blob: 85e8d68086bb700855ec3fedb5b17fba4a7a1464 [file] [log] [blame]
Alexandre Savard1b09e312012-08-07 20:33:29 -04001#!/usr/bin/env perl
2
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# January 2009
11#
12# Provided that UltraSPARC VIS instructions are pipe-lined(*) and
13# pairable(*) with IALU ones, offloading of Xupdate to the UltraSPARC
14# Graphic Unit would make it possible to achieve higher instruction-
15# level parallelism, ILP, and thus higher performance. It should be
16# explicitly noted that ILP is the keyword, and it means that this
17# code would be unsuitable for cores like UltraSPARC-Tx. The idea is
18# not really novel, Sun had VIS-powered implementation for a while.
19# Unlike Sun's implementation this one can process multiple unaligned
20# input blocks, and as such works as drop-in replacement for OpenSSL
21# sha1_block_data_order. Performance improvement was measured to be
22# 40% over pure IALU sha1-sparcv9.pl on UltraSPARC-IIi, but 12% on
23# UltraSPARC-III. See below for discussion...
24#
25# The module does not present direct interest for OpenSSL, because
26# it doesn't provide better performance on contemporary SPARCv9 CPUs,
27# UltraSPARC-Tx and SPARC64-V[II] to be specific. Those who feel they
28# absolutely must score on UltraSPARC-I-IV can simply replace
29# crypto/sha/asm/sha1-sparcv9.pl with this module.
30#
31# (*) "Pipe-lined" means that even if it takes several cycles to
32# complete, next instruction using same functional unit [but not
33# depending on the result of the current instruction] can start
34# execution without having to wait for the unit. "Pairable"
35# means that two [or more] independent instructions can be
36# issued at the very same time.
37
38$bits=32;
39for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
40if ($bits==64) { $bias=2047; $frame=192; }
41else { $bias=0; $frame=112; }
42
43$output=shift;
44open STDOUT,">$output";
45
46$ctx="%i0";
47$inp="%i1";
48$len="%i2";
49$tmp0="%i3";
50$tmp1="%i4";
51$tmp2="%i5";
52$tmp3="%g5";
53
54$base="%g1";
55$align="%g4";
56$Xfer="%o5";
57$nXfer=$tmp3;
58$Xi="%o7";
59
60$A="%l0";
61$B="%l1";
62$C="%l2";
63$D="%l3";
64$E="%l4";
65@V=($A,$B,$C,$D,$E);
66
67$Actx="%o0";
68$Bctx="%o1";
69$Cctx="%o2";
70$Dctx="%o3";
71$Ectx="%o4";
72
73$fmul="%f32";
74$VK_00_19="%f34";
75$VK_20_39="%f36";
76$VK_40_59="%f38";
77$VK_60_79="%f40";
78@VK=($VK_00_19,$VK_20_39,$VK_40_59,$VK_60_79);
79@X=("%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
80 "%f8", "%f9","%f10","%f11","%f12","%f13","%f14","%f15","%f16");
81
82# This is reference 2x-parallelized VIS-powered Xupdate procedure. It
83# covers even K_NN_MM addition...
84sub Xupdate {
85my ($i)=@_;
86my $K=@VK[($i+16)/20];
87my $j=($i+16)%16;
88
89# [ provided that GSR.alignaddr_offset is 5, $mul contains
90# 0x100ULL<<32|0x100 value and K_NN_MM are pre-loaded to
91# chosen registers... ]
92$code.=<<___;
93 fxors @X[($j+13)%16],@X[$j],@X[$j] !-1/-1/-1:X[0]^=X[13]
94 fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
95 fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
96 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
97 faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
98 fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
99 fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
100 ![fxors %f15,%f2,%f2]
101 for %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
102 ![fxors %f0,%f3,%f3] !10/17/12:X[0] dependency
103 fpadd32 $K,@X[$j],%f20
104 std %f20,[$Xfer+`4*$j`]
105___
106# The numbers delimited with slash are the earliest possible dispatch
107# cycles for given instruction assuming 1 cycle latency for simple VIS
108# instructions, such as on UltraSPARC-I&II, 3 cycles latency, such as
109# on UltraSPARC-III&IV, and 2 cycles latency(*), respectively. Being
110# 2x-parallelized the procedure is "worth" 5, 8.5 or 6 ticks per SHA1
111# round. As [long as] FPU/VIS instructions are perfectly pairable with
112# IALU ones, the round timing is defined by the maximum between VIS
113# and IALU timings. The latter varies from round to round and averages
114# out at 6.25 ticks. This means that USI&II should operate at IALU
115# rate, while USIII&IV - at VIS rate. This explains why performance
116# improvement varies among processors. Well, given that pure IALU
117# sha1-sparcv9.pl module exhibits virtually uniform performance of
118# ~9.3 cycles per SHA1 round. Timings mentioned above are theoretical
119# lower limits. Real-life performance was measured to be 6.6 cycles
120# per SHA1 round on USIIi and 8.3 on USIII. The latter is lower than
121# half-round VIS timing, because there are 16 Xupdate-free rounds,
122# which "push down" average theoretical timing to 8 cycles...
123
124# (*) SPARC64-V[II] was originally believed to have 2 cycles VIS
125# latency. Well, it might have, but it doesn't have dedicated
126# VIS-unit. Instead, VIS instructions are executed by other
127# functional units, ones used here - by IALU. This doesn't
128# improve effective ILP...
129}
130
131# The reference Xupdate procedure is then "strained" over *pairs* of
132# BODY_NN_MM and kind of modulo-scheduled in respect to X[n]^=X[n+13]
133# and K_NN_MM addition. It's "running" 15 rounds ahead, which leaves
134# plenty of room to amortize for read-after-write hazard, as well as
135# to fetch and align input for the next spin. The VIS instructions are
136# scheduled for latency of 2 cycles, because there are not enough IALU
137# instructions to schedule for latency of 3, while scheduling for 1
138# would give no gain on USI&II anyway.
139
140sub BODY_00_19 {
141my ($i,$a,$b,$c,$d,$e)=@_;
142my $j=$i&~1;
143my $k=($j+16+2)%16; # ahead reference
144my $l=($j+16-2)%16; # behind reference
145my $K=@VK[($j+16-2)/20];
146
147$j=($j+16)%16;
148
149$code.=<<___ if (!($i&1));
150 sll $a,5,$tmp0 !! $i
151 and $c,$b,$tmp3
152 ld [$Xfer+`4*($i%16)`],$Xi
153 fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
154 srl $a,27,$tmp1
155 add $tmp0,$e,$e
156 fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
157 sll $b,30,$tmp2
158 add $tmp1,$e,$e
159 andn $d,$b,$tmp1
160 add $Xi,$e,$e
161 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
162 srl $b,2,$b
163 or $tmp1,$tmp3,$tmp1
164 or $tmp2,$b,$b
165 add $tmp1,$e,$e
166 faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
167___
168$code.=<<___ if ($i&1);
169 sll $a,5,$tmp0 !! $i
170 and $c,$b,$tmp3
171 ld [$Xfer+`4*($i%16)`],$Xi
172 fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
173 srl $a,27,$tmp1
174 add $tmp0,$e,$e
175 fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
176 sll $b,30,$tmp2
177 add $tmp1,$e,$e
178 fpadd32 $K,@X[$l],%f20 !
179 andn $d,$b,$tmp1
180 add $Xi,$e,$e
181 fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
182 srl $b,2,$b
183 or $tmp1,$tmp3,$tmp1
184 fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
185 or $tmp2,$b,$b
186 add $tmp1,$e,$e
187___
188$code.=<<___ if ($i&1 && $i>=2);
189 std %f20,[$Xfer+`4*$l`] !
190___
191}
192
193sub BODY_20_39 {
194my ($i,$a,$b,$c,$d,$e)=@_;
195my $j=$i&~1;
196my $k=($j+16+2)%16; # ahead reference
197my $l=($j+16-2)%16; # behind reference
198my $K=@VK[($j+16-2)/20];
199
200$j=($j+16)%16;
201
202$code.=<<___ if (!($i&1) && $i<64);
203 sll $a,5,$tmp0 !! $i
204 ld [$Xfer+`4*($i%16)`],$Xi
205 fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
206 srl $a,27,$tmp1
207 add $tmp0,$e,$e
208 fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
209 xor $c,$b,$tmp0
210 add $tmp1,$e,$e
211 sll $b,30,$tmp2
212 xor $d,$tmp0,$tmp1
213 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
214 srl $b,2,$b
215 add $tmp1,$e,$e
216 or $tmp2,$b,$b
217 add $Xi,$e,$e
218 faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
219___
220$code.=<<___ if ($i&1 && $i<64);
221 sll $a,5,$tmp0 !! $i
222 ld [$Xfer+`4*($i%16)`],$Xi
223 fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
224 srl $a,27,$tmp1
225 add $tmp0,$e,$e
226 fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
227 xor $c,$b,$tmp0
228 add $tmp1,$e,$e
229 fpadd32 $K,@X[$l],%f20 !
230 sll $b,30,$tmp2
231 xor $d,$tmp0,$tmp1
232 fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
233 srl $b,2,$b
234 add $tmp1,$e,$e
235 fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
236 or $tmp2,$b,$b
237 add $Xi,$e,$e
238 std %f20,[$Xfer+`4*$l`] !
239___
240$code.=<<___ if ($i==64);
241 sll $a,5,$tmp0 !! $i
242 ld [$Xfer+`4*($i%16)`],$Xi
243 fpadd32 $K,@X[$l],%f20
244 srl $a,27,$tmp1
245 add $tmp0,$e,$e
246 xor $c,$b,$tmp0
247 add $tmp1,$e,$e
248 sll $b,30,$tmp2
249 xor $d,$tmp0,$tmp1
250 std %f20,[$Xfer+`4*$l`]
251 srl $b,2,$b
252 add $tmp1,$e,$e
253 or $tmp2,$b,$b
254 add $Xi,$e,$e
255___
256$code.=<<___ if ($i>64);
257 sll $a,5,$tmp0 !! $i
258 ld [$Xfer+`4*($i%16)`],$Xi
259 srl $a,27,$tmp1
260 add $tmp0,$e,$e
261 xor $c,$b,$tmp0
262 add $tmp1,$e,$e
263 sll $b,30,$tmp2
264 xor $d,$tmp0,$tmp1
265 srl $b,2,$b
266 add $tmp1,$e,$e
267 or $tmp2,$b,$b
268 add $Xi,$e,$e
269___
270}
271
272sub BODY_40_59 {
273my ($i,$a,$b,$c,$d,$e)=@_;
274my $j=$i&~1;
275my $k=($j+16+2)%16; # ahead reference
276my $l=($j+16-2)%16; # behind reference
277my $K=@VK[($j+16-2)/20];
278
279$j=($j+16)%16;
280
281$code.=<<___ if (!($i&1));
282 sll $a,5,$tmp0 !! $i
283 ld [$Xfer+`4*($i%16)`],$Xi
284 fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
285 srl $a,27,$tmp1
286 add $tmp0,$e,$e
287 fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
288 and $c,$b,$tmp0
289 add $tmp1,$e,$e
290 sll $b,30,$tmp2
291 or $c,$b,$tmp1
292 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
293 srl $b,2,$b
294 and $d,$tmp1,$tmp1
295 add $Xi,$e,$e
296 or $tmp1,$tmp0,$tmp1
297 faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
298 or $tmp2,$b,$b
299 add $tmp1,$e,$e
300 fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
301___
302$code.=<<___ if ($i&1);
303 sll $a,5,$tmp0 !! $i
304 ld [$Xfer+`4*($i%16)`],$Xi
305 srl $a,27,$tmp1
306 add $tmp0,$e,$e
307 fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
308 and $c,$b,$tmp0
309 add $tmp1,$e,$e
310 fpadd32 $K,@X[$l],%f20 !
311 sll $b,30,$tmp2
312 or $c,$b,$tmp1
313 fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
314 srl $b,2,$b
315 and $d,$tmp1,$tmp1
316 fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
317 add $Xi,$e,$e
318 or $tmp1,$tmp0,$tmp1
319 or $tmp2,$b,$b
320 add $tmp1,$e,$e
321 std %f20,[$Xfer+`4*$l`] !
322___
323}
324
325# If there is more data to process, then we pre-fetch the data for
326# next iteration in last ten rounds...
327sub BODY_70_79 {
328my ($i,$a,$b,$c,$d,$e)=@_;
329my $j=$i&~1;
330my $m=($i%8)*2;
331
332$j=($j+16)%16;
333
334$code.=<<___ if ($i==70);
335 sll $a,5,$tmp0 !! $i
336 ld [$Xfer+`4*($i%16)`],$Xi
337 srl $a,27,$tmp1
338 add $tmp0,$e,$e
339 ldd [$inp+64],@X[0]
340 xor $c,$b,$tmp0
341 add $tmp1,$e,$e
342 sll $b,30,$tmp2
343 xor $d,$tmp0,$tmp1
344 srl $b,2,$b
345 add $tmp1,$e,$e
346 or $tmp2,$b,$b
347 add $Xi,$e,$e
348
349 and $inp,-64,$nXfer
350 inc 64,$inp
351 and $nXfer,255,$nXfer
352 alignaddr %g0,$align,%g0
353 add $base,$nXfer,$nXfer
354___
355$code.=<<___ if ($i==71);
356 sll $a,5,$tmp0 !! $i
357 ld [$Xfer+`4*($i%16)`],$Xi
358 srl $a,27,$tmp1
359 add $tmp0,$e,$e
360 xor $c,$b,$tmp0
361 add $tmp1,$e,$e
362 sll $b,30,$tmp2
363 xor $d,$tmp0,$tmp1
364 srl $b,2,$b
365 add $tmp1,$e,$e
366 or $tmp2,$b,$b
367 add $Xi,$e,$e
368___
369$code.=<<___ if ($i>=72);
370 faligndata @X[$m],@X[$m+2],@X[$m]
371 sll $a,5,$tmp0 !! $i
372 ld [$Xfer+`4*($i%16)`],$Xi
373 srl $a,27,$tmp1
374 add $tmp0,$e,$e
375 xor $c,$b,$tmp0
376 add $tmp1,$e,$e
377 fpadd32 $VK_00_19,@X[$m],%f20
378 sll $b,30,$tmp2
379 xor $d,$tmp0,$tmp1
380 srl $b,2,$b
381 add $tmp1,$e,$e
382 or $tmp2,$b,$b
383 add $Xi,$e,$e
384___
385$code.=<<___ if ($i<77);
386 ldd [$inp+`8*($i+1-70)`],@X[2*($i+1-70)]
387___
388$code.=<<___ if ($i==77); # redundant if $inp was aligned
389 add $align,63,$tmp0
390 and $tmp0,-8,$tmp0
391 ldd [$inp+$tmp0],@X[16]
392___
393$code.=<<___ if ($i>=72);
394 std %f20,[$nXfer+`4*$m`]
395___
396}
397
398$code.=<<___;
399.section ".text",#alloc,#execinstr
400
401.align 64
402vis_const:
403.long 0x5a827999,0x5a827999 ! K_00_19
404.long 0x6ed9eba1,0x6ed9eba1 ! K_20_39
405.long 0x8f1bbcdc,0x8f1bbcdc ! K_40_59
406.long 0xca62c1d6,0xca62c1d6 ! K_60_79
407.long 0x00000100,0x00000100
408.align 64
409.type vis_const,#object
410.size vis_const,(.-vis_const)
411
412.globl sha1_block_data_order
413sha1_block_data_order:
414 save %sp,-$frame,%sp
415 add %fp,$bias-256,$base
416
4171: call .+8
418 add %o7,vis_const-1b,$tmp0
419
420 ldd [$tmp0+0],$VK_00_19
421 ldd [$tmp0+8],$VK_20_39
422 ldd [$tmp0+16],$VK_40_59
423 ldd [$tmp0+24],$VK_60_79
424 ldd [$tmp0+32],$fmul
425
426 ld [$ctx+0],$Actx
427 and $base,-256,$base
428 ld [$ctx+4],$Bctx
429 sub $base,$bias+$frame,%sp
430 ld [$ctx+8],$Cctx
431 and $inp,7,$align
432 ld [$ctx+12],$Dctx
433 and $inp,-8,$inp
434 ld [$ctx+16],$Ectx
435
436 ! X[16] is maintained in FP register bank
437 alignaddr %g0,$align,%g0
438 ldd [$inp+0],@X[0]
439 sub $inp,-64,$Xfer
440 ldd [$inp+8],@X[2]
441 and $Xfer,-64,$Xfer
442 ldd [$inp+16],@X[4]
443 and $Xfer,255,$Xfer
444 ldd [$inp+24],@X[6]
445 add $base,$Xfer,$Xfer
446 ldd [$inp+32],@X[8]
447 ldd [$inp+40],@X[10]
448 ldd [$inp+48],@X[12]
449 brz,pt $align,.Laligned
450 ldd [$inp+56],@X[14]
451
452 ldd [$inp+64],@X[16]
453 faligndata @X[0],@X[2],@X[0]
454 faligndata @X[2],@X[4],@X[2]
455 faligndata @X[4],@X[6],@X[4]
456 faligndata @X[6],@X[8],@X[6]
457 faligndata @X[8],@X[10],@X[8]
458 faligndata @X[10],@X[12],@X[10]
459 faligndata @X[12],@X[14],@X[12]
460 faligndata @X[14],@X[16],@X[14]
461
462.Laligned:
463 mov 5,$tmp0
464 dec 1,$len
465 alignaddr %g0,$tmp0,%g0
466 fpadd32 $VK_00_19,@X[0],%f16
467 fpadd32 $VK_00_19,@X[2],%f18
468 fpadd32 $VK_00_19,@X[4],%f20
469 fpadd32 $VK_00_19,@X[6],%f22
470 fpadd32 $VK_00_19,@X[8],%f24
471 fpadd32 $VK_00_19,@X[10],%f26
472 fpadd32 $VK_00_19,@X[12],%f28
473 fpadd32 $VK_00_19,@X[14],%f30
474 std %f16,[$Xfer+0]
475 mov $Actx,$A
476 std %f18,[$Xfer+8]
477 mov $Bctx,$B
478 std %f20,[$Xfer+16]
479 mov $Cctx,$C
480 std %f22,[$Xfer+24]
481 mov $Dctx,$D
482 std %f24,[$Xfer+32]
483 mov $Ectx,$E
484 std %f26,[$Xfer+40]
485 fxors @X[13],@X[0],@X[0]
486 std %f28,[$Xfer+48]
487 ba .Loop
488 std %f30,[$Xfer+56]
489.align 32
490.Loop:
491___
492for ($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); }
493for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
494for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
495for (;$i<70;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
496$code.=<<___;
497 tst $len
498 bz,pn `$bits==32?"%icc":"%xcc"`,.Ltail
499 nop
500___
501for (;$i<80;$i++) { &BODY_70_79($i,@V); unshift(@V,pop(@V)); }
502$code.=<<___;
503 add $A,$Actx,$Actx
504 add $B,$Bctx,$Bctx
505 add $C,$Cctx,$Cctx
506 add $D,$Dctx,$Dctx
507 add $E,$Ectx,$Ectx
508 mov 5,$tmp0
509 fxors @X[13],@X[0],@X[0]
510 mov $Actx,$A
511 mov $Bctx,$B
512 mov $Cctx,$C
513 mov $Dctx,$D
514 mov $Ectx,$E
515 alignaddr %g0,$tmp0,%g0
516 dec 1,$len
517 ba .Loop
518 mov $nXfer,$Xfer
519
520.align 32
521.Ltail:
522___
523for($i=70;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
524$code.=<<___;
525 add $A,$Actx,$Actx
526 add $B,$Bctx,$Bctx
527 add $C,$Cctx,$Cctx
528 add $D,$Dctx,$Dctx
529 add $E,$Ectx,$Ectx
530
531 st $Actx,[$ctx+0]
532 st $Bctx,[$ctx+4]
533 st $Cctx,[$ctx+8]
534 st $Dctx,[$ctx+12]
535 st $Ectx,[$ctx+16]
536
537 ret
538 restore
539.type sha1_block_data_order,#function
540.size sha1_block_data_order,(.-sha1_block_data_order)
541.asciz "SHA1 block transform for SPARCv9a, CRYPTOGAMS by <appro\@openssl.org>"
542.align 4
543___
544
545# Purpose of these subroutines is to explicitly encode VIS instructions,
546# so that one can compile the module without having to specify VIS
547# extentions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
548# Idea is to reserve for option to produce "universal" binary and let
549# programmer detect if current CPU is VIS capable at run-time.
550sub unvis {
551my ($mnemonic,$rs1,$rs2,$rd)=@_;
552my $ref,$opf;
553my %visopf = ( "fmul8ulx16" => 0x037,
554 "faligndata" => 0x048,
555 "fpadd32" => 0x052,
556 "fxor" => 0x06c,
557 "fxors" => 0x06d );
558
559 $ref = "$mnemonic\t$rs1,$rs2,$rd";
560
561 if ($opf=$visopf{$mnemonic}) {
562 foreach ($rs1,$rs2,$rd) {
563 return $ref if (!/%f([0-9]{1,2})/);
564 $_=$1;
565 if ($1>=32) {
566 return $ref if ($1&1);
567 # re-encode for upper double register addressing
568 $_=($1|$1>>5)&31;
569 }
570 }
571
572 return sprintf ".word\t0x%08x !%s",
573 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
574 $ref;
575 } else {
576 return $ref;
577 }
578}
579sub unalignaddr {
580my ($mnemonic,$rs1,$rs2,$rd)=@_;
581my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
582my $ref="$mnemonic\t$rs1,$rs2,$rd";
583
584 foreach ($rs1,$rs2,$rd) {
585 if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; }
586 else { return $ref; }
587 }
588 return sprintf ".word\t0x%08x !%s",
589 0x81b00300|$rd<<25|$rs1<<14|$rs2,
590 $ref;
591}
592
593$code =~ s/\`([^\`]*)\`/eval $1/gem;
594$code =~ s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),(%f[0-9]{1,2}),(%f[0-9]{1,2})/
595 &unvis($1,$2,$3,$4)
596 /gem;
597$code =~ s/\b(alignaddr)\s+(%[goli][0-7]),(%[goli][0-7]),(%[goli][0-7])/
598 &unalignaddr($1,$2,$3,$4)
599 /gem;
600print $code;
601close STDOUT;