196314165))
571
572/* Add some multiplication functions that can be easily mapped to ARM. */
573
574/* silk_SMMUL: Signed top word multiply.
575 ARMv6 2 instruction cycles.
576 ARMv3M+ 3 instruction cycles. use SMULL and ignore LSB registers.(except xM)*/
577/*#define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT(silk_SMLAL(silk_SMULWB((a32), (b32)), (a32), silk_RSHIFT_ROUND((b32), 16)), 16)*/
578/* the following seems faster on x86 */
579#define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT64(silk_SMULL((a32), (b32)), 32)
580
581#include "Inlines.h"
582#include "MacroCount.h"
583#include "MacroDebug.h"
584
585#ifdef __cplusplus
586}
587#endif
588
589#endif /* SILK_SIGPROC_FIX_H */