blob: 28afd9eb048f488e40cf3cd2388c02643d94bf8a [file] [log] [blame]
/*
* Stack-less Just-In-Time compiler
*
* Copyright 2009-2010 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name()
{
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
return "ppc-32";
#else
return "ppc-64";
#endif
}
/* Length of an instruction word.
Both for ppc-32 and ppc-64. */
typedef sljit_ui sljit_ins;
static void ppc_cache_flush(sljit_ins *from, sljit_ins *to)
{
while (from < to) {
#ifdef __GNUC__
asm volatile ( "icbi 0, %0" : : "r"(from) );
#else
#error "Must implement icbi"
#endif
from++;
}
}
#define TMP_REG1 (SLJIT_NO_REGISTERS + 1)
#define TMP_REG2 (SLJIT_NO_REGISTERS + 2)
#define TMP_REG3 (SLJIT_NO_REGISTERS + 3)
#define ZERO_REG (SLJIT_NO_REGISTERS + 4)
#define REAL_STACK_PTR (SLJIT_NO_REGISTERS + 5)
#define TMP_FREG1 (SLJIT_FLOAT_REG4 + 1)
#define TMP_FREG2 (SLJIT_FLOAT_REG4 + 2)
/* --------------------------------------------------------------------- */
/* Instrucion forms */
/* --------------------------------------------------------------------- */
#define D(d) (reg_map[d] << 21)
#define S(s) (reg_map[s] << 21)
#define A(a) (reg_map[a] << 16)
#define B(b) (reg_map[b] << 11)
#define C(c) (reg_map[c] << 6)
#define FD(fd) ((fd) << 21)
#define FA(fa) ((fa) << 16)
#define FB(fb) ((fb) << 11)
#define FC(fc) ((fc) << 6)
#define IMM(imm) ((imm) & 0xffff)
#define CRD(d) ((d) << 21)
/* Instruction bit sections.
OE and Rc flag (see ALT_SET_FLAGS). */
#define OERC(flags) (((flags & ALT_SET_FLAGS) >> 15) | ((flags & ALT_SET_FLAGS) >> 5))
/* Rc flag (see ALT_SET_FLAGS). */
#define RC(flags) ((flags & ALT_SET_FLAGS) >> 15)
#define HI(opcode) ((opcode) << 26)
#define LO(opcode) ((opcode) << 1)
#define ADD (HI(31) | LO(266))
#define ADDC (HI(31) | LO(10))
#define ADDE (HI(31) | LO(138))
#define ADDI (HI(14))
#define ADDIC (HI(13))
#define ADDIS (HI(15))
#define ADDME (HI(31) | LO(234))
#define AND (HI(31) | LO(28))
#define ANDI (HI(28))
#define ANDIS (HI(29))
#define Bx (HI(18))
#define BCx (HI(16))
#define BCCTR (HI(19) | LO(528) | (3 << 11))
#define BLR (HI(19) | LO(16) | (0x14 << 21))
#define CNTLZD (HI(31) | LO(58))
#define CNTLZW (HI(31) | LO(26))
#define CMPI (HI(11))
#define CMPL (HI(31) | LO(32))
#define CMPLI (HI(10))
#define CROR (HI(19) | LO(449))
#define EXTSB (HI(31) | LO(954))
#define EXTSH (HI(31) | LO(922))
#define EXTSW (HI(31) | LO(986))
#define FABS (HI(63) | LO(264))
#define FADD (HI(63) | LO(21))
#define FCMPU (HI(63) | LO(0))
#define FDIV (HI(63) | LO(18))
#define FMR (HI(63) | LO(72))
#define FMUL (HI(63) | LO(25))
#define FNEG (HI(63) | LO(40))
#define FSUB (HI(63) | LO(20))
#define LD (HI(58) | 0)
#define LFD (HI(50))
#define LFDUX (HI(31) | LO(631))
#define LFDX (HI(31) | LO(599))
#define LWZ (HI(32))
#define MFCR (HI(31) | LO(19))
#define MFLR (HI(31) | LO(339) | 0x80000)
#define MFXER (HI(31) | LO(339) | 0x10000)
#define MTCTR (HI(31) | LO(467) | 0x90000)
#define MTLR (HI(31) | LO(467) | 0x80000)
#define MTXER (HI(31) | LO(467) | 0x10000)
#define MULLD (HI(31) | LO(233))
#define MULLI (HI(7))
#define MULLW (HI(31) | LO(235))
#define NEG (HI(31) | LO(104))
#define NOP (HI(24))
#define NOR (HI(31) | LO(124))
#define OR (HI(31) | LO(444))
#define ORI (HI(24))
#define ORIS (HI(25))
#define RLDICL (HI(30))
#define RLWINM (HI(21))
#define SLD (HI(31) | LO(27))
#define SLW (HI(31) | LO(24))
#define SRAD (HI(31) | LO(794))
#define SRADI (HI(31) | LO(413 << 1))
#define SRAW (HI(31) | LO(792))
#define SRAWI (HI(31) | LO(824))
#define SRD (HI(31) | LO(539))
#define SRW (HI(31) | LO(536))
#define STD (HI(62) | 0)
#define STDU (HI(62) | 1)
#define STDUX (HI(31) | LO(181))
#define STFD (HI(54))
#define STFDUX (HI(31) | LO(759))
#define STFDX (HI(31) | LO(727))
#define STW (HI(36))
#define STWU (HI(37))
#define STWUX (HI(31) | LO(183))
#define SUBF (HI(31) | LO(40))
#define SUBFC (HI(31) | LO(8))
#define SUBFE (HI(31) | LO(136))
#define SUBFIC (HI(8))
#define XOR (HI(31) | LO(316))
#define XORI (HI(26))
#define XORIS (HI(27))
#define SIMM_MAX (0x7fff)
#define SIMM_MIN (-0x8000)
#define UIMM_MAX (0xffff)
/* SLJIT_LOCALS_REG is not the real stack register, since it must
point to the head of the stack chain. */
static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 6] = {
0, 3, 4, 5, 6, 7, 29, 28, 27, 26, 25, 31, 8, 9, 10, 30, 1
};
static int push_inst(struct sljit_compiler *compiler, sljit_ins ins)
{
sljit_ins *ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins));
FAIL_IF(!ptr);
*ptr = ins;
compiler->size++;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE int optimize_jump(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
{
sljit_w diff;
sljit_uw target_addr;
if (jump->flags & SLJIT_REWRITABLE_JUMP)
return 0;
if (jump->flags & JUMP_ADDR)
target_addr = jump->u.target;
else {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
target_addr = (sljit_uw)(code + jump->u.label->size);
}
diff = ((sljit_w)target_addr - (sljit_w)(code_ptr)) & ~0x3l;
if (jump->flags & UNCOND_B) {
if (diff <= 0x01ffffff && diff >= -0x02000000) {
jump->flags |= PATCH_B;
return 1;
}
if (target_addr <= 0x03ffffff) {
jump->flags |= PATCH_B | ABSOLUTE_B;
return 1;
}
}
else {
if (diff <= 0x7fff && diff >= -0x8000) {
jump->flags |= PATCH_B;
return 1;
}
if (target_addr <= 0xffff) {
jump->flags |= PATCH_B | ABSOLUTE_B;
return 1;
}
}
return 0;
}
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
struct sljit_memory_fragment *buf;
sljit_ins *code;
sljit_ins *code_ptr;
sljit_ins *buf_ptr;
sljit_ins *buf_end;
sljit_uw word_count;
sljit_uw addr;
struct sljit_label *label;
struct sljit_jump *jump;
struct sljit_const *const_;
CHECK_ERROR_PTR();
check_sljit_generate_code(compiler);
reverse_buf(compiler);
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
compiler->size += (compiler->size & 0x1) + (sizeof(struct sljit_function_context) / sizeof(sljit_ins));
#endif
code = (sljit_ins*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
PTR_FAIL_WITH_EXEC_IF(code);
buf = compiler->buf;
code_ptr = code;
word_count = 0;
label = compiler->labels;
jump = compiler->jumps;
const_ = compiler->consts;
do {
buf_ptr = (sljit_ins*)buf->memory;
buf_end = buf_ptr + (buf->used_size >> 2);
do {
*code_ptr = *buf_ptr++;
SLJIT_ASSERT(!label || label->size >= word_count);
SLJIT_ASSERT(!jump || jump->addr >= word_count);
SLJIT_ASSERT(!const_ || const_->addr >= word_count);
/* These structures are ordered by their address. */
if (label && label->size == word_count) {
/* Just recording the address. */
label->addr = (sljit_uw)code_ptr;
label->size = code_ptr - code;
label = label->next;
}
if (jump && jump->addr == word_count) {
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
jump->addr = (sljit_uw)(code_ptr - 3);
#else
jump->addr = (sljit_uw)(code_ptr - 6);
#endif
if (optimize_jump(jump, code_ptr, code)) {
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
code_ptr[-3] = code_ptr[0];
code_ptr -= 3;
#else
code_ptr[-6] = code_ptr[0];
code_ptr -= 6;
#endif
}
jump = jump->next;
}
if (const_ && const_->addr == word_count) {
/* Just recording the address. */
const_->addr = (sljit_uw)code_ptr;
const_ = const_->next;
}
code_ptr ++;
word_count ++;
} while (buf_ptr < buf_end);
buf = buf->next;
} while (buf);
if (label && label->size == word_count) {
label->addr = (sljit_uw)code_ptr;
label->size = code_ptr - code;
label = label->next;
}
SLJIT_ASSERT(!label);
SLJIT_ASSERT(!jump);
SLJIT_ASSERT(!const_);
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
SLJIT_ASSERT(code_ptr - code <= (int)compiler->size - ((compiler->size & 0x1) ? 3 : 2));
#else
SLJIT_ASSERT(code_ptr - code <= (int)compiler->size);
#endif
jump = compiler->jumps;
while (jump) {
do {
addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
buf_ptr = (sljit_ins*)jump->addr;
if (jump->flags & PATCH_B) {
if (jump->flags & UNCOND_B) {
if (!(jump->flags & ABSOLUTE_B)) {
addr = addr - jump->addr;
SLJIT_ASSERT((sljit_w)addr <= 0x01ffffff && (sljit_w)addr >= -0x02000000);
*buf_ptr = Bx | (addr & 0x03fffffc) | ((*buf_ptr) & 0x1);
}
else {
SLJIT_ASSERT(addr <= 0x03ffffff);
*buf_ptr = Bx | (addr & 0x03fffffc) | 0x2 | ((*buf_ptr) & 0x1);
}
}
else {
if (!(jump->flags & ABSOLUTE_B)) {
addr = addr - jump->addr;
SLJIT_ASSERT((sljit_w)addr <= 0x7fff && (sljit_w)addr >= -0x8000);
*buf_ptr = BCx | (addr & 0xfffc) | ((*buf_ptr) & 0x03ff0001);
}
else {
addr = addr & ~0x3l;
SLJIT_ASSERT(addr <= 0xffff);
*buf_ptr = BCx | (addr & 0xfffc) | 0x2 | ((*buf_ptr) & 0x03ff0001);
}
}
break;
}
/* Set the fields of immediate loads. */
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 16) & 0xffff);
buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | (addr & 0xffff);
#else
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 48) & 0xffff);
buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | ((addr >> 32) & 0xffff);
buf_ptr[3] = (buf_ptr[3] & 0xffff0000) | ((addr >> 16) & 0xffff);
buf_ptr[4] = (buf_ptr[4] & 0xffff0000) | (addr & 0xffff);
#endif
} while (0);
jump = jump->next;
}
SLJIT_CACHE_FLUSH(code, code_ptr);
compiler->error = SLJIT_ERR_COMPILED;
compiler->executable_size = compiler->size * sizeof(sljit_ins);
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
if (((sljit_w)code_ptr) & 0x4)
code_ptr++;
sljit_set_function_context(NULL, (struct sljit_function_context*)code_ptr, (sljit_w)code, sljit_generate_code);
return code_ptr;
#else
return code;
#endif
}
/* inp_flags: */
/* Creates an index in data_transfer_insts array. */
#define WORD_DATA 0x00
#define BYTE_DATA 0x01
#define HALF_DATA 0x02
#define INT_DATA 0x03
#define SIGNED_DATA 0x04
#define LOAD_DATA 0x08
#define WRITE_BACK 0x10
#define INDEXED 0x20
#define MEM_MASK 0x3f
/* Other inp_flags. */
#define ARG_TEST 0x0100
#define ALT_FORM1 0x0200
#define ALT_FORM2 0x0400
#define ALT_FORM3 0x0800
#define ALT_FORM4 0x1000
#define ALT_FORM5 0x2000
/* Integer opertion and set flags -> requires exts on 64 bit systems. */
#define ALT_SIGN_EXT 0x4000
/* This flag affects the RC() and OERC() macros. */
#define ALT_SET_FLAGS 0x8000
/* Source and destination is register. */
#define REG_DEST 0x0001
#define REG1_SOURCE 0x0002
#define REG2_SOURCE 0x0004
/* getput_arg_fast returned true. */
#define FAST_DEST 0x0008
/* Multiple instructions are required. */
#define SLOW_DEST 0x0010
/* ALT_FORM1 0x0200
ALT_FORM2 0x0400
ALT_FORM3 0x0800
ALT_FORM4 0x1000
ALT_FORM5 0x2000
ALT_SIGN_EXT 0x4000
ALT_SET_FLAGS 0x8000 */
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
#include "sljitNativePPC_32.c"
#else
#include "sljitNativePPC_64.c"
#endif
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
#define STACK_STORE STW
#define STACK_LOAD LWZ
#else
#define STACK_STORE STD
#define STACK_LOAD LD
#endif
static int emit_op(struct sljit_compiler *compiler, int op, int inp_flags,
int dst, sljit_w dstw,
int src1, sljit_w src1w,
int src2, sljit_w src2w);
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_enter(struct sljit_compiler *compiler, int args, int temporaries, int generals, int local_size)
{
CHECK_ERROR();
check_sljit_emit_enter(compiler, args, temporaries, generals, local_size);
compiler->temporaries = temporaries;
compiler->generals = generals;
compiler->has_locals = local_size > 0;
FAIL_IF(push_inst(compiler, MFLR | D(0)));
if (compiler->has_locals)
FAIL_IF(push_inst(compiler, STACK_STORE | S(SLJIT_LOCALS_REG) | A(REAL_STACK_PTR) | IMM(-(int)(sizeof(sljit_w))) ));
FAIL_IF(push_inst(compiler, STACK_STORE | S(ZERO_REG) | A(REAL_STACK_PTR) | IMM(-2 * (int)(sizeof(sljit_w))) ));
if (generals >= 1)
FAIL_IF(push_inst(compiler, STACK_STORE | S(SLJIT_GENERAL_REG1) | A(REAL_STACK_PTR) | IMM(-3 * (int)(sizeof(sljit_w))) ));
if (generals >= 2)
FAIL_IF(push_inst(compiler, STACK_STORE | S(SLJIT_GENERAL_REG2) | A(REAL_STACK_PTR) | IMM(-4 * (int)(sizeof(sljit_w))) ));
if (generals >= 3)
FAIL_IF(push_inst(compiler, STACK_STORE | S(SLJIT_GENERAL_REG3) | A(REAL_STACK_PTR) | IMM(-5 * (int)(sizeof(sljit_w))) ));
if (generals >= 4)
FAIL_IF(push_inst(compiler, STACK_STORE | S(SLJIT_GENERAL_EREG1) | A(REAL_STACK_PTR) | IMM(-6 * (int)(sizeof(sljit_w))) ));
if (generals >= 5)
FAIL_IF(push_inst(compiler, STACK_STORE | S(SLJIT_GENERAL_EREG2) | A(REAL_STACK_PTR) | IMM(-7 * (int)(sizeof(sljit_w))) ));
FAIL_IF(push_inst(compiler, STACK_STORE | S(0) | A(REAL_STACK_PTR) | IMM(sizeof(sljit_w)) ));
FAIL_IF(push_inst(compiler, ADDI | D(ZERO_REG) | A(0) | 0));
if (args >= 1)
FAIL_IF(push_inst(compiler, OR | S(SLJIT_TEMPORARY_REG1) | A(SLJIT_GENERAL_REG1) | B(SLJIT_TEMPORARY_REG1)));
if (args >= 2)
FAIL_IF(push_inst(compiler, OR | S(SLJIT_TEMPORARY_REG2) | A(SLJIT_GENERAL_REG2) | B(SLJIT_TEMPORARY_REG2)));
if (args >= 3)
FAIL_IF(push_inst(compiler, OR | S(SLJIT_TEMPORARY_REG3) | A(SLJIT_GENERAL_REG3) | B(SLJIT_TEMPORARY_REG3)));
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
compiler->local_size = (2 + generals + 2) * sizeof(sljit_w) + local_size;
#else
compiler->local_size = (2 + generals + 7 + 8) * sizeof(sljit_w) + local_size;
#endif
compiler->local_size = (compiler->local_size + 15) & ~0xf;
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
if (compiler->local_size <= SIMM_MAX)
FAIL_IF(push_inst(compiler, STWU | S(REAL_STACK_PTR) | A(REAL_STACK_PTR) | IMM(-compiler->local_size)));
else {
FAIL_IF(load_immediate(compiler, 0, -compiler->local_size));
FAIL_IF(push_inst(compiler, STWUX | S(REAL_STACK_PTR) | A(REAL_STACK_PTR) | B(0)));
}
if (compiler->has_locals)
FAIL_IF(push_inst(compiler, ADDI | D(SLJIT_LOCALS_REG) | A(REAL_STACK_PTR) | IMM(2 * sizeof(sljit_w))));
#else
if (compiler->local_size <= SIMM_MAX)
FAIL_IF(push_inst(compiler, STDU | S(REAL_STACK_PTR) | A(REAL_STACK_PTR) | IMM(-compiler->local_size)));
else {
FAIL_IF(load_immediate(compiler, 0, -compiler->local_size));
FAIL_IF(push_inst(compiler, STDUX | S(REAL_STACK_PTR) | A(REAL_STACK_PTR) | B(0)));
}
if (compiler->has_locals)
FAIL_IF(push_inst(compiler, ADDI | D(SLJIT_LOCALS_REG) | A(REAL_STACK_PTR) | IMM((7 + 8) * sizeof(sljit_w))));
#endif
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_fake_enter(struct sljit_compiler *compiler, int args, int temporaries, int generals, int local_size)
{
CHECK_ERROR_VOID();
check_sljit_fake_enter(compiler, args, temporaries, generals, local_size);
compiler->temporaries = temporaries;
compiler->generals = generals;
compiler->has_locals = local_size > 0;
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
compiler->local_size = (2 + generals + 2) * sizeof(sljit_w) + local_size;
#else
compiler->local_size = (2 + generals + 7 + 8) * sizeof(sljit_w) + local_size;
#endif
compiler->local_size = (compiler->local_size + 15) & ~0xf;
}
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_return(struct sljit_compiler *compiler, int src, sljit_w srcw)
{
CHECK_ERROR();
check_sljit_emit_return(compiler, src, srcw);
if (src != SLJIT_UNUSED && src != SLJIT_RETURN_REG)
FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, SLJIT_RETURN_REG, 0, TMP_REG1, 0, src, srcw));
if (compiler->local_size <= SIMM_MAX)
FAIL_IF(push_inst(compiler, ADDI | D(REAL_STACK_PTR) | A(REAL_STACK_PTR) | IMM(compiler->local_size)));
else {
FAIL_IF(load_immediate(compiler, 0, compiler->local_size));
FAIL_IF(push_inst(compiler, ADD | D(REAL_STACK_PTR) | A(REAL_STACK_PTR) | B(0)));
}
FAIL_IF(push_inst(compiler, STACK_LOAD | D(0) | A(REAL_STACK_PTR) | IMM(sizeof(sljit_w))));
if (compiler->generals >= 5)
FAIL_IF(push_inst(compiler, STACK_LOAD | D(SLJIT_GENERAL_EREG2) | A(REAL_STACK_PTR) | IMM(-7 * (int)(sizeof(sljit_w))) ));
if (compiler->generals >= 4)
FAIL_IF(push_inst(compiler, STACK_LOAD | D(SLJIT_GENERAL_EREG1) | A(REAL_STACK_PTR) | IMM(-6 * (int)(sizeof(sljit_w))) ));
if (compiler->generals >= 3)
FAIL_IF(push_inst(compiler, STACK_LOAD | D(SLJIT_GENERAL_REG3) | A(REAL_STACK_PTR) | IMM(-5 * (int)(sizeof(sljit_w))) ));
if (compiler->generals >= 2)
FAIL_IF(push_inst(compiler, STACK_LOAD | D(SLJIT_GENERAL_REG2) | A(REAL_STACK_PTR) | IMM(-4 * (int)(sizeof(sljit_w))) ));
if (compiler->generals >= 1)
FAIL_IF(push_inst(compiler, STACK_LOAD | D(SLJIT_GENERAL_REG1) | A(REAL_STACK_PTR) | IMM(-3 * (int)(sizeof(sljit_w))) ));
FAIL_IF(push_inst(compiler, STACK_LOAD | D(ZERO_REG) | A(REAL_STACK_PTR) | IMM(-2 * (int)(sizeof(sljit_w))) ));
if (compiler->has_locals)
FAIL_IF(push_inst(compiler, STACK_LOAD | D(SLJIT_LOCALS_REG) | A(REAL_STACK_PTR) | IMM(-(int)(sizeof(sljit_w))) ));
FAIL_IF(push_inst(compiler, MTLR | S(0)));
FAIL_IF(push_inst(compiler, BLR));
return SLJIT_SUCCESS;
}
#undef STACK_STORE
#undef STACK_LOAD
/* --------------------------------------------------------------------- */
/* Operators */
/* --------------------------------------------------------------------- */
/* i/x - immediate/indexed form
n/w - no write-back / write-back (1 bit)
s/l - store/load (1 bit)
u/s - signed/unsigned (1 bit)
w/b/h/i - word/byte/half/int allowed (2 bit)
It contans 32 items, but not all are different. */
/* 64 bit only: [reg+imm] must be aligned to 4 bytes. */
#define ADDR_MODE2 0x10000
/* 64-bit only: there is no lwau instruction. */
#define UPDATE_REQ 0x20000
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
#define ARCH_DEPEND(a, b) a
#define GET_INST_CODE(inst) (inst)
#else
#define ARCH_DEPEND(a, b) b
#define GET_INST_CODE(index) ((inst) & ~(ADDR_MODE2 | UPDATE_REQ))
#endif
static SLJIT_CONST sljit_ins data_transfer_insts[64] = {
/* No write-back. */
/* i n s u w */ ARCH_DEPEND(HI(36) /* stw */, HI(62) | ADDR_MODE2 | 0x0 /* std */),
/* i n s u b */ HI(38) /* stb */,
/* i n s u h */ HI(44) /* sth*/,
/* i n s u i */ HI(36) /* stw */,
/* i n s s w */ ARCH_DEPEND(HI(36) /* stw */, HI(62) | ADDR_MODE2 | 0x0 /* std */),
/* i n s s b */ HI(38) /* stb */,
/* i n s s h */ HI(44) /* sth*/,
/* i n s s i */ HI(36) /* stw */,
/* i n l u w */ ARCH_DEPEND(HI(32) /* lwz */, HI(58) | ADDR_MODE2 | 0x0 /* ld */),
/* i n l u b */ HI(34) /* lbz */,
/* i n l u h */ HI(40) /* lhz */,
/* i n l u i */ HI(32) /* lwz */,
/* i n l s w */ ARCH_DEPEND(HI(32) /* lwz */, HI(58) | ADDR_MODE2 | 0x0 /* ld */),
/* i n l s b */ HI(34) /* lbz */ /* EXTS_REQ */,
/* i n l s h */ HI(42) /* lha */,
/* i n l s i */ ARCH_DEPEND(HI(32) /* lwz */, HI(58) | ADDR_MODE2 | 0x2 /* lwa */),
/* Write-back. */
/* i w s u w */ ARCH_DEPEND(HI(37) /* stwu */, HI(62) | ADDR_MODE2 | 0x1 /* stdu */),
/* i w s u b */ HI(39) /* stbu */,
/* i w s u h */ HI(45) /* sthu */,
/* i w s u i */ HI(37) /* stwu */,
/* i w s s w */ ARCH_DEPEND(HI(37) /* stwu */, HI(62) | ADDR_MODE2 | 0x1 /* stdu */),
/* i w s s b */ HI(39) /* stbu */,
/* i w s s h */ HI(45) /* sthu */,
/* i w s s i */ HI(37) /* stwu */,
/* i w l u w */ ARCH_DEPEND(HI(33) /* lwzu */, HI(58) | ADDR_MODE2 | 0x1 /* ldu */),
/* i w l u b */ HI(35) /* lbzu */,
/* i w l u h */ HI(41) /* lhzu */,
/* i w l u i */ HI(33) /* lwzu */,
/* i w l s w */ ARCH_DEPEND(HI(33) /* lwzu */, HI(58) | ADDR_MODE2 | 0x1 /* ldu */),
/* i w l s b */ HI(35) /* lbzu */ /* EXTS_REQ */,
/* i w l s h */ HI(43) /* lhau */,
/* i w l s i */ ARCH_DEPEND(HI(33) /* lwzu */, HI(58) | ADDR_MODE2 | UPDATE_REQ | 0x2 /* lwa */),
/* ---------- */
/* Indexed */
/* ---------- */
/* No write-back. */
/* x n s u w */ ARCH_DEPEND(HI(31) | LO(151) /* stwx */, HI(31) | LO(149) /* stdx */),
/* x n s u b */ HI(31) | LO(215) /* stbx */,
/* x n s u h */ HI(31) | LO(407) /* sthx */,
/* x n s u i */ HI(31) | LO(151) /* stwx */,
/* x n s s w */ ARCH_DEPEND(HI(31) | LO(151) /* stwx */, HI(31) | LO(149) /* stdx */),
/* x n s s b */ HI(31) | LO(215) /* stbx */,
/* x n s s h */ HI(31) | LO(407) /* sthx */,
/* x n s s i */ HI(31) | LO(151) /* stwx */,
/* x n l u w */ ARCH_DEPEND(HI(31) | LO(23) /* lwzx */, HI(31) | LO(21) /* ldx */),
/* x n l u b */ HI(31) | LO(87) /* lbzx */,
/* x n l u h */ HI(31) | LO(279) /* lhzx */,
/* x n l u i */ HI(31) | LO(23) /* lwzx */,
/* x n l s w */ ARCH_DEPEND(HI(31) | LO(23) /* lwzx */, HI(31) | LO(21) /* ldx */),
/* x n l s b */ HI(31) | LO(87) /* lbzx */ /* EXTS_REQ */,
/* x n l s h */ HI(31) | LO(343) /* lhax */,
/* x n l s i */ ARCH_DEPEND(HI(31) | LO(23) /* lwzx */, HI(31) | LO(341) /* lwax */),
/* Write-back. */
/* x w s u w */ ARCH_DEPEND(HI(31) | LO(183) /* stwux */, HI(31) | LO(181) /* stdux */),
/* x w s u b */ HI(31) | LO(247) /* stbux */,
/* x w s u h */ HI(31) | LO(439) /* sthux */,
/* x w s u i */ HI(31) | LO(183) /* stwux */,
/* x w s s w */ ARCH_DEPEND(HI(31) | LO(183) /* stwux */, HI(31) | LO(181) /* stdux */),
/* x w s s b */ HI(31) | LO(247) /* stbux */,
/* x w s s h */ HI(31) | LO(439) /* sthux */,
/* x w s s i */ HI(31) | LO(183) /* stwux */,
/* x w l u w */ ARCH_DEPEND(HI(31) | LO(55) /* lwzux */, HI(31) | LO(53) /* ldux */),
/* x w l u b */ HI(31) | LO(119) /* lbzux */,
/* x w l u h */ HI(31) | LO(311) /* lhzux */,
/* x w l u i */ HI(31) | LO(55) /* lwzux */,
/* x w l s w */ ARCH_DEPEND(HI(31) | LO(55) /* lwzux */, HI(31) | LO(53) /* ldux */),
/* x w l s b */ HI(31) | LO(119) /* lbzux */ /* EXTS_REQ */,
/* x w l s h */ HI(31) | LO(375) /* lhaux */,
/* x w l s i */ ARCH_DEPEND(HI(31) | LO(55) /* lwzux */, HI(31) | LO(373) /* lwaux */)
};
#undef ARCH_DEPEND
/* Simple cases, (no caching is required). */
static int getput_arg_fast(struct sljit_compiler *compiler, int inp_flags, int reg, int arg, sljit_w argw)
{
sljit_ins inst;
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
int tmp_reg;
#endif
SLJIT_ASSERT(arg & SLJIT_MEM);
if (!(arg & 0xf)) {
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
if (argw <= SIMM_MAX && argw >= SIMM_MIN) {
if (inp_flags & ARG_TEST)
return 1;
inst = data_transfer_insts[(inp_flags & ~WRITE_BACK) & MEM_MASK];
SLJIT_ASSERT(!(inst & (ADDR_MODE2 | UPDATE_REQ)));
push_inst(compiler, GET_INST_CODE(inst) | D(reg) | IMM(argw));
return -1;
}
#else
inst = data_transfer_insts[(inp_flags & ~WRITE_BACK) & MEM_MASK];
if (argw <= SIMM_MAX && argw >= SIMM_MIN &&
(!(inst & ADDR_MODE2) || (argw & 0x3) == 0)) {
if (inp_flags & ARG_TEST)
return 1;
push_inst(compiler, GET_INST_CODE(inst) | D(reg) | IMM(argw));
return -1;
}
#endif
return (inp_flags & ARG_TEST) ? SLJIT_SUCCESS : 0;
}
if (!(arg & 0xf0)) {
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
if (argw <= SIMM_MAX && argw >= SIMM_MIN) {
if (inp_flags & ARG_TEST)
return 1;
inst = data_transfer_insts[inp_flags & MEM_MASK];
SLJIT_ASSERT(!(inst & (ADDR_MODE2 | UPDATE_REQ)));
push_inst(compiler, GET_INST_CODE(inst) | D(reg) | A(arg & 0xf) | IMM(argw));
return -1;
}
#else
inst = data_transfer_insts[inp_flags & MEM_MASK];
if (argw <= SIMM_MAX && argw >= SIMM_MIN && (!(inst & ADDR_MODE2) || (argw & 0x3) == 0)) {
if (inp_flags & ARG_TEST)
return 1;
if ((inp_flags & WRITE_BACK) && (inst & UPDATE_REQ)) {
tmp_reg = (inp_flags & LOAD_DATA) ? (arg & 0xf) : TMP_REG3;
if (push_inst(compiler, ADDI | D(tmp_reg) | A(arg & 0xf) | IMM(argw)))
return -1;
arg = tmp_reg | SLJIT_MEM;
argw = 0;
}
push_inst(compiler, GET_INST_CODE(inst) | D(reg) | A(arg & 0xf) | IMM(argw));
return -1;
}
#endif
}
else if (!(argw & 0x3)) {
if (inp_flags & ARG_TEST)
return 1;
inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK];
SLJIT_ASSERT(!(inst & (ADDR_MODE2 | UPDATE_REQ)));
push_inst(compiler, GET_INST_CODE(inst) | D(reg) | A(arg & 0xf) | B((arg >> 4) & 0xf));
return -1;
}
return (inp_flags & ARG_TEST) ? SLJIT_SUCCESS : 0;
}
/* See getput_arg below.
Note: can_cache is called only for binary operators. Those operator always
uses word arguments without write back. */
static int can_cache(int arg, sljit_w argw, int next_arg, sljit_w next_argw)
{
SLJIT_ASSERT(arg & SLJIT_MEM);
SLJIT_ASSERT(next_arg & SLJIT_MEM);
if (!(arg & 0xf)) {
if ((next_arg & SLJIT_MEM) && ((sljit_uw)argw - (sljit_uw)next_argw <= SIMM_MAX || (sljit_uw)next_argw - (sljit_uw)argw <= SIMM_MAX))
return 1;
return 0;
}
if (arg & 0xf0)
return 0;
if (argw <= SIMM_MAX && argw >= SIMM_MIN) {
if (arg == next_arg && (next_argw >= SIMM_MAX && next_argw <= SIMM_MIN))
return 1;
}
if (arg == next_arg && ((sljit_uw)argw - (sljit_uw)next_argw <= SIMM_MAX || (sljit_uw)next_argw - (sljit_uw)argw <= SIMM_MAX))
return 1;
return 0;
}
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#define ADJUST_CACHED_IMM(imm) \
if ((inst & ADDR_MODE2) && (imm & 0x3)) { \
/* Adjust cached value. Fortunately this is really a rare case */ \
compiler->cache_argw += imm & 0x3; \
FAIL_IF(push_inst(compiler, ADDI | D(TMP_REG3) | A(TMP_REG3) | (imm & 0x3))); \
imm &= ~0x3; \
}
#else
#define ADJUST_CACHED_IMM(imm)
#endif
/* Emit the necessary instructions. See can_cache above. */
static int getput_arg(struct sljit_compiler *compiler, int inp_flags, int reg, int arg, sljit_w argw, int next_arg, sljit_w next_argw)
{
int tmp_r;
sljit_ins inst;
SLJIT_ASSERT(arg & SLJIT_MEM);
tmp_r = (inp_flags & LOAD_DATA) ? reg : TMP_REG3;
if ((arg & 0xf) == tmp_r) {
/* Special case for "mov reg, [reg, ... ]".
Caching would not happen anyway. */
tmp_r = TMP_REG3;
compiler->cache_arg = 0;
compiler->cache_argw = 0;
}
if (!(arg & 0xf)) {
inst = data_transfer_insts[(inp_flags & ~WRITE_BACK) & MEM_MASK];
if ((compiler->cache_arg & SLJIT_IMM) && (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= SIMM_MAX || ((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= SIMM_MAX)) {
argw = argw - compiler->cache_argw;
ADJUST_CACHED_IMM(argw);
SLJIT_ASSERT(!(inst & UPDATE_REQ));
return push_inst(compiler, GET_INST_CODE(inst) | D(reg) | A(TMP_REG3) | IMM(argw));
}
if ((next_arg & SLJIT_MEM) && (argw - next_argw <= SIMM_MAX || next_argw - argw <= SIMM_MAX)) {
SLJIT_ASSERT(inp_flags & LOAD_DATA);
compiler->cache_arg = SLJIT_IMM;
compiler->cache_argw = argw;
tmp_r = TMP_REG3;
}
FAIL_IF(load_immediate(compiler, tmp_r, argw));
return push_inst(compiler, GET_INST_CODE(inst) | D(reg) | A(tmp_r));
}
if (SLJIT_UNLIKELY(arg & 0xf0)) {
argw &= 0x3;
/* Otherwise getput_arg_fast would capture it. */
SLJIT_ASSERT(argw);
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
FAIL_IF(push_inst(compiler, RLWINM | S((arg >> 4) & 0xf) | A(tmp_r) | (argw << 11) | ((31 - argw) << 1)));
#else
FAIL_IF(push_inst(compiler, RLDI(tmp_r, (arg >> 4) & 0xf, argw, 63 - argw, 1)));
#endif
inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK];
SLJIT_ASSERT(!(inst & (ADDR_MODE2 | UPDATE_REQ)));
return push_inst(compiler, GET_INST_CODE(inst) | D(reg) | A(arg & 0xf) | B(tmp_r));
}
inst = data_transfer_insts[inp_flags & MEM_MASK];
if (compiler->cache_arg == arg && ((sljit_uw)argw - (sljit_uw)compiler->cache_argw <= SIMM_MAX || (sljit_uw)compiler->cache_argw - (sljit_uw)argw <= SIMM_MAX)) {
SLJIT_ASSERT(!(inp_flags & WRITE_BACK));
argw = argw - compiler->cache_argw;
ADJUST_CACHED_IMM(argw);
return push_inst(compiler, GET_INST_CODE(inst) | D(reg) | A(TMP_REG3) | IMM(argw));
}
if ((compiler->cache_arg & SLJIT_IMM) && compiler->cache_argw == argw) {
inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK];
SLJIT_ASSERT(!(inst & (ADDR_MODE2 | UPDATE_REQ)));
return push_inst(compiler, GET_INST_CODE(inst) | D(reg) | A(arg & 0xf) | B(TMP_REG3));
}
if (argw == next_argw && (next_arg & SLJIT_MEM)) {
SLJIT_ASSERT(inp_flags & LOAD_DATA);
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
compiler->cache_arg = SLJIT_IMM;
compiler->cache_argw = argw;
inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK];
SLJIT_ASSERT(!(inst & (ADDR_MODE2 | UPDATE_REQ)));
return push_inst(compiler, GET_INST_CODE(inst) | D(reg) | A(arg & 0xf) | B(TMP_REG3));
}
if (arg == next_arg && !(inp_flags & WRITE_BACK) && ((sljit_uw)argw - (sljit_uw)next_argw <= SIMM_MAX || (sljit_uw)next_argw - (sljit_uw)argw <= SIMM_MAX)) {
SLJIT_ASSERT(inp_flags & LOAD_DATA);
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
FAIL_IF(push_inst(compiler, ADD | D(TMP_REG3) | A(TMP_REG3) | B(arg & 0xf)));
compiler->cache_arg = arg;
compiler->cache_argw = argw;
return push_inst(compiler, GET_INST_CODE(inst) | D(reg) | A(TMP_REG3));
}
/* Get the indexed version instead of the normal one. */
inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK];
SLJIT_ASSERT(!(inst & (ADDR_MODE2 | UPDATE_REQ)));
FAIL_IF(load_immediate(compiler, tmp_r, argw));
return push_inst(compiler, GET_INST_CODE(inst) | D(reg) | A(arg & 0xf) | B(tmp_r));
}
static int emit_op(struct sljit_compiler *compiler, int op, int inp_flags,
int dst, sljit_w dstw,
int src1, sljit_w src1w,
int src2, sljit_w src2w)
{
/* arg1 goes to TMP_REG1 or src reg
arg2 goes to TMP_REG2, imm or src reg
TMP_REG3 can be used for caching
result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
int dst_r;
int src1_r;
int src2_r;
int sugg_src2_r = TMP_REG2;
int flags = inp_flags & (ALT_FORM1 | ALT_FORM2 | ALT_FORM3 | ALT_FORM4 | ALT_FORM5 | ALT_SIGN_EXT | ALT_SET_FLAGS);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
/* Destination check. */
if (dst >= SLJIT_TEMPORARY_REG1 && dst <= ZERO_REG) {
dst_r = dst;
flags |= REG_DEST;
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
sugg_src2_r = dst_r;
}
else if (dst == SLJIT_UNUSED) {
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
return SLJIT_SUCCESS;
dst_r = TMP_REG2;
}
else {
SLJIT_ASSERT(dst & SLJIT_MEM);
if (getput_arg_fast(compiler, inp_flags | ARG_TEST, TMP_REG2, dst, dstw)) {
flags |= FAST_DEST;
dst_r = TMP_REG2;
}
else {
flags |= SLOW_DEST;
dst_r = 0;
}
}
/* Source 1. */
if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= ZERO_REG) {
src1_r = src1;
flags |= REG1_SOURCE;
}
else if (src1 & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
if ((inp_flags & 0x3) == INT_DATA) {
if (inp_flags & SIGNED_DATA)
src1w = (signed int)src1w;
else
src1w = (unsigned int)src1w;
}
#endif
FAIL_IF(load_immediate(compiler, TMP_REG1, src1w));
src1_r = TMP_REG1;
}
else if (getput_arg_fast(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w)) {
FAIL_IF(compiler->error);
src1_r = TMP_REG1;
}
else
src1_r = 0;
/* Source 2. */
if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= ZERO_REG) {
src2_r = src2;
flags |= REG2_SOURCE;
if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
dst_r = src2_r;
}
else if (src2 & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
if ((inp_flags & 0x3) == INT_DATA) {
if (inp_flags & SIGNED_DATA)
src2w = (signed int)src2w;
else
src2w = (unsigned int)src2w;
}
#endif
FAIL_IF(load_immediate(compiler, sugg_src2_r, src2w));
src2_r = sugg_src2_r;
}
else if (getput_arg_fast(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w)) {
FAIL_IF(compiler->error);
src2_r = sugg_src2_r;
}
else
src2_r = 0;
/* src1_r, src2_r and dst_r can be zero (=unprocessed).
All arguments are complex addressing modes, and it is a binary operator. */
if (src1_r == 0 && src2_r == 0 && dst_r == 0) {
if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG2, src2, src2w, src1, src1w));
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
}
else {
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG2, src2, src2w, dst, dstw));
}
src1_r = TMP_REG1;
src2_r = TMP_REG2;
}
else if (src1_r == 0 && src2_r == 0) {
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
src1_r = TMP_REG1;
}
else if (src1_r == 0 && dst_r == 0) {
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
src1_r = TMP_REG1;
}
else if (src2_r == 0 && dst_r == 0) {
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w, dst, dstw));
src2_r = sugg_src2_r;
}
if (dst_r == 0)
dst_r = TMP_REG2;
if (src1_r == 0) {
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, 0, 0));
src1_r = TMP_REG1;
}
if (src2_r == 0) {
FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w, 0, 0));
src2_r = sugg_src2_r;
}
FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
if (flags & (FAST_DEST | SLOW_DEST)) {
if (flags & FAST_DEST)
FAIL_IF(getput_arg_fast(compiler, inp_flags, dst_r, dst, dstw));
else
FAIL_IF(getput_arg(compiler, inp_flags, dst_r, dst, dstw, 0, 0));
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op0(struct sljit_compiler *compiler, int op)
{
CHECK_ERROR();
check_sljit_emit_op0(compiler, op);
op = GET_OPCODE(op);
switch (op) {
case SLJIT_BREAKPOINT:
case SLJIT_NOP:
return push_inst(compiler, NOP);
break;
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op1(struct sljit_compiler *compiler, int op,
int dst, sljit_w dstw,
int src, sljit_w srcw)
{
int inp_flags = GET_FLAGS(op) ? ALT_SET_FLAGS : 0;
CHECK_ERROR();
check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw);
if ((src & SLJIT_IMM) && srcw == 0)
src = ZERO_REG;
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
if (op & SLJIT_INT_OP) {
inp_flags |= INT_DATA | SIGNED_DATA;
if (src & SLJIT_IMM)
srcw = (int)srcw;
}
#endif
if (op & SLJIT_SET_O)
FAIL_IF(push_inst(compiler, MTXER | S(ZERO_REG)));
switch (GET_OPCODE(op)) {
case SLJIT_MOV:
return emit_op(compiler, SLJIT_MOV, inp_flags | WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOV_UI:
return emit_op(compiler, SLJIT_MOV_UI, inp_flags | INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOV_SI:
return emit_op(compiler, SLJIT_MOV_SI, inp_flags | INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOV_UB:
return emit_op(compiler, SLJIT_MOV_UB, inp_flags | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw);
case SLJIT_MOV_SB:
return emit_op(compiler, SLJIT_MOV_SB, inp_flags | BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw);
case SLJIT_MOV_UH:
return emit_op(compiler, SLJIT_MOV_UH, inp_flags | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw);
case SLJIT_MOV_SH:
return emit_op(compiler, SLJIT_MOV_SH, inp_flags | HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw);
case SLJIT_MOVU:
return emit_op(compiler, SLJIT_MOV, inp_flags | WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOVU_UI:
return emit_op(compiler, SLJIT_MOV_UI, inp_flags | INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOVU_SI:
return emit_op(compiler, SLJIT_MOV_SI, inp_flags | INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOVU_UB:
return emit_op(compiler, SLJIT_MOV_UB, inp_flags | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw);
case SLJIT_MOVU_SB:
return emit_op(compiler, SLJIT_MOV_SB, inp_flags | BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw);
case SLJIT_MOVU_UH:
return emit_op(compiler, SLJIT_MOV_UH, inp_flags | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw);
case SLJIT_MOVU_SH:
return emit_op(compiler, SLJIT_MOV_SH, inp_flags | HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw);
case SLJIT_NOT:
return emit_op(compiler, SLJIT_NOT, inp_flags, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_NEG:
return emit_op(compiler, SLJIT_NEG, inp_flags, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_CLZ:
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
return emit_op(compiler, SLJIT_CLZ, inp_flags | (!(op & SLJIT_INT_OP) ? 0 : ALT_FORM1), dst, dstw, TMP_REG1, 0, src, srcw);
#else
return emit_op(compiler, SLJIT_CLZ, inp_flags, dst, dstw, TMP_REG1, 0, src, srcw);
#endif
}
return SLJIT_SUCCESS;
}
#define TEST_SL_IMM(src, srcw) \
(((src) & SLJIT_IMM) && (srcw) <= SIMM_MAX && (srcw) >= SIMM_MIN)
#define TEST_UL_IMM(src, srcw) \
(((src) & SLJIT_IMM) && !((srcw) & ~0xffff))
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#define TEST_SH_IMM(src, srcw) \
(((src) & SLJIT_IMM) && !((srcw) & 0xffff) && (srcw) <= SLJIT_W(0x7fffffff) && (srcw) >= SLJIT_W(-0x80000000))
#else
#define TEST_SH_IMM(src, srcw) \
(((src) & SLJIT_IMM) && !((srcw) & 0xffff))
#endif
#define TEST_UH_IMM(src, srcw) \
(((src) & SLJIT_IMM) && !((srcw) & ~0xffff0000))
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#define TEST_UI_IMM(src, srcw) \
(((src) & SLJIT_IMM) && !((srcw) & ~0xffffffff))
#else
#define TEST_UI_IMM(src, srcw) \
((src) & SLJIT_IMM)
#endif
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op2(struct sljit_compiler *compiler, int op,
int dst, sljit_w dstw,
int src1, sljit_w src1w,
int src2, sljit_w src2w)
{
int inp_flags = GET_FLAGS(op) ? ALT_SET_FLAGS : 0;
CHECK_ERROR();
check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
if ((src1 & SLJIT_IMM) && src1w == 0)
src1 = ZERO_REG;
if ((src2 & SLJIT_IMM) && src2w == 0)
src2 = ZERO_REG;
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
if (op & SLJIT_INT_OP) {
inp_flags |= INT_DATA | SIGNED_DATA;
if (src1 & SLJIT_IMM)
src1w = (src1w << 32) >> 32;
if (src2 & SLJIT_IMM)
src2w = (src2w << 32) >> 32;
if (GET_FLAGS(op))
inp_flags |= ALT_SIGN_EXT;
}
#endif
if (op & SLJIT_SET_O)
FAIL_IF(push_inst(compiler, MTXER | S(ZERO_REG)));
switch (GET_OPCODE(op)) {
case SLJIT_ADD:
if (!GET_FLAGS(op)) {
if (TEST_SL_IMM(src2, src2w)) {
compiler->imm = src2w & 0xffff;
return emit_op(compiler, SLJIT_ADD, inp_flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_SL_IMM(src1, src1w)) {
compiler->imm = src1w & 0xffff;
return emit_op(compiler, SLJIT_ADD, inp_flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0);
}
if (TEST_SH_IMM(src2, src2w)) {
compiler->imm = (src2w >> 16) & 0xffff;
return emit_op(compiler, SLJIT_ADD, inp_flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_SH_IMM(src1, src1w)) {
compiler->imm = (src1w >> 16) & 0xffff;
return emit_op(compiler, SLJIT_ADD, inp_flags | ALT_FORM2, dst, dstw, src2, src2w, TMP_REG2, 0);
}
}
if (!(GET_FLAGS(op) & (SLJIT_SET_E | SLJIT_SET_O))) {
if (TEST_SL_IMM(src2, src2w)) {
compiler->imm = src2w & 0xffff;
return emit_op(compiler, SLJIT_ADD, inp_flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_SL_IMM(src1, src1w)) {
compiler->imm = src1w & 0xffff;
return emit_op(compiler, SLJIT_ADD, inp_flags | ALT_FORM3, dst, dstw, src2, src2w, TMP_REG2, 0);
}
}
return emit_op(compiler, SLJIT_ADD, inp_flags, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_ADDC:
return emit_op(compiler, SLJIT_ADDC, inp_flags | (!(op & SLJIT_KEEP_FLAGS) ? 0 : ALT_FORM1), dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SUB:
if (!GET_FLAGS(op)) {
if (TEST_SL_IMM(src2, -src2w)) {
compiler->imm = (-src2w) & 0xffff;
return emit_op(compiler, SLJIT_ADD, inp_flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_SL_IMM(src1, src1w)) {
compiler->imm = src1w & 0xffff;
return emit_op(compiler, SLJIT_SUB, inp_flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0);
}
if (TEST_SH_IMM(src2, -src2w)) {
compiler->imm = ((-src2w) >> 16) & 0xffff;
return emit_op(compiler, SLJIT_ADD, inp_flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0);
}
}
if (dst == SLJIT_UNUSED && !(GET_FLAGS(op) & ~(SLJIT_SET_E | SLJIT_SET_S))) {
/* We know ALT_SIGN_EXT is set if it is an SLJIT_INT_OP on 64 bit systems. */
if (TEST_SL_IMM(src2, src2w)) {
compiler->imm = src2w & 0xffff;
return emit_op(compiler, SLJIT_SUB, inp_flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (GET_FLAGS(op) == SLJIT_SET_E && TEST_SL_IMM(src1, src1w)) {
compiler->imm = src1w & 0xffff;
return emit_op(compiler, SLJIT_SUB, inp_flags | ALT_FORM2, dst, dstw, src2, src2w, TMP_REG2, 0);
}
}
if (dst == SLJIT_UNUSED && GET_FLAGS(op) == SLJIT_SET_U) {
/* We know ALT_SIGN_EXT is set if it is an SLJIT_INT_OP on 64 bit systems. */
if (TEST_UL_IMM(src2, src2w)) {
compiler->imm = src2w & 0xffff;
return emit_op(compiler, SLJIT_SUB, inp_flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0);
}
return emit_op(compiler, SLJIT_SUB, inp_flags | ALT_FORM4, dst, dstw, src1, src1w, src2, src2w);
}
if (!(op & (SLJIT_SET_E | SLJIT_SET_S | SLJIT_SET_U | SLJIT_SET_O))) {
if (TEST_SL_IMM(src2, -src2w)) {
compiler->imm = (-src2w) & 0xffff;
return emit_op(compiler, SLJIT_ADD, inp_flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0);
}
}
/* We know ALT_SIGN_EXT is set if it is an SLJIT_INT_OP on 64 bit systems. */
return emit_op(compiler, SLJIT_SUB, inp_flags | (!(op & SLJIT_SET_U) ? 0 : ALT_FORM5), dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SUBC:
return emit_op(compiler, SLJIT_SUBC, inp_flags | (!(op & SLJIT_KEEP_FLAGS) ? 0 : ALT_FORM1), dst, dstw, src1, src1w, src2, src2w);
case SLJIT_MUL:
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
if (op & SLJIT_INT_OP)
inp_flags |= ALT_FORM2;
#endif
if (!GET_FLAGS(op)) {
if (TEST_SL_IMM(src2, src2w)) {
compiler->imm = src2w & 0xffff;
return emit_op(compiler, SLJIT_MUL, inp_flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_SL_IMM(src1, src1w)) {
compiler->imm = src1w & 0xffff;
return emit_op(compiler, SLJIT_MUL, inp_flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0);
}
}
return emit_op(compiler, SLJIT_MUL, inp_flags, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_AND:
case SLJIT_OR:
case SLJIT_XOR:
/* Commutative unsigned operations. */
if (!GET_FLAGS(op) || GET_OPCODE(op) == SLJIT_AND) {
if (TEST_UL_IMM(src2, src2w)) {
compiler->imm = src2w;
return emit_op(compiler, GET_OPCODE(op), inp_flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_UL_IMM(src1, src1w)) {
compiler->imm = src1w;
return emit_op(compiler, GET_OPCODE(op), inp_flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0);
}
if (TEST_UH_IMM(src2, src2w)) {
compiler->imm = (src2w >> 16) & 0xffff;
return emit_op(compiler, GET_OPCODE(op), inp_flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_UH_IMM(src1, src1w)) {
compiler->imm = (src1w >> 16) & 0xffff;
return emit_op(compiler, GET_OPCODE(op), inp_flags | ALT_FORM2, dst, dstw, src2, src2w, TMP_REG2, 0);
}
}
if (!GET_FLAGS(op) && GET_OPCODE(op) != SLJIT_AND) {
if (TEST_UI_IMM(src2, src2w)) {
compiler->imm = src2w;
return emit_op(compiler, GET_OPCODE(op), inp_flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0);
}
if (TEST_UI_IMM(src1, src1w)) {
compiler->imm = src1w;
return emit_op(compiler, GET_OPCODE(op), inp_flags | ALT_FORM3, dst, dstw, src2, src2w, TMP_REG2, 0);
}
}
return emit_op(compiler, GET_OPCODE(op), inp_flags, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SHL:
case SLJIT_LSHR:
case SLJIT_ASHR:
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
if (op & SLJIT_INT_OP)
inp_flags |= ALT_FORM2;
#endif
if (src2 & SLJIT_IMM) {
compiler->imm = src2w;
return emit_op(compiler, GET_OPCODE(op), inp_flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0);
}
return emit_op(compiler, GET_OPCODE(op), inp_flags, dst, dstw, src1, src1w, src2, src2w);
}
return SLJIT_SUCCESS;
}
/* --------------------------------------------------------------------- */
/* Floating point operators */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE int sljit_is_fpu_available(void)
{
/* Always available. */
return 1;
}
static int emit_fpu_data_transfer(struct sljit_compiler *compiler, int fpu_reg, int load, int arg, sljit_w argw)
{
SLJIT_ASSERT(arg & SLJIT_MEM);
/* Fast loads and stores. */
if (!(arg & 0xf0)) {
/* Both for (arg & 0xf) == SLJIT_UNUSED and (arg & 0xf) != SLJIT_UNUSED. */
if (argw <= SIMM_MAX && argw >= SIMM_MIN)
return push_inst(compiler, (load ? LFD : STFD) | FD(fpu_reg) | A(arg & 0xf) | IMM(argw));
}
if (arg & 0xf0) {
argw &= 0x3;
if (argw) {
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
FAIL_IF(push_inst(compiler, RLWINM | S((arg >> 4) & 0xf) | A(TMP_REG2) | (argw << 11) | ((31 - argw) << 1)));
#else
FAIL_IF(push_inst(compiler, RLDI(TMP_REG2, (arg >> 4) & 0xf, argw, 63 - argw, 1)));
#endif
return push_inst(compiler, (load ? LFDX : STFDX) | FD(fpu_reg) | A(arg & 0xf) | B(TMP_REG2));
}
return push_inst(compiler, (load ? LFDX : STFDX) | FD(fpu_reg) | A(arg & 0xf) | B((arg >> 4) & 0xf));
}
/* Use cache. */
if (compiler->cache_arg == arg && argw - compiler->cache_argw <= SIMM_MAX && argw - compiler->cache_argw >= SIMM_MIN)
return push_inst(compiler, (load ? LFD : STFD) | FD(fpu_reg) | A(TMP_REG3) | IMM(argw - compiler->cache_argw));
/* Put value to cache. */
compiler->cache_arg = arg;
compiler->cache_argw = argw;
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
if (!(arg & 0xf))
return push_inst(compiler, (load ? LFDX : STFDX) | FD(fpu_reg) | A(0) | B(TMP_REG3));
return push_inst(compiler, (load ? LFDUX : STFDUX) | FD(fpu_reg) | A(TMP_REG3) | B(arg & 0xf));
}
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop1(struct sljit_compiler *compiler, int op,
int dst, sljit_w dstw,
int src, sljit_w srcw)
{
int dst_fr;
CHECK_ERROR();
check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
if (GET_OPCODE(op) == SLJIT_FCMP) {
if (dst > SLJIT_FLOAT_REG4) {
FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 1, dst, dstw));
dst = TMP_FREG1;
}
if (src > SLJIT_FLOAT_REG4) {
FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG2, 1, src, srcw));
src = TMP_FREG2;
}
return push_inst(compiler, FCMPU | CRD(4) | FA(dst) | FB(src));
}
dst_fr = (dst > SLJIT_FLOAT_REG4) ? TMP_FREG1 : dst;
if (src > SLJIT_FLOAT_REG4) {
FAIL_IF(emit_fpu_data_transfer(compiler, dst_fr, 1, src, srcw));
src = dst_fr;
}
switch (op) {
case SLJIT_FMOV:
if (src != dst_fr && dst_fr != TMP_FREG1)
FAIL_IF(push_inst(compiler, FMR | FD(dst_fr) | FB(src)));
break;
case SLJIT_FNEG:
FAIL_IF(push_inst(compiler, FNEG | FD(dst_fr) | FB(src)));
break;
case SLJIT_FABS:
FAIL_IF(push_inst(compiler, FABS | FD(dst_fr) | FB(src)));
break;
}
if (dst_fr == TMP_FREG1)
FAIL_IF(emit_fpu_data_transfer(compiler, src, 0, dst, dstw));
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop2(struct sljit_compiler *compiler, int op,
int dst, sljit_w dstw,
int src1, sljit_w src1w,
int src2, sljit_w src2w)
{
int dst_fr;
CHECK_ERROR();
check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
dst_fr = (dst > SLJIT_FLOAT_REG4) ? TMP_FREG1 : dst;
if (src2 > SLJIT_FLOAT_REG4) {
FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG2, 1, src2, src2w));
src2 = TMP_FREG2;
}
if (src1 > SLJIT_FLOAT_REG4) {
FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 1, src1, src1w));
src1 = TMP_FREG1;
}
switch (op) {
case SLJIT_FADD:
FAIL_IF(push_inst(compiler, FADD | FD(dst_fr) | FA(src1) | FB(src2)));
break;
case SLJIT_FSUB:
FAIL_IF(push_inst(compiler, FSUB | FD(dst_fr) | FA(src1) | FB(src2)));
break;
case SLJIT_FMUL:
FAIL_IF(push_inst(compiler, FMUL | FD(dst_fr) | FA(src1) | FC(src2) /* FMUL use FC as src2 */));
break;
case SLJIT_FDIV:
FAIL_IF(push_inst(compiler, FDIV | FD(dst_fr) | FA(src1) | FB(src2)));
break;
}
if (dst_fr == TMP_FREG1)
FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 0, dst, dstw));
return SLJIT_SUCCESS;
}
/* --------------------------------------------------------------------- */
/* Other instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fast_enter(struct sljit_compiler *compiler, int dst, sljit_w dstw, int args, int temporaries, int generals, int local_size)
{
CHECK_ERROR();
check_sljit_emit_fast_enter(compiler, dst, dstw, args, temporaries, generals, local_size);
compiler->temporaries = temporaries;
compiler->generals = generals;
compiler->has_locals = local_size > 0;
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
compiler->local_size = (2 + generals + 2) * sizeof(sljit_w) + local_size;
#else
compiler->local_size = (2 + generals + 7 + 8) * sizeof(sljit_w) + local_size;
#endif
compiler->local_size = (compiler->local_size + 15) & ~0xf;
if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS)
return push_inst(compiler, MFLR | D(dst));
else if (dst & SLJIT_MEM) {
FAIL_IF(push_inst(compiler, MFLR | D(TMP_REG2)));
return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fast_return(struct sljit_compiler *compiler, int src, sljit_w srcw)
{
CHECK_ERROR();
check_sljit_emit_fast_return(compiler, src, srcw);
if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS)
FAIL_IF(push_inst(compiler, MTLR | S(src)));
else {
if (src & SLJIT_MEM)
FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
else if (src & SLJIT_IMM)
FAIL_IF(load_immediate(compiler, TMP_REG2, srcw));
FAIL_IF(push_inst(compiler, MTLR | S(TMP_REG2)));
}
return push_inst(compiler, BLR);
}
/* --------------------------------------------------------------------- */
/* Conditional instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
struct sljit_label *label;
CHECK_ERROR_PTR();
check_sljit_emit_label(compiler);
if (compiler->last_label && compiler->last_label->size == compiler->size)
return compiler->last_label;
label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
PTR_FAIL_IF(!label);
set_label(label, compiler);
return label;
}
static sljit_ins get_bo_bi_flags(struct sljit_compiler *compiler, int type)
{
switch (type) {
case SLJIT_C_EQUAL:
return (12 << 21) | (2 << 16);
case SLJIT_C_NOT_EQUAL:
return (4 << 21) | (2 << 16);
case SLJIT_C_LESS:
case SLJIT_C_FLOAT_LESS:
return (12 << 21) | ((4 + 0) << 16);
case SLJIT_C_GREATER_EQUAL:
case SLJIT_C_FLOAT_GREATER_EQUAL:
return (4 << 21) | ((4 + 0) << 16);
case SLJIT_C_GREATER:
case SLJIT_C_FLOAT_GREATER:
return (12 << 21) | ((4 + 1) << 16);
case SLJIT_C_LESS_EQUAL:
case SLJIT_C_FLOAT_LESS_EQUAL:
return (4 << 21) | ((4 + 1) << 16);
case SLJIT_C_SIG_LESS:
return (12 << 21) | (0 << 16);
case SLJIT_C_SIG_GREATER_EQUAL:
return (4 << 21) | (0 << 16);
case SLJIT_C_SIG_GREATER:
return (12 << 21) | (1 << 16);
case SLJIT_C_SIG_LESS_EQUAL:
return (4 << 21) | (1 << 16);
case SLJIT_C_OVERFLOW:
case SLJIT_C_MUL_OVERFLOW:
return (12 << 21) | (3 << 16);
case SLJIT_C_NOT_OVERFLOW:
case SLJIT_C_MUL_NOT_OVERFLOW:
return (4 << 21) | (3 << 16);
case SLJIT_C_FLOAT_EQUAL:
return (12 << 21) | ((4 + 2) << 16);
case SLJIT_C_FLOAT_NOT_EQUAL:
return (4 << 21) | ((4 + 2) << 16);
case SLJIT_C_FLOAT_NAN:
return (12 << 21) | ((4 + 3) << 16);
case SLJIT_C_FLOAT_NOT_NAN:
return (4 << 21) | ((4 + 3) << 16);
default:
SLJIT_ASSERT(type >= SLJIT_JUMP && type <= SLJIT_CALL3);
return (20 << 21);
}
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, int type)
{
struct sljit_jump *jump;
sljit_ins bo_bi_flags;
CHECK_ERROR_PTR();
check_sljit_emit_jump(compiler, type);
bo_bi_flags = get_bo_bi_flags(compiler, type & 0xff);
if (!bo_bi_flags)
return NULL;
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
/* In PPC, we don't need to touch the arguments. */
if (type >= SLJIT_JUMP)
jump->flags |= UNCOND_B;
PTR_FAIL_IF(emit_const(compiler, TMP_REG1, 0));
PTR_FAIL_IF(push_inst(compiler, MTCTR | S(TMP_REG1)));
jump->addr = compiler->size;
PTR_FAIL_IF(push_inst(compiler, BCCTR | bo_bi_flags | (type >= SLJIT_FAST_CALL ? 1 : 0)));
return jump;
}
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_ijump(struct sljit_compiler *compiler, int type, int src, sljit_w srcw)
{
sljit_ins bo_bi_flags;
struct sljit_jump *jump = NULL;
int src_r;
CHECK_ERROR();
check_sljit_emit_ijump(compiler, type, src, srcw);
bo_bi_flags = get_bo_bi_flags(compiler, type);
FAIL_IF(!bo_bi_flags);
if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS)
src_r = src;
else if (src & SLJIT_IMM) {
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
FAIL_IF(!jump);
set_jump(jump, compiler, JUMP_ADDR | UNCOND_B);
jump->u.target = srcw;
FAIL_IF(emit_const(compiler, TMP_REG2, 0));
src_r = TMP_REG2;
}
else {
FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
src_r = TMP_REG2;
}
FAIL_IF(push_inst(compiler, MTCTR | S(src_r)));
if (jump)
jump->addr = compiler->size;
return push_inst(compiler, BCCTR | bo_bi_flags | (type >= SLJIT_FAST_CALL ? 1 : 0));
}
/* Get a bit from CR, all other bits are zeroed. */
#define GET_CR_BIT(bit, dst) \
FAIL_IF(push_inst(compiler, MFCR | D(dst))); \
FAIL_IF(push_inst(compiler, RLWINM | S(dst) | A(dst) | ((1 + (bit)) << 11) | (31 << 6) | (31 << 1)));
#define INVERT_BIT(dst) \
FAIL_IF(push_inst(compiler, XORI | S(dst) | A(dst) | 0x1));
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_cond_value(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int type)
{
int reg;
CHECK_ERROR();
check_sljit_emit_cond_value(compiler, op, dst, dstw, type);
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
reg = (op == SLJIT_MOV && dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REG2;
switch (type) {
case SLJIT_C_EQUAL:
GET_CR_BIT(2, reg);
break;
case SLJIT_C_NOT_EQUAL:
GET_CR_BIT(2, reg);
INVERT_BIT(reg);
break;
case SLJIT_C_LESS:
case SLJIT_C_FLOAT_LESS:
GET_CR_BIT(4 + 0, reg);
break;
case SLJIT_C_GREATER_EQUAL:
case SLJIT_C_FLOAT_GREATER_EQUAL:
GET_CR_BIT(4 + 0, reg);
INVERT_BIT(reg);
break;
case SLJIT_C_GREATER:
case SLJIT_C_FLOAT_GREATER:
GET_CR_BIT(4 + 1, reg);
break;
case SLJIT_C_LESS_EQUAL:
case SLJIT_C_FLOAT_LESS_EQUAL:
GET_CR_BIT(4 + 1, reg);
INVERT_BIT(reg);
break;
case SLJIT_C_SIG_LESS:
GET_CR_BIT(0, reg);
break;
case SLJIT_C_SIG_GREATER_EQUAL:
GET_CR_BIT(0, reg);
INVERT_BIT(reg);
break;
case SLJIT_C_SIG_GREATER:
GET_CR_BIT(1, reg);
break;
case SLJIT_C_SIG_LESS_EQUAL:
GET_CR_BIT(1, reg);
INVERT_BIT(reg);
break;
case SLJIT_C_OVERFLOW:
case SLJIT_C_MUL_OVERFLOW:
GET_CR_BIT(3, reg);
break;
case SLJIT_C_NOT_OVERFLOW:
case SLJIT_C_MUL_NOT_OVERFLOW:
GET_CR_BIT(3, reg);
INVERT_BIT(reg);
break;
case SLJIT_C_FLOAT_EQUAL:
GET_CR_BIT(4 + 2, reg);
break;
case SLJIT_C_FLOAT_NOT_EQUAL:
GET_CR_BIT(4 + 2, reg);
INVERT_BIT(reg);
break;
case SLJIT_C_FLOAT_NAN:
GET_CR_BIT(4 + 3, reg);
break;
case SLJIT_C_FLOAT_NOT_NAN:
GET_CR_BIT(4 + 3, reg);
INVERT_BIT(reg);
break;
default:
SLJIT_ASSERT_STOP();
break;
}
if (GET_OPCODE(op) == SLJIT_OR)
return emit_op(compiler, GET_OPCODE(op), GET_FLAGS(op) ? ALT_SET_FLAGS : 0, dst, dstw, dst, dstw, TMP_REG2, 0);
if (reg == TMP_REG2)
return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, int dst, sljit_w dstw, sljit_w init_value)
{
struct sljit_const *const_;
int reg;
CHECK_ERROR_PTR();
check_sljit_emit_const(compiler, dst, dstw, init_value);
const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
PTR_FAIL_IF(!const_);
set_const(const_, compiler);
reg = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REG2;
PTR_FAIL_IF(emit_const(compiler, reg, init_value));
if (dst & SLJIT_MEM)
PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
return const_;
}