blob: 23f2f252c00d9d26b873fa0491f6a83efe853449 [file] [log] [blame]
Tristan Matthews0a329cc2013-07-17 13:20:14 -04001/* $Id$ */
2/*
3 * Digital Audio Resampling Home Page located at
4 * http://www-ccrma.stanford.edu/~jos/resample/.
5 *
6 * SOFTWARE FOR SAMPLING-RATE CONVERSION AND FIR DIGITAL FILTER DESIGN
7 *
8 * Snippet from the resample.1 man page:
9 *
10 * HISTORY
11 *
12 * The first version of this software was written by Julius O. Smith III
13 * <jos@ccrma.stanford.edu> at CCRMA <http://www-ccrma.stanford.edu> in
14 * 1981. It was called SRCONV and was written in SAIL for PDP-10
15 * compatible machines. The algorithm was first published in
16 *
17 * Smith, Julius O. and Phil Gossett. ``A Flexible Sampling-Rate
18 * Conversion Method,'' Proceedings (2): 19.4.1-19.4.4, IEEE Conference
19 * on Acoustics, Speech, and Signal Processing, San Diego, March 1984.
20 *
21 * An expanded tutorial based on this paper is available at the Digital
22 * Audio Resampling Home Page given above.
23 *
24 * Circa 1988, the SRCONV program was translated from SAIL to C by
25 * Christopher Lee Fraley working with Roger Dannenberg at CMU.
26 *
27 * Since then, the C version has been maintained by jos.
28 *
29 * Sndlib support was added 6/99 by John Gibson <jgg9c@virginia.edu>.
30 *
31 * The resample program is free software distributed in accordance
32 * with the Lesser GNU Public License (LGPL). There is NO warranty; not
33 * even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
34 */
35
36/* PJMEDIA modification:
37 * - remove resample(), just use SrcUp, SrcUD, and SrcLinear directly.
38 * - move FilterUp() and FilterUD() from filterkit.c
39 * - move stddefs.h and resample.h to this file.
40 * - const correctness.
41 */
42
43#include <resamplesubs.h>
44#include "config.h"
45#include "stddefs.h"
46#include "resample.h"
47
48
49#ifdef _MSC_VER
50# pragma warning(push, 3)
51//# pragma warning(disable: 4245) // Conversion from uint to ushort
52# pragma warning(disable: 4244) // Conversion from double to uint
53# pragma warning(disable: 4146) // unary minus operator applied to unsigned type, result still unsigned
54# pragma warning(disable: 4761) // integral size mismatch in argument; conversion supplied
55#endif
56
57#if defined(RESAMPLE_HAS_SMALL_FILTER) && RESAMPLE_HAS_SMALL_FILTER!=0
58# include "smallfilter.h"
59#else
60# define SMALL_FILTER_NMULT 0
61# define SMALL_FILTER_SCALE 0
62# define SMALL_FILTER_NWING 0
63# define SMALL_FILTER_IMP NULL
64# define SMALL_FILTER_IMPD NULL
65#endif
66
67#if defined(RESAMPLE_HAS_LARGE_FILTER) && RESAMPLE_HAS_LARGE_FILTER!=0
68# include "largefilter.h"
69#else
70# define LARGE_FILTER_NMULT 0
71# define LARGE_FILTER_SCALE 0
72# define LARGE_FILTER_NWING 0
73# define LARGE_FILTER_IMP NULL
74# define LARGE_FILTER_IMPD NULL
75#endif
76
77
78#undef INLINE
79#define INLINE
80#define HAVE_FILTER 0
81
82#ifndef NULL
83# define NULL 0
84#endif
85
86
87static INLINE RES_HWORD WordToHword(RES_WORD v, int scl)
88{
89 RES_HWORD out;
90 RES_WORD llsb = (1<<(scl-1));
91 v += llsb; /* round */
92 v >>= scl;
93 if (v>MAX_HWORD) {
94 v = MAX_HWORD;
95 } else if (v < MIN_HWORD) {
96 v = MIN_HWORD;
97 }
98 out = (RES_HWORD) v;
99 return out;
100}
101
102/* Sampling rate conversion using linear interpolation for maximum speed.
103 */
104static int
105 SrcLinear(const RES_HWORD X[], RES_HWORD Y[], double pFactor, RES_UHWORD nx)
106{
107 RES_HWORD iconst;
108 RES_UWORD time = 0;
109 const RES_HWORD *xp;
110 RES_HWORD *Ystart, *Yend;
111 RES_WORD v,x1,x2;
112
113 double dt; /* Step through input signal */
114 RES_UWORD dtb; /* Fixed-point version of Dt */
115 RES_UWORD endTime; /* When time reaches EndTime, return to user */
116
117 dt = 1.0/pFactor; /* Output sampling period */
118 dtb = dt*(1<<Np) + 0.5; /* Fixed-point representation */
119
120 Ystart = Y;
121 Yend = Ystart + (unsigned)(nx * pFactor + 0.5);
122 endTime = time + (1<<Np)*(RES_WORD)nx;
123
124 // Integer round down in dtb calculation may cause (endTime % dtb > 0),
125 // so it may cause resample write pass the output buffer (Y >= Yend).
126 // while (time < endTime)
127 while (Y < Yend)
128 {
129 iconst = (time) & Pmask;
130 xp = &X[(time)>>Np]; /* Ptr to current input sample */
131 x1 = *xp++;
132 x2 = *xp;
133 x1 *= ((1<<Np)-iconst);
134 x2 *= iconst;
135 v = x1 + x2;
136 *Y++ = WordToHword(v,Np); /* Deposit output */
137 time += dtb; /* Move to next sample by time increment */
138 }
139 return (Y - Ystart); /* Return number of output samples */
140}
141
142static RES_WORD FilterUp(const RES_HWORD Imp[], const RES_HWORD ImpD[],
143 RES_UHWORD Nwing, RES_BOOL Interp,
144 const RES_HWORD *Xp, RES_HWORD Ph, RES_HWORD Inc)
145{
146 const RES_HWORD *Hp;
147 const RES_HWORD *Hdp = NULL;
148 const RES_HWORD *End;
149 RES_HWORD a = 0;
150 RES_WORD v, t;
151
152 v=0;
153 Hp = &Imp[Ph>>Na];
154 End = &Imp[Nwing];
155 if (Interp) {
156 Hdp = &ImpD[Ph>>Na];
157 a = Ph & Amask;
158 }
159 if (Inc == 1) /* If doing right wing... */
160 { /* ...drop extra coeff, so when Ph is */
161 End--; /* 0.5, we don't do too many mult's */
162 if (Ph == 0) /* If the phase is zero... */
163 { /* ...then we've already skipped the */
164 Hp += Npc; /* first sample, so we must also */
165 Hdp += Npc; /* skip ahead in Imp[] and ImpD[] */
166 }
167 }
168 if (Interp)
169 while (Hp < End) {
170 t = *Hp; /* Get filter coeff */
171 t += (((RES_WORD)*Hdp)*a)>>Na; /* t is now interp'd filter coeff */
172 Hdp += Npc; /* Filter coeff differences step */
173 t *= *Xp; /* Mult coeff by input sample */
174 if (t & (1<<(Nhxn-1))) /* Round, if needed */
175 t += (1<<(Nhxn-1));
176 t >>= Nhxn; /* Leave some guard bits, but come back some */
177 v += t; /* The filter output */
178 Hp += Npc; /* Filter coeff step */
179
180 Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
181 }
182 else
183 while (Hp < End) {
184 t = *Hp; /* Get filter coeff */
185 t *= *Xp; /* Mult coeff by input sample */
186 if (t & (1<<(Nhxn-1))) /* Round, if needed */
187 t += (1<<(Nhxn-1));
188 t >>= Nhxn; /* Leave some guard bits, but come back some */
189 v += t; /* The filter output */
190 Hp += Npc; /* Filter coeff step */
191 Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
192 }
193 return(v);
194}
195
196
197static RES_WORD FilterUD(const RES_HWORD Imp[], const RES_HWORD ImpD[],
198 RES_UHWORD Nwing, RES_BOOL Interp,
199 const RES_HWORD *Xp, RES_HWORD Ph, RES_HWORD Inc, RES_UHWORD dhb)
200{
201 RES_HWORD a;
202 const RES_HWORD *Hp, *Hdp, *End;
203 RES_WORD v, t;
204 RES_UWORD Ho;
205
206 v=0;
207 Ho = (Ph*(RES_UWORD)dhb)>>Np;
208 End = &Imp[Nwing];
209 if (Inc == 1) /* If doing right wing... */
210 { /* ...drop extra coeff, so when Ph is */
211 End--; /* 0.5, we don't do too many mult's */
212 if (Ph == 0) /* If the phase is zero... */
213 Ho += dhb; /* ...then we've already skipped the */
214 } /* first sample, so we must also */
215 /* skip ahead in Imp[] and ImpD[] */
216 if (Interp)
217 while ((Hp = &Imp[Ho>>Na]) < End) {
218 t = *Hp; /* Get IR sample */
219 Hdp = &ImpD[Ho>>Na]; /* get interp (lower Na) bits from diff table*/
220 a = Ho & Amask; /* a is logically between 0 and 1 */
221 t += (((RES_WORD)*Hdp)*a)>>Na; /* t is now interp'd filter coeff */
222 t *= *Xp; /* Mult coeff by input sample */
223 if (t & 1<<(Nhxn-1)) /* Round, if needed */
224 t += 1<<(Nhxn-1);
225 t >>= Nhxn; /* Leave some guard bits, but come back some */
226 v += t; /* The filter output */
227 Ho += dhb; /* IR step */
228 Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
229 }
230 else
231 while ((Hp = &Imp[Ho>>Na]) < End) {
232 t = *Hp; /* Get IR sample */
233 t *= *Xp; /* Mult coeff by input sample */
234 if (t & 1<<(Nhxn-1)) /* Round, if needed */
235 t += 1<<(Nhxn-1);
236 t >>= Nhxn; /* Leave some guard bits, but come back some */
237 v += t; /* The filter output */
238 Ho += dhb; /* IR step */
239 Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */
240 }
241 return(v);
242}
243
244/* Sampling rate up-conversion only subroutine;
245 * Slightly faster than down-conversion;
246 */
247static int SrcUp(const RES_HWORD X[], RES_HWORD Y[], double pFactor,
248 RES_UHWORD nx, RES_UHWORD pNwing, RES_UHWORD pLpScl,
249 const RES_HWORD pImp[], const RES_HWORD pImpD[], RES_BOOL Interp)
250{
251 const RES_HWORD *xp;
252 RES_HWORD *Ystart, *Yend;
253 RES_WORD v;
254
255 double dt; /* Step through input signal */
256 RES_UWORD dtb; /* Fixed-point version of Dt */
257 RES_UWORD time = 0;
258 RES_UWORD endTime; /* When time reaches EndTime, return to user */
259
260 dt = 1.0/pFactor; /* Output sampling period */
261 dtb = dt*(1<<Np) + 0.5; /* Fixed-point representation */
262
263 Ystart = Y;
264 Yend = Ystart + (unsigned)(nx * pFactor + 0.5);
265 endTime = time + (1<<Np)*(RES_WORD)nx;
266
267 // Integer round down in dtb calculation may cause (endTime % dtb > 0),
268 // so it may cause resample write pass the output buffer (Y >= Yend).
269 // while (time < endTime)
270 while (Y < Yend)
271 {
272 xp = &X[time>>Np]; /* Ptr to current input sample */
273 /* Perform left-wing inner product */
274 v = 0;
275 v = FilterUp(pImp, pImpD, pNwing, Interp, xp, (RES_HWORD)(time&Pmask),-1);
276
277 /* Perform right-wing inner product */
278 v += FilterUp(pImp, pImpD, pNwing, Interp, xp+1, (RES_HWORD)((-time)&Pmask),1);
279
280 v >>= Nhg; /* Make guard bits */
281 v *= pLpScl; /* Normalize for unity filter gain */
282 *Y++ = WordToHword(v,NLpScl); /* strip guard bits, deposit output */
283 time += dtb; /* Move to next sample by time increment */
284 }
285 return (Y - Ystart); /* Return the number of output samples */
286}
287
288
289/* Sampling rate conversion subroutine */
290
291static int SrcUD(const RES_HWORD X[], RES_HWORD Y[], double pFactor,
292 RES_UHWORD nx, RES_UHWORD pNwing, RES_UHWORD pLpScl,
293 const RES_HWORD pImp[], const RES_HWORD pImpD[], RES_BOOL Interp)
294{
295 const RES_HWORD *xp;
296 RES_HWORD *Ystart, *Yend;
297 RES_WORD v;
298
299 double dh; /* Step through filter impulse response */
300 double dt; /* Step through input signal */
301 RES_UWORD time = 0;
302 RES_UWORD endTime; /* When time reaches EndTime, return to user */
303 RES_UWORD dhb, dtb; /* Fixed-point versions of Dh,Dt */
304
305 dt = 1.0/pFactor; /* Output sampling period */
306 dtb = dt*(1<<Np) + 0.5; /* Fixed-point representation */
307
308 dh = MIN(Npc, pFactor*Npc); /* Filter sampling period */
309 dhb = dh*(1<<Na) + 0.5; /* Fixed-point representation */
310
311 Ystart = Y;
312 Yend = Ystart + (unsigned)(nx * pFactor + 0.5);
313 endTime = time + (1<<Np)*(RES_WORD)nx;
314
315 // Integer round down in dtb calculation may cause (endTime % dtb > 0),
316 // so it may cause resample write pass the output buffer (Y >= Yend).
317 // while (time < endTime)
318 while (Y < Yend)
319 {
320 xp = &X[time>>Np]; /* Ptr to current input sample */
321 v = FilterUD(pImp, pImpD, pNwing, Interp, xp, (RES_HWORD)(time&Pmask),
322 -1, dhb); /* Perform left-wing inner product */
323 v += FilterUD(pImp, pImpD, pNwing, Interp, xp+1, (RES_HWORD)((-time)&Pmask),
324 1, dhb); /* Perform right-wing inner product */
325 v >>= Nhg; /* Make guard bits */
326 v *= pLpScl; /* Normalize for unity filter gain */
327 *Y++ = WordToHword(v,NLpScl); /* strip guard bits, deposit output */
328 time += dtb; /* Move to next sample by time increment */
329 }
330 return (Y - Ystart); /* Return the number of output samples */
331}
332
333
334DECL(int) res_SrcLinear(const RES_HWORD X[], RES_HWORD Y[],
335 double pFactor, RES_UHWORD nx)
336{
337 return SrcLinear(X, Y, pFactor, nx);
338}
339
340DECL(int) res_Resample(const RES_HWORD X[], RES_HWORD Y[], double pFactor,
341 RES_UHWORD nx, RES_BOOL LargeF, RES_BOOL Interp)
342{
343 if (pFactor >= 1) {
344
345 if (LargeF)
346 return SrcUp(X, Y, pFactor, nx,
347 LARGE_FILTER_NWING, LARGE_FILTER_SCALE,
348 LARGE_FILTER_IMP, LARGE_FILTER_IMPD, Interp);
349 else
350 return SrcUp(X, Y, pFactor, nx,
351 SMALL_FILTER_NWING, SMALL_FILTER_SCALE,
352 SMALL_FILTER_IMP, SMALL_FILTER_IMPD, Interp);
353
354 } else {
355
356 if (LargeF)
357 return SrcUD(X, Y, pFactor, nx,
358 LARGE_FILTER_NWING, LARGE_FILTER_SCALE * pFactor + 0.5,
359 LARGE_FILTER_IMP, LARGE_FILTER_IMPD, Interp);
360 else
361 return SrcUD(X, Y, pFactor, nx,
362 SMALL_FILTER_NWING, SMALL_FILTER_SCALE * pFactor + 0.5,
363 SMALL_FILTER_IMP, SMALL_FILTER_IMPD, Interp);
364
365 }
366}
367
368DECL(int) res_GetXOFF(double pFactor, RES_BOOL LargeF)
369{
370 if (LargeF)
371 return (LARGE_FILTER_NMULT + 1) / 2.0 *
372 MAX(1.0, 1.0/pFactor);
373 else
374 return (SMALL_FILTER_NMULT + 1) / 2.0 *
375 MAX(1.0, 1.0/pFactor);
376}
377