blob: 31cee60e259dad4f8afa74aec82dc2a67538287c [file] [log] [blame]
Alexandre Lision7fd5d3d2013-12-04 13:06:40 -05001/*
2 ---------------------------------------------------------------------------
3 Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
4
5 LICENSE TERMS
6
7 The free distribution and use of this software in both source and binary
8 form is allowed (with or without changes) provided that:
9
10 1. distributions of this source code include the above copyright
11 notice, this list of conditions and the following disclaimer;
12
13 2. distributions in binary form include the above copyright
14 notice, this list of conditions and the following disclaimer
15 in the documentation and/or other associated materials;
16
17 3. the copyright holder's name is not used to endorse products
18 built using this software without specific written permission.
19
20 ALTERNATIVELY, provided that this notice is retained in full, this product
21 may be distributed under the terms of the GNU General Public License (GPL),
22 in which case the provisions of the GPL apply INSTEAD OF those given above.
23
24 DISCLAIMER
25
26 This software is provided 'as is' with no explicit or implied warranties
27 in respect of its properties, including, but not limited to, correctness
28 and/or fitness for purpose.
29 ---------------------------------------------------------------------------
30 Issue Date: 01/08/2005
31
32 This is a byte oriented version of SHA1 that operates on arrays of bytes
33 stored in memory.
34*/
35
36#include <string.h> /* for memcpy() etc. */
37
38#include "sha1.h"
39
40#if defined(__cplusplus)
41extern "C"
42{
43#endif
44
45#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
46#pragma intrinsic(memcpy)
47#endif
48
49#if 0 && defined(_MSC_VER)
50#define rotl32 _lrotl
51#define rotr32 _lrotr
52#else
53#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
54#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
55#endif
56
57#if !defined(bswap_32)
58#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
59#endif
60
61#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
62#define SWAP_BYTES
63#else
64#undef SWAP_BYTES
65#endif
66
67#if defined(SWAP_BYTES)
68#define bsw_32(p,n) \
69 { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
70#else
71#define bsw_32(p,n)
72#endif
73
74#define SHA1_MASK (SHA1_BLOCK_SIZE - 1)
75
76#if 0
77
78#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
79#define parity(x,y,z) ((x) ^ (y) ^ (z))
80#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
81
82#else /* Discovered by Rich Schroeppel and Colin Plumb */
83
84#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
85#define parity(x,y,z) ((x) ^ (y) ^ (z))
86#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
87
88#endif
89
90/* Compile 64 bytes of hash data into SHA1 context. Note */
91/* that this routine assumes that the byte order in the */
92/* ctx->wbuf[] at this point is in such an order that low */
93/* address bytes in the ORIGINAL byte stream will go in */
94/* this buffer to the high end of 32-bit words on BOTH big */
95/* and little endian systems */
96
97#ifdef ARRAY
98#define q(v,n) v[n]
99#else
100#define q(v,n) v##n
101#endif
102
103#define one_cycle(v,a,b,c,d,e,f,k,h) \
104 q(v,e) += rotr32(q(v,a),27) + \
105 f(q(v,b),q(v,c),q(v,d)) + k + h; \
106 q(v,b) = rotr32(q(v,b), 2)
107
108#define five_cycle(v,f,k,i) \
109 one_cycle(v, 0,1,2,3,4, f,k,hf(i )); \
110 one_cycle(v, 4,0,1,2,3, f,k,hf(i+1)); \
111 one_cycle(v, 3,4,0,1,2, f,k,hf(i+2)); \
112 one_cycle(v, 2,3,4,0,1, f,k,hf(i+3)); \
113 one_cycle(v, 1,2,3,4,0, f,k,hf(i+4))
114
115VOID_RETURN sha1_compile(sha1_ctx ctx[1])
116{ uint_32t *w = ctx->wbuf;
117
118#ifdef ARRAY
119 uint_32t v[5];
120 memcpy(v, ctx->hash, 5 * sizeof(uint_32t));
121#else
122 uint_32t v0, v1, v2, v3, v4;
123 v0 = ctx->hash[0]; v1 = ctx->hash[1];
124 v2 = ctx->hash[2]; v3 = ctx->hash[3];
125 v4 = ctx->hash[4];
126#endif
127
128#define hf(i) w[i]
129
130 five_cycle(v, ch, 0x5a827999, 0);
131 five_cycle(v, ch, 0x5a827999, 5);
132 five_cycle(v, ch, 0x5a827999, 10);
133 one_cycle(v,0,1,2,3,4, ch, 0x5a827999, hf(15)); \
134
135#undef hf
136#define hf(i) (w[(i) & 15] = rotl32( \
137 w[((i) + 13) & 15] ^ w[((i) + 8) & 15] \
138 ^ w[((i) + 2) & 15] ^ w[(i) & 15], 1))
139
140 one_cycle(v,4,0,1,2,3, ch, 0x5a827999, hf(16));
141 one_cycle(v,3,4,0,1,2, ch, 0x5a827999, hf(17));
142 one_cycle(v,2,3,4,0,1, ch, 0x5a827999, hf(18));
143 one_cycle(v,1,2,3,4,0, ch, 0x5a827999, hf(19));
144
145 five_cycle(v, parity, 0x6ed9eba1, 20);
146 five_cycle(v, parity, 0x6ed9eba1, 25);
147 five_cycle(v, parity, 0x6ed9eba1, 30);
148 five_cycle(v, parity, 0x6ed9eba1, 35);
149
150 five_cycle(v, maj, 0x8f1bbcdc, 40);
151 five_cycle(v, maj, 0x8f1bbcdc, 45);
152 five_cycle(v, maj, 0x8f1bbcdc, 50);
153 five_cycle(v, maj, 0x8f1bbcdc, 55);
154
155 five_cycle(v, parity, 0xca62c1d6, 60);
156 five_cycle(v, parity, 0xca62c1d6, 65);
157 five_cycle(v, parity, 0xca62c1d6, 70);
158 five_cycle(v, parity, 0xca62c1d6, 75);
159
160#ifdef ARRAY
161 ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
162 ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
163 ctx->hash[4] += v[4];
164#else
165 ctx->hash[0] += v0; ctx->hash[1] += v1;
166 ctx->hash[2] += v2; ctx->hash[3] += v3;
167 ctx->hash[4] += v4;
168#endif
169}
170
171VOID_RETURN sha1_begin(sha1_ctx ctx[1])
172{
173 ctx->count[0] = ctx->count[1] = 0;
174 ctx->hash[0] = 0x67452301;
175 ctx->hash[1] = 0xefcdab89;
176 ctx->hash[2] = 0x98badcfe;
177 ctx->hash[3] = 0x10325476;
178 ctx->hash[4] = 0xc3d2e1f0;
179}
180
181/* SHA1 hash data in an array of bytes into hash buffer and */
182/* call the hash_compile function as required. */
183
184VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1])
185{
186 uint_32t pos = (uint_32t)(ctx->count[0] & SHA1_MASK),
187 space = SHA1_BLOCK_SIZE - pos;
188 const unsigned char *sp = data;
189
190 if((ctx->count[0] += len) < len)
191 ++(ctx->count[1]);
192
193 while(len >= space) /* tranfer whole blocks if possible */
194 {
195 memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
196 sp += space; len -= space; space = SHA1_BLOCK_SIZE; pos = 0;
197 bsw_32(ctx->wbuf, SHA1_BLOCK_SIZE >> 2);
198 sha1_compile(ctx);
199 }
200
201 memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
202}
203
204/* SHA1 final padding and digest calculation */
205
206VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1])
207{ uint_32t i = (uint_32t)(ctx->count[0] & SHA1_MASK);
208
209 /* put bytes in the buffer in an order in which references to */
210 /* 32-bit words will put bytes with lower addresses into the */
211 /* top of 32 bit words on BOTH big and little endian machines */
212 bsw_32(ctx->wbuf, (i + 3) >> 2);
213
214 /* we now need to mask valid bytes and add the padding which is */
215 /* a single 1 bit and as many zero bits as necessary. Note that */
216 /* we can always add the first padding byte here because the */
217 /* buffer always has at least one empty slot */
218 ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
219 ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);
220
221 /* we need 9 or more empty positions, one for the padding byte */
222 /* (above) and eight for the length count. If there is not */
223 /* enough space, pad and empty the buffer */
224 if(i > SHA1_BLOCK_SIZE - 9)
225 {
226 if(i < 60) ctx->wbuf[15] = 0;
227 sha1_compile(ctx);
228 i = 0;
229 }
230 else /* compute a word index for the empty buffer positions */
231 i = (i >> 2) + 1;
232
233 while(i < 14) /* and zero pad all but last two positions */
234 ctx->wbuf[i++] = 0;
235
236 /* the following 32-bit length fields are assembled in the */
237 /* wrong byte order on little endian machines but this is */
238 /* corrected later since they are only ever used as 32-bit */
239 /* word values. */
240 ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
241 ctx->wbuf[15] = ctx->count[0] << 3;
242 sha1_compile(ctx);
243
244 /* extract the hash value as bytes in case the hash buffer is */
245 /* misaligned for 32-bit words */
246 for(i = 0; i < SHA1_DIGEST_SIZE; ++i)
247 hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
248}
249
250VOID_RETURN bg_sha1(unsigned char hval[], const unsigned char data[], unsigned long len)
251{ sha1_ctx cx[1];
252
253 sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx);
254}
255
256#if defined(__cplusplus)
257}
258#endif