blob: 78085927f47f70746e116abba668a5ca875d5eda [file] [log] [blame]
Tristan Matthews0a329cc2013-07-17 13:20:14 -04001/*
2 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
3 * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
4 * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
5 */
6
7/* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/preprocess.c,v 1.2 1994/05/10 20:18:45 jutta Exp $ */
8
9#include "config.h"
10#include <stdio.h>
11#include <assert.h>
12
13#include "private.h"
14
15#include "gsm.h"
16#include "proto.h"
17
18/* 4.2.0 .. 4.2.3 PREPROCESSING SECTION
19 *
20 * After A-law to linear conversion (or directly from the
21 * Ato D converter) the following scaling is assumed for
22 * input to the RPE-LTP algorithm:
23 *
24 * in: 0.1.....................12
25 * S.v.v.v.v.v.v.v.v.v.v.v.v.*.*.*
26 *
27 * Where S is the sign bit, v a valid bit, and * a "don't care" bit.
28 * The original signal is called sop[..]
29 *
30 * out: 0.1................... 12
31 * S.S.v.v.v.v.v.v.v.v.v.v.v.v.0.0
32 */
33
34
35void Gsm_Preprocess P3((S, s, so),
36 struct gsm_state * S,
37 word * s,
38 word * so ) /* [0..159] IN/OUT */
39{
40
41 word z1 = S->z1;
42 longword L_z2 = S->L_z2;
43 word mp = S->mp;
44
45 word s1;
46 longword L_s2;
47
48 longword L_temp;
49
50 word msp, lsp;
51 word SO;
52
53 longword ltmp; /* for ADD */
54 ulongword utmp; /* for L_ADD */
55
56 register int k = 160;
57
58 while (k--) {
59
60 /* 4.2.1 Downscaling of the input signal
61 */
62 SO = SASR( *s, 3 ) << 2;
63 s++;
64
65 assert (SO >= -0x4000); /* downscaled by */
66 assert (SO <= 0x3FFC); /* previous routine. */
67
68
69 /* 4.2.2 Offset compensation
70 *
71 * This part implements a high-pass filter and requires extended
72 * arithmetic precision for the recursive part of this filter.
73 * The input of this procedure is the array so[0...159] and the
74 * output the array sof[ 0...159 ].
75 */
76 /* Compute the non-recursive part
77 */
78
79 s1 = SO - z1; /* s1 = gsm_sub( *so, z1 ); */
80 z1 = SO;
81
82 assert(s1 != MIN_WORD);
83
84 /* Compute the recursive part
85 */
86 L_s2 = s1;
87 L_s2 <<= 15;
88
89 /* Execution of a 31 bv 16 bits multiplication
90 */
91
92 msp = SASR( L_z2, 15 );
93 lsp = L_z2-((longword)msp<<15); /* gsm_L_sub(L_z2,(msp<<15)); */
94
95 L_s2 += GSM_MULT_R( lsp, 32735 );
96 L_temp = (longword)msp * 32735; /* GSM_L_MULT(msp,32735) >> 1;*/
97 L_z2 = GSM_L_ADD( L_temp, L_s2 );
98
99 /* Compute sof[k] with rounding
100 */
101 L_temp = GSM_L_ADD( L_z2, 16384 );
102
103 /* 4.2.3 Preemphasis
104 */
105
106 msp = GSM_MULT_R( mp, -28180 );
107 mp = SASR( L_temp, 15 );
108 *so++ = GSM_ADD( mp, msp );
109 }
110
111 S->z1 = z1;
112 S->L_z2 = L_z2;
113 S->mp = mp;
114}