blob: cc215a2b1df5afd8a61feba95ea6850c491f6fae [file] [log] [blame]
/*
* Stack-less Just-In-Time compiler
*
* Copyright 2009-2010 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name()
{
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
return "x86-32";
#else
return "x86-64";
#endif
}
/*
32b register indexes:
0 - EAX
1 - ECX
2 - EDX
3 - EBX
4 - none
5 - EBP
6 - ESI
7 - EDI
*/
/*
64b register indexes:
0 - RAX
1 - RCX
2 - RDX
3 - RBX
4 - none
5 - RBP
6 - RSI
7 - RDI
8 - R8 - From now on REX prefix is required
9 - R9
10 - R10
11 - R11
12 - R12
13 - R13
14 - R14
15 - R15
*/
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
/* Last register + 1. */
#define TMP_REGISTER (SLJIT_NO_REGISTERS + 1)
static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 2] = {
0, 0, 2, 1, 0, 0, 3, 6, 7, 0, 0, 4, 5
};
#define CHECK_EXTRA_REGS(p, w, do) \
if (p >= SLJIT_TEMPORARY_EREG1 && p <= SLJIT_TEMPORARY_EREG2) { \
w = compiler->temporaries_start + (p - SLJIT_TEMPORARY_EREG1) * sizeof(sljit_w); \
p = SLJIT_MEM1(SLJIT_LOCALS_REG); \
do; \
} \
else if (p >= SLJIT_GENERAL_EREG1 && p <= SLJIT_GENERAL_EREG2) { \
w = compiler->generals_start + (p - SLJIT_GENERAL_EREG1) * sizeof(sljit_w); \
p = SLJIT_MEM1(SLJIT_LOCALS_REG); \
do; \
}
#else /* SLJIT_CONFIG_X86_32 */
/* Last register + 1. */
#define TMP_REGISTER (SLJIT_NO_REGISTERS + 1)
#define TMP_REG2 (SLJIT_NO_REGISTERS + 2)
#define TMP_REG3 (SLJIT_NO_REGISTERS + 3)
/* Note: r12 & 0x7 == 0b100, which decoded as SIB byte present
Note: avoid to use r12 and r13 for memory addessing
therefore r12 is better for GENERAL_EREG than GENERAL_REG. */
#ifndef _WIN64
/* 1st passed in rdi, 2nd argument passed in rsi, 3rd in rdx. */
static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 4] = {
0, 0, 6, 1, 8, 11, 3, 15, 14, 13, 12, 4, 2, 7, 9
};
/* low-map. reg_map & 0x7. */
static SLJIT_CONST sljit_ub reg_lmap[SLJIT_NO_REGISTERS + 4] = {
0, 0, 6, 1, 0, 3, 3, 7, 6, 5, 4, 4, 2, 7, 1
};
#else
/* 1st passed in rcx, 2nd argument passed in rdx, 3rd in r8. */
static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 4] = {
0, 0, 2, 1, 11, 13, 3, 6, 7, 14, 12, 15, 10, 8, 9
};
/* low-map. reg_map & 0x7. */
static SLJIT_CONST sljit_ub reg_lmap[SLJIT_NO_REGISTERS + 4] = {
0, 0, 2, 1, 3, 5, 3, 6, 7, 6, 4, 7, 2, 0, 1
};
#endif
#define REX_W 0x48
#define REX_R 0x44
#define REX_X 0x42
#define REX_B 0x41
#define REX 0x40
typedef unsigned int sljit_uhw;
typedef int sljit_hw;
#define IS_HALFWORD(x) ((x) <= 0x7fffffffll && (x) >= -0x80000000ll)
#define NOT_HALFWORD(x) ((x) > 0x7fffffffll || (x) < -0x80000000ll)
#define CHECK_EXTRA_REGS(p, w, do)
#endif /* SLJIT_CONFIG_X86_32 */
#if (defined SLJIT_SSE2 && SLJIT_SSE2)
#define TMP_FREG (SLJIT_FLOAT_REG4 + 1)
#endif
/* Size flags for emit_x86_instruction: */
#define EX86_BIN_INS 0x0010
#define EX86_SHIFT_INS 0x0020
#define EX86_REX 0x0040
#define EX86_NO_REXW 0x0080
#define EX86_BYTE_ARG 0x0100
#define EX86_HALF_ARG 0x0200
#define EX86_PREF_66 0x0400
#if (defined SLJIT_SSE2 && SLJIT_SSE2)
#define EX86_PREF_F2 0x0800
#define EX86_SSE2 0x1000
#endif
#define INC_SIZE(s) (*buf++ = (s), compiler->size += (s))
#define INC_CSIZE(s) (*code++ = (s), compiler->size += (s))
#define PUSH_REG(r) (*buf++ = (0x50 + (r)))
#define POP_REG(r) (*buf++ = (0x58 + (r)))
#define RET() (*buf++ = (0xc3))
#define RETN(n) (*buf++ = (0xc2), *buf++ = n, *buf++ = 0)
/* r32, r/m32 */
#define MOV_RM(mod, reg, rm) (*buf++ = (0x8b), *buf++ = (mod) << 6 | (reg) << 3 | (rm))
static sljit_ub get_jump_code(int type)
{
switch (type) {
case SLJIT_C_EQUAL:
case SLJIT_C_FLOAT_EQUAL:
return 0x84;
case SLJIT_C_NOT_EQUAL:
case SLJIT_C_FLOAT_NOT_EQUAL:
return 0x85;
case SLJIT_C_LESS:
case SLJIT_C_FLOAT_LESS:
return 0x82;
case SLJIT_C_GREATER_EQUAL:
case SLJIT_C_FLOAT_GREATER_EQUAL:
return 0x83;
case SLJIT_C_GREATER:
case SLJIT_C_FLOAT_GREATER:
return 0x87;
case SLJIT_C_LESS_EQUAL:
case SLJIT_C_FLOAT_LESS_EQUAL:
return 0x86;
case SLJIT_C_SIG_LESS:
return 0x8c;
case SLJIT_C_SIG_GREATER_EQUAL:
return 0x8d;
case SLJIT_C_SIG_GREATER:
return 0x8f;
case SLJIT_C_SIG_LESS_EQUAL:
return 0x8e;
case SLJIT_C_OVERFLOW:
case SLJIT_C_MUL_OVERFLOW:
return 0x80;
case SLJIT_C_NOT_OVERFLOW:
case SLJIT_C_MUL_NOT_OVERFLOW:
return 0x81;
case SLJIT_C_FLOAT_NAN:
return 0x8a;
case SLJIT_C_FLOAT_NOT_NAN:
return 0x8b;
}
return 0;
}
static sljit_ub* generate_far_jump_code(struct sljit_jump *jump, sljit_ub *code_ptr, int type);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
static sljit_ub* generate_fixed_jump(sljit_ub *code_ptr, sljit_w addr, int type);
#endif
static sljit_ub* generate_near_jump_code(struct sljit_jump *jump, sljit_ub *code_ptr, sljit_ub *code, int type)
{
int short_jump;
sljit_uw label_addr;
if (jump->flags & JUMP_LABEL)
label_addr = (sljit_uw)(code + jump->u.label->size);
else
label_addr = jump->u.target;
short_jump = (sljit_w)(label_addr - (jump->addr + 2)) >= -128 && (sljit_w)(label_addr - (jump->addr + 2)) <= 127;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((sljit_w)(label_addr - (jump->addr + 1)) > 0x7fffffffll || (sljit_w)(label_addr - (jump->addr + 1)) < -0x80000000ll)
return generate_far_jump_code(jump, code_ptr, type);
#endif
if (type == SLJIT_JUMP) {
if (short_jump)
*code_ptr++ = 0xeb;
else
*code_ptr++ = 0xe9;
jump->addr++;
}
else if (type >= SLJIT_FAST_CALL) {
short_jump = 0;
*code_ptr++ = 0xe8;
jump->addr++;
}
else if (short_jump) {
*code_ptr++ = get_jump_code(type) - 0x10;
jump->addr++;
}
else {
*code_ptr++ = 0x0f;
*code_ptr++ = get_jump_code(type);
jump->addr += 2;
}
if (short_jump) {
jump->flags |= PATCH_MB;
code_ptr += sizeof(sljit_b);
} else {
jump->flags |= PATCH_MW;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
code_ptr += sizeof(sljit_w);
#else
code_ptr += sizeof(sljit_hw);
#endif
}
return code_ptr;
}
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
struct sljit_memory_fragment *buf;
sljit_ub *code;
sljit_ub *code_ptr;
sljit_ub *buf_ptr;
sljit_ub *buf_end;
sljit_ub len;
struct sljit_label *label;
struct sljit_jump *jump;
struct sljit_const *const_;
CHECK_ERROR_PTR();
check_sljit_generate_code(compiler);
reverse_buf(compiler);
/* Second code generation pass. */
code = (sljit_ub*)SLJIT_MALLOC_EXEC(compiler->size);
PTR_FAIL_WITH_EXEC_IF(code);
buf = compiler->buf;
code_ptr = code;
label = compiler->labels;
jump = compiler->jumps;
const_ = compiler->consts;
do {
buf_ptr = buf->memory;
buf_end = buf_ptr + buf->used_size;
do {
len = *buf_ptr++;
if (len > 0) {
/* The code is already generated. */
SLJIT_MEMMOVE(code_ptr, buf_ptr, len);
code_ptr += len;
buf_ptr += len;
}
else {
if (*buf_ptr >= 4) {
jump->addr = (sljit_uw)code_ptr;
if (!(jump->flags & SLJIT_REWRITABLE_JUMP))
code_ptr = generate_near_jump_code(jump, code_ptr, code, *buf_ptr - 4);
else
code_ptr = generate_far_jump_code(jump, code_ptr, *buf_ptr - 4);
jump = jump->next;
}
else if (*buf_ptr == 0) {
label->addr = (sljit_uw)code_ptr;
label->size = code_ptr - code;
label = label->next;
}
else if (*buf_ptr == 1) {
const_->addr = ((sljit_uw)code_ptr) - sizeof(sljit_w);
const_ = const_->next;
}
else {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
*code_ptr++ = (*buf_ptr == 2) ? 0xe8 /* call */ : 0xe9 /* jmp */;
buf_ptr++;
*(sljit_w*)code_ptr = *(sljit_w*)buf_ptr - ((sljit_w)code_ptr + sizeof(sljit_w));
code_ptr += sizeof(sljit_w);
buf_ptr += sizeof(sljit_w) - 1;
#else
code_ptr = generate_fixed_jump(code_ptr, *(sljit_w*)(buf_ptr + 1), *buf_ptr);
buf_ptr += sizeof(sljit_w);
#endif
}
buf_ptr++;
}
} while (buf_ptr < buf_end);
SLJIT_ASSERT(buf_ptr == buf_end);
buf = buf->next;
} while (buf);
SLJIT_ASSERT(!label);
SLJIT_ASSERT(!jump);
SLJIT_ASSERT(!const_);
jump = compiler->jumps;
while (jump) {
if (jump->flags & PATCH_MB) {
SLJIT_ASSERT((sljit_w)(jump->u.label->addr - (jump->addr + sizeof(sljit_b))) >= -128 && (sljit_w)(jump->u.label->addr - (jump->addr + sizeof(sljit_b))) <= 127);
*(sljit_ub*)jump->addr = (sljit_ub)(jump->u.label->addr - (jump->addr + sizeof(sljit_b)));
} else if (jump->flags & PATCH_MW) {
if (jump->flags & JUMP_LABEL) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
*(sljit_w*)jump->addr = (sljit_w)(jump->u.label->addr - (jump->addr + sizeof(sljit_w)));
#else
SLJIT_ASSERT((sljit_w)(jump->u.label->addr - (jump->addr + sizeof(sljit_hw))) >= -0x80000000ll && (sljit_w)(jump->u.label->addr - (jump->addr + sizeof(sljit_hw))) <= 0x7fffffffll);
*(sljit_hw*)jump->addr = (sljit_hw)(jump->u.label->addr - (jump->addr + sizeof(sljit_hw)));
#endif
}
else {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
*(sljit_w*)jump->addr = (sljit_w)(jump->u.target - (jump->addr + sizeof(sljit_w)));
#else
SLJIT_ASSERT((sljit_w)(jump->u.target - (jump->addr + sizeof(sljit_hw))) >= -0x80000000ll && (sljit_w)(jump->u.target - (jump->addr + sizeof(sljit_hw))) <= 0x7fffffffll);
*(sljit_hw*)jump->addr = (sljit_hw)(jump->u.target - (jump->addr + sizeof(sljit_hw)));
#endif
}
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
else if (jump->flags & PATCH_MD)
*(sljit_w*)jump->addr = jump->u.label->addr;
#endif
jump = jump->next;
}
/* Maybe we waste some space because of short jumps. */
SLJIT_ASSERT(code_ptr <= code + compiler->size);
compiler->error = SLJIT_ERR_COMPILED;
compiler->executable_size = compiler->size;
return (void*)code;
}
/* --------------------------------------------------------------------- */
/* Operators */
/* --------------------------------------------------------------------- */
static int emit_cum_binary(struct sljit_compiler *compiler,
sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm,
int dst, sljit_w dstw,
int src1, sljit_w src1w,
int src2, sljit_w src2w);
static int emit_non_cum_binary(struct sljit_compiler *compiler,
sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm,
int dst, sljit_w dstw,
int src1, sljit_w src1w,
int src2, sljit_w src2w);
static int emit_mov(struct sljit_compiler *compiler,
int dst, sljit_w dstw,
int src, sljit_w srcw);
static SLJIT_INLINE int emit_save_flags(struct sljit_compiler *compiler)
{
sljit_ub *buf;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
buf = (sljit_ub*)ensure_buf(compiler, 1 + 5);
FAIL_IF(!buf);
INC_SIZE(5);
*buf++ = 0x9c; /* pushfd */
#else
buf = (sljit_ub*)ensure_buf(compiler, 1 + 6);
FAIL_IF(!buf);
INC_SIZE(6);
*buf++ = 0x9c; /* pushfq */
*buf++ = 0x48;
#endif
*buf++ = 0x8d; /* lea esp/rsp, [esp/rsp + sizeof(sljit_w)] */
*buf++ = 0x64;
*buf++ = 0x24;
*buf++ = sizeof(sljit_w);
compiler->flags_saved = 1;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE int emit_restore_flags(struct sljit_compiler *compiler, int keep_flags)
{
sljit_ub *buf;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
buf = (sljit_ub*)ensure_buf(compiler, 1 + 5);
FAIL_IF(!buf);
INC_SIZE(5);
#else
buf = (sljit_ub*)ensure_buf(compiler, 1 + 6);
FAIL_IF(!buf);
INC_SIZE(6);
*buf++ = 0x48;
#endif
*buf++ = 0x8d; /* lea esp/rsp, [esp/rsp - sizeof(sljit_w)] */
*buf++ = 0x64;
*buf++ = 0x24;
*buf++ = (sljit_ub)-(int)sizeof(sljit_w);
*buf++ = 0x9d; /* popfd / popfq */
compiler->flags_saved = keep_flags;
return SLJIT_SUCCESS;
}
#ifdef _WIN32
#include <malloc.h>
static void SLJIT_CALL sljit_touch_stack(sljit_w local_size)
{
/* Workaround for calling _chkstk. */
alloca(local_size);
}
#endif
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
#include "sljitNativeX86_32.c"
#else
#include "sljitNativeX86_64.c"
#endif
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op0(struct sljit_compiler *compiler, int op)
{
sljit_ub *buf;
CHECK_ERROR();
check_sljit_emit_op0(compiler, op);
op = GET_OPCODE(op);
switch (op) {
case SLJIT_BREAKPOINT:
buf = (sljit_ub*)ensure_buf(compiler, 1 + 1);
FAIL_IF(!buf);
INC_SIZE(1);
*buf = 0xcc;
break;
case SLJIT_NOP:
buf = (sljit_ub*)ensure_buf(compiler, 1 + 1);
FAIL_IF(!buf);
INC_SIZE(1);
*buf = 0x90;
break;
}
return SLJIT_SUCCESS;
}
static int emit_mov(struct sljit_compiler *compiler,
int dst, sljit_w dstw,
int src, sljit_w srcw)
{
sljit_ub* code;
if (dst == SLJIT_UNUSED) {
/* No destination, doesn't need to setup flags. */
if (src & SLJIT_MEM) {
code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src, srcw);
FAIL_IF(!code);
*code = 0x8b;
}
return SLJIT_SUCCESS;
}
if (src >= SLJIT_TEMPORARY_REG1 && src <= TMP_REGISTER) {
code = emit_x86_instruction(compiler, 1, src, 0, dst, dstw);
FAIL_IF(!code);
*code = 0x89;
return SLJIT_SUCCESS;
}
if (src & SLJIT_IMM) {
if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
return emit_do_imm(compiler, 0xb8 + reg_map[dst], srcw);
#else
if (!compiler->mode32) {
if (NOT_HALFWORD(srcw))
return emit_load_imm64(compiler, dst, srcw);
}
else
return emit_do_imm32(compiler, (reg_map[dst] >= 8) ? REX_B : 0, 0xb8 + reg_lmap[dst], srcw);
#endif
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (!compiler->mode32 && NOT_HALFWORD(srcw)) {
FAIL_IF(emit_load_imm64(compiler, TMP_REG2, srcw));
code = emit_x86_instruction(compiler, 1, TMP_REG2, 0, dst, dstw);
FAIL_IF(!code);
*code = 0x89;
return SLJIT_SUCCESS;
}
#endif
code = emit_x86_instruction(compiler, 1, SLJIT_IMM, srcw, dst, dstw);
FAIL_IF(!code);
*code = 0xc7;
return SLJIT_SUCCESS;
}
if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) {
code = emit_x86_instruction(compiler, 1, dst, 0, src, srcw);
FAIL_IF(!code);
*code = 0x8b;
return SLJIT_SUCCESS;
}
/* Memory to memory move. Requires two instruction. */
code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src, srcw);
FAIL_IF(!code);
*code = 0x8b;
code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, dst, dstw);
FAIL_IF(!code);
*code = 0x89;
return SLJIT_SUCCESS;
}
#define EMIT_MOV(compiler, dst, dstw, src, srcw) \
FAIL_IF(emit_mov(compiler, dst, dstw, src, srcw));
#define ENCODE_PREFIX(prefix) \
do { \
code = (sljit_ub*)ensure_buf(compiler, 1 + 1); \
FAIL_IF(!code); \
INC_CSIZE(1); \
*code = (prefix); \
} while (0)
static int emit_mov_byte(struct sljit_compiler *compiler, int sign,
int dst, sljit_w dstw,
int src, sljit_w srcw)
{
sljit_ub* code;
int dst_r;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
int work_r;
#endif
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
#endif
if (dst == SLJIT_UNUSED && !(src & SLJIT_MEM))
return SLJIT_SUCCESS; /* Empty instruction. */
if (src & SLJIT_IMM) {
if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
return emit_do_imm(compiler, 0xb8 + reg_map[dst], srcw);
#else
return emit_load_imm64(compiler, dst, srcw);
#endif
}
code = emit_x86_instruction(compiler, 1 | EX86_BYTE_ARG | EX86_NO_REXW, SLJIT_IMM, srcw, dst, dstw);
FAIL_IF(!code);
*code = 0xc6;
return SLJIT_SUCCESS;
}
dst_r = (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) ? dst : TMP_REGISTER;
if ((dst & SLJIT_MEM) && src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (reg_map[src] >= 4) {
SLJIT_ASSERT(dst_r == TMP_REGISTER);
EMIT_MOV(compiler, TMP_REGISTER, 0, src, 0);
} else
dst_r = src;
#else
dst_r = src;
#endif
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
else if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS && reg_map[src] >= 4) {
/* src, dst are registers. */
SLJIT_ASSERT(dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER);
if (reg_map[dst] < 4) {
if (dst != src)
EMIT_MOV(compiler, dst, 0, src, 0);
code = emit_x86_instruction(compiler, 2, dst, 0, dst, 0);
FAIL_IF(!code);
*code++ = 0x0f;
*code = sign ? 0xbe : 0xb6;
}
else {
if (dst != src)
EMIT_MOV(compiler, dst, 0, src, 0);
if (sign) {
/* shl reg, 24 */
code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 24, dst, 0);
FAIL_IF(!code);
*code |= 0x4 << 3;
code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 24, dst, 0);
FAIL_IF(!code);
/* shr/sar reg, 24 */
*code |= 0x7 << 3;
}
else {
/* and dst, 0xff */
code = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, 255, dst, 0);
FAIL_IF(!code);
*(code + 1) |= 0x4 << 3;
}
}
return SLJIT_SUCCESS;
}
#endif
else {
/* src can be memory addr or reg_map[src] < 4 on x86_32 architectures. */
code = emit_x86_instruction(compiler, 2, dst_r, 0, src, srcw);
FAIL_IF(!code);
*code++ = 0x0f;
*code = sign ? 0xbe : 0xb6;
}
if (dst & SLJIT_MEM) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (dst_r == TMP_REGISTER) {
/* Find a non-used register, whose reg_map[src] < 4. */
if ((dst & 0xf) == SLJIT_TEMPORARY_REG1) {
if ((dst & 0xf0) == (SLJIT_TEMPORARY_REG2 << 4))
work_r = SLJIT_TEMPORARY_REG3;
else
work_r = SLJIT_TEMPORARY_REG2;
}
else {
if ((dst & 0xf0) != (SLJIT_TEMPORARY_REG1 << 4))
work_r = SLJIT_TEMPORARY_REG1;
else if ((dst & 0xf) == SLJIT_TEMPORARY_REG2)
work_r = SLJIT_TEMPORARY_REG3;
else
work_r = SLJIT_TEMPORARY_REG2;
}
if (work_r == SLJIT_TEMPORARY_REG1) {
ENCODE_PREFIX(0x90 + reg_map[TMP_REGISTER]);
}
else {
code = emit_x86_instruction(compiler, 1, work_r, 0, dst_r, 0);
FAIL_IF(!code);
*code = 0x87;
}
code = emit_x86_instruction(compiler, 1, work_r, 0, dst, dstw);
FAIL_IF(!code);
*code = 0x88;
if (work_r == SLJIT_TEMPORARY_REG1) {
ENCODE_PREFIX(0x90 + reg_map[TMP_REGISTER]);
}
else {
code = emit_x86_instruction(compiler, 1, work_r, 0, dst_r, 0);
FAIL_IF(!code);
*code = 0x87;
}
}
else {
code = emit_x86_instruction(compiler, 1, dst_r, 0, dst, dstw);
FAIL_IF(!code);
*code = 0x88;
}
#else
code = emit_x86_instruction(compiler, 1 | EX86_REX | EX86_NO_REXW, dst_r, 0, dst, dstw);
FAIL_IF(!code);
*code = 0x88;
#endif
}
return SLJIT_SUCCESS;
}
static int emit_mov_half(struct sljit_compiler *compiler, int sign,
int dst, sljit_w dstw,
int src, sljit_w srcw)
{
sljit_ub* code;
int dst_r;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
#endif
if (dst == SLJIT_UNUSED && !(src & SLJIT_MEM))
return SLJIT_SUCCESS; /* Empty instruction. */
if (src & SLJIT_IMM) {
if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
return emit_do_imm(compiler, 0xb8 + reg_map[dst], srcw);
#else
return emit_load_imm64(compiler, dst, srcw);
#endif
}
code = emit_x86_instruction(compiler, 1 | EX86_HALF_ARG | EX86_NO_REXW | EX86_PREF_66, SLJIT_IMM, srcw, dst, dstw);
FAIL_IF(!code);
*code = 0xc7;
return SLJIT_SUCCESS;
}
dst_r = (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) ? dst : TMP_REGISTER;
if ((dst & SLJIT_MEM) && (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS))
dst_r = src;
else {
code = emit_x86_instruction(compiler, 2, dst_r, 0, src, srcw);
FAIL_IF(!code);
*code++ = 0x0f;
*code = sign ? 0xbf : 0xb7;
}
if (dst & SLJIT_MEM) {
code = emit_x86_instruction(compiler, 1 | EX86_NO_REXW | EX86_PREF_66, dst_r, 0, dst, dstw);
FAIL_IF(!code);
*code = 0x89;
}
return SLJIT_SUCCESS;
}
static int emit_unary(struct sljit_compiler *compiler, int un_index,
int dst, sljit_w dstw,
int src, sljit_w srcw)
{
sljit_ub* code;
if (dst == SLJIT_UNUSED) {
EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw);
code = emit_x86_instruction(compiler, 1, 0, 0, TMP_REGISTER, 0);
FAIL_IF(!code);
*code++ = 0xf7;
*code |= (un_index) << 3;
return SLJIT_SUCCESS;
}
if (dst == src && dstw == srcw) {
/* Same input and output */
code = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw);
FAIL_IF(!code);
*code++ = 0xf7;
*code |= (un_index) << 3;
return SLJIT_SUCCESS;
}
if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) {
EMIT_MOV(compiler, dst, 0, src, srcw);
code = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw);
FAIL_IF(!code);
*code++ = 0xf7;
*code |= (un_index) << 3;
return SLJIT_SUCCESS;
}
EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw);
code = emit_x86_instruction(compiler, 1, 0, 0, TMP_REGISTER, 0);
FAIL_IF(!code);
*code++ = 0xf7;
*code |= (un_index) << 3;
EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0);
return SLJIT_SUCCESS;
}
static int emit_not_with_flags(struct sljit_compiler *compiler,
int dst, sljit_w dstw,
int src, sljit_w srcw)
{
sljit_ub* code;
if (dst == SLJIT_UNUSED) {
EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw);
code = emit_x86_instruction(compiler, 1, 0, 0, TMP_REGISTER, 0);
FAIL_IF(!code);
*code++ = 0xf7;
*code |= 0x2 << 3;
code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, TMP_REGISTER, 0);
FAIL_IF(!code);
*code = 0x0b;
return SLJIT_SUCCESS;
}
if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) {
EMIT_MOV(compiler, dst, 0, src, srcw);
code = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw);
FAIL_IF(!code);
*code++ = 0xf7;
*code |= 0x2 << 3;
code = emit_x86_instruction(compiler, 1, dst, 0, dst, 0);
FAIL_IF(!code);
*code = 0x0b;
return SLJIT_SUCCESS;
}
EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw);
code = emit_x86_instruction(compiler, 1, 0, 0, TMP_REGISTER, 0);
FAIL_IF(!code);
*code++ = 0xf7;
*code |= 0x2 << 3;
code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, TMP_REGISTER, 0);
FAIL_IF(!code);
*code = 0x0b;
EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0);
return SLJIT_SUCCESS;
}
static int emit_clz(struct sljit_compiler *compiler, int op,
int dst, sljit_w dstw,
int src, sljit_w srcw)
{
sljit_ub* code;
int dst_r;
if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
/* Just set the zero flag. */
EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw);
code = emit_x86_instruction(compiler, 1, 0, 0, TMP_REGISTER, 0);
FAIL_IF(!code);
*code++ = 0xf7;
*code |= 0x2 << 3;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 31, TMP_REGISTER, 0);
#else
code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, !(op & SLJIT_INT_OP) ? 63 : 31, TMP_REGISTER, 0);
#endif
FAIL_IF(!code);
*code |= 0x5 << 3;
return SLJIT_SUCCESS;
}
if (SLJIT_UNLIKELY(src & SLJIT_IMM)) {
EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw);
src = TMP_REGISTER;
srcw = 0;
}
code = emit_x86_instruction(compiler, 2, TMP_REGISTER, 0, src, srcw);
FAIL_IF(!code);
*code++ = 0x0f;
*code = 0xbd;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER)
dst_r = dst;
else {
/* Find an unused temporary register. */
if ((dst & 0xf) != SLJIT_TEMPORARY_REG1 && (dst & 0xf0) != (SLJIT_TEMPORARY_REG1 << 4))
dst_r = SLJIT_TEMPORARY_REG1;
else if ((dst & 0xf) != SLJIT_TEMPORARY_REG2 && (dst & 0xf0) != (SLJIT_TEMPORARY_REG2 << 4))
dst_r = SLJIT_TEMPORARY_REG2;
else
dst_r = SLJIT_TEMPORARY_REG3;
EMIT_MOV(compiler, dst, dstw, dst_r, 0);
}
EMIT_MOV(compiler, dst_r, 0, SLJIT_IMM, 32 + 31);
#else
dst_r = (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REGISTER) ? dst : TMP_REG2;
compiler->mode32 = 0;
EMIT_MOV(compiler, dst_r, 0, SLJIT_IMM, !(op & SLJIT_INT_OP) ? 64 + 63 : 32 + 31);
compiler->mode32 = op & SLJIT_INT_OP;
#endif
code = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REGISTER, 0);
FAIL_IF(!code);
*code++ = 0x0f;
*code = 0x45;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
code = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, 31, dst_r, 0);
#else
code = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, !(op & SLJIT_INT_OP) ? 63 : 31, dst_r, 0);
#endif
FAIL_IF(!code);
*(code + 1) |= 0x6 << 3;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (dst & SLJIT_MEM) {
code = emit_x86_instruction(compiler, 1, dst_r, 0, dst, dstw);
FAIL_IF(!code);
*code = 0x87;
}
#else
if (dst & SLJIT_MEM)
EMIT_MOV(compiler, dst, dstw, TMP_REG2, 0);
#endif
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op1(struct sljit_compiler *compiler, int op,
int dst, sljit_w dstw,
int src, sljit_w srcw)
{
sljit_ub* code;
int update = 0;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
int dst_is_ereg = 0;
int src_is_ereg = 0;
#else
#define src_is_ereg 0
#endif
CHECK_ERROR();
check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = op & SLJIT_INT_OP;
#endif
CHECK_EXTRA_REGS(dst, dstw, dst_is_ereg = 1);
CHECK_EXTRA_REGS(src, srcw, src_is_ereg = 1);
if (GET_OPCODE(op) >= SLJIT_MOV && GET_OPCODE(op) <= SLJIT_MOVU_SI) {
op = GET_OPCODE(op);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
#endif
SLJIT_COMPILE_ASSERT(SLJIT_MOV + 7 == SLJIT_MOVU, movu_offset);
if (op >= SLJIT_MOVU) {
update = 1;
op -= 7;
}
if (src & SLJIT_IMM) {
switch (op) {
case SLJIT_MOV_UB:
srcw = (unsigned char)srcw;
break;
case SLJIT_MOV_SB:
srcw = (signed char)srcw;
break;
case SLJIT_MOV_UH:
srcw = (unsigned short)srcw;
break;
case SLJIT_MOV_SH:
srcw = (signed short)srcw;
break;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
case SLJIT_MOV_UI:
srcw = (unsigned int)srcw;
break;
case SLJIT_MOV_SI:
srcw = (signed int)srcw;
break;
#endif
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (SLJIT_UNLIKELY(dst_is_ereg))
return emit_mov(compiler, dst, dstw, src, srcw);
#endif
}
if (SLJIT_UNLIKELY(update) && (src & SLJIT_MEM) && !src_is_ereg && (src & 0xf) && (srcw != 0 || (src & 0xf0) != 0)) {
code = emit_x86_instruction(compiler, 1, src & 0xf, 0, src, srcw);
FAIL_IF(!code);
*code = 0x8d;
src &= SLJIT_MEM | 0xf;
srcw = 0;
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (SLJIT_UNLIKELY(dst_is_ereg) && (!(op == SLJIT_MOV || op == SLJIT_MOV_UI || op == SLJIT_MOV_SI) || (src & SLJIT_MEM))) {
SLJIT_ASSERT(dst == SLJIT_MEM1(SLJIT_LOCALS_REG));
dst = TMP_REGISTER;
}
#endif
switch (op) {
case SLJIT_MOV:
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
case SLJIT_MOV_UI:
case SLJIT_MOV_SI:
#endif
FAIL_IF(emit_mov(compiler, dst, dstw, src, srcw));
break;
case SLJIT_MOV_UB:
FAIL_IF(emit_mov_byte(compiler, 0, dst, dstw, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw));
break;
case SLJIT_MOV_SB:
FAIL_IF(emit_mov_byte(compiler, 1, dst, dstw, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw));
break;
case SLJIT_MOV_UH:
FAIL_IF(emit_mov_half(compiler, 0, dst, dstw, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw));
break;
case SLJIT_MOV_SH:
FAIL_IF(emit_mov_half(compiler, 1, dst, dstw, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw));
break;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
case SLJIT_MOV_UI:
FAIL_IF(emit_mov_int(compiler, 0, dst, dstw, src, (src & SLJIT_IMM) ? (unsigned int)srcw : srcw));
break;
case SLJIT_MOV_SI:
FAIL_IF(emit_mov_int(compiler, 1, dst, dstw, src, (src & SLJIT_IMM) ? (signed int)srcw : srcw));
break;
#endif
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (SLJIT_UNLIKELY(dst_is_ereg) && dst == TMP_REGISTER)
return emit_mov(compiler, SLJIT_MEM1(SLJIT_LOCALS_REG), dstw, TMP_REGISTER, 0);
#endif
if (SLJIT_UNLIKELY(update) && (dst & SLJIT_MEM) && (dst & 0xf) && (dstw != 0 || (dst & 0xf0) != 0)) {
code = emit_x86_instruction(compiler, 1, dst & 0xf, 0, dst, dstw);
FAIL_IF(!code);
*code = 0x8d;
}
return SLJIT_SUCCESS;
}
if (SLJIT_UNLIKELY(GET_FLAGS(op)))
compiler->flags_saved = 0;
switch (GET_OPCODE(op)) {
case SLJIT_NOT:
if (SLJIT_UNLIKELY(op & SLJIT_SET_E))
return emit_not_with_flags(compiler, dst, dstw, src, srcw);
return emit_unary(compiler, 0x2, dst, dstw, src, srcw);
case SLJIT_NEG:
if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved)
FAIL_IF(emit_save_flags(compiler));
return emit_unary(compiler, 0x3, dst, dstw, src, srcw);
case SLJIT_CLZ:
if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved)
FAIL_IF(emit_save_flags(compiler));
return emit_clz(compiler, op, dst, dstw, src, srcw);
}
return SLJIT_SUCCESS;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
#undef src_is_ereg
#endif
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
#define BINARY_IMM(_op_imm_, _op_mr_, immw, arg, argw) \
if (IS_HALFWORD(immw) || compiler->mode32) { \
code = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, immw, arg, argw); \
FAIL_IF(!code); \
*(code + 1) |= (_op_imm_); \
} \
else { \
FAIL_IF(emit_load_imm64(compiler, TMP_REG2, immw)); \
code = emit_x86_instruction(compiler, 1, TMP_REG2, 0, arg, argw); \
FAIL_IF(!code); \
*code = (_op_mr_); \
}
#define BINARY_EAX_IMM(_op_eax_imm_, immw) \
FAIL_IF(emit_do_imm32(compiler, (!compiler->mode32) ? REX_W : 0, (_op_eax_imm_), immw))
#else
#define BINARY_IMM(_op_imm_, _op_mr_, immw, arg, argw) \
code = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, immw, arg, argw); \
FAIL_IF(!code); \
*(code + 1) |= (_op_imm_);
#define BINARY_EAX_IMM(_op_eax_imm_, immw) \
FAIL_IF(emit_do_imm(compiler, (_op_eax_imm_), immw))
#endif
static int emit_cum_binary(struct sljit_compiler *compiler,
sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm,
int dst, sljit_w dstw,
int src1, sljit_w src1w,
int src2, sljit_w src2w)
{
sljit_ub* code;
if (dst == SLJIT_UNUSED) {
EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w);
if (src2 & SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, TMP_REGISTER, 0);
}
else {
code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w);
FAIL_IF(!code);
*code = op_rm;
}
return SLJIT_SUCCESS;
}
if (dst == src1 && dstw == src1w) {
if (src2 & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((dst == SLJIT_TEMPORARY_REG1) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) {
#else
if ((dst == SLJIT_TEMPORARY_REG1) && (src2w > 127 || src2w < -128)) {
#endif
BINARY_EAX_IMM(op_eax_imm, src2w);
}
else {
BINARY_IMM(op_imm, op_mr, src2w, dst, dstw);
}
}
else if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) {
code = emit_x86_instruction(compiler, 1, dst, dstw, src2, src2w);
FAIL_IF(!code);
*code = op_rm;
}
else if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= TMP_REGISTER) {
/* Special exception for sljit_emit_cond_value. */
code = emit_x86_instruction(compiler, 1, src2, src2w, dst, dstw);
FAIL_IF(!code);
*code = op_mr;
}
else {
EMIT_MOV(compiler, TMP_REGISTER, 0, src2, src2w);
code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, dst, dstw);
FAIL_IF(!code);
*code = op_mr;
}
return SLJIT_SUCCESS;
}
/* Only for cumulative operations. */
if (dst == src2 && dstw == src2w) {
if (src1 & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((dst == SLJIT_TEMPORARY_REG1) && (src1w > 127 || src1w < -128) && (compiler->mode32 || IS_HALFWORD(src1w))) {
#else
if ((dst == SLJIT_TEMPORARY_REG1) && (src1w > 127 || src1w < -128)) {
#endif
BINARY_EAX_IMM(op_eax_imm, src1w);
}
else {
BINARY_IMM(op_imm, op_mr, src1w, dst, dstw);
}
}
else if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) {
code = emit_x86_instruction(compiler, 1, dst, dstw, src1, src1w);
FAIL_IF(!code);
*code = op_rm;
}
else if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= SLJIT_NO_REGISTERS) {
code = emit_x86_instruction(compiler, 1, src1, src1w, dst, dstw);
FAIL_IF(!code);
*code = op_mr;
}
else {
EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w);
code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, dst, dstw);
FAIL_IF(!code);
*code = op_mr;
}
return SLJIT_SUCCESS;
}
/* General version. */
if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) {
EMIT_MOV(compiler, dst, 0, src1, src1w);
if (src2 & SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, dst, 0);
}
else {
code = emit_x86_instruction(compiler, 1, dst, 0, src2, src2w);
FAIL_IF(!code);
*code = op_rm;
}
}
else {
/* This version requires less memory writing. */
EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w);
if (src2 & SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, TMP_REGISTER, 0);
}
else {
code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w);
FAIL_IF(!code);
*code = op_rm;
}
EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0);
}
return SLJIT_SUCCESS;
}
static int emit_non_cum_binary(struct sljit_compiler *compiler,
sljit_ub op_rm, sljit_ub op_mr, sljit_ub op_imm, sljit_ub op_eax_imm,
int dst, sljit_w dstw,
int src1, sljit_w src1w,
int src2, sljit_w src2w)
{
sljit_ub* code;
if (dst == SLJIT_UNUSED) {
EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w);
if (src2 & SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, TMP_REGISTER, 0);
}
else {
code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w);
FAIL_IF(!code);
*code = op_rm;
}
return SLJIT_SUCCESS;
}
if (dst == src1 && dstw == src1w) {
if (src2 & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((dst == SLJIT_TEMPORARY_REG1) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) {
#else
if ((dst == SLJIT_TEMPORARY_REG1) && (src2w > 127 || src2w < -128)) {
#endif
BINARY_EAX_IMM(op_eax_imm, src2w);
}
else {
BINARY_IMM(op_imm, op_mr, src2w, dst, dstw);
}
}
else if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) {
code = emit_x86_instruction(compiler, 1, dst, dstw, src2, src2w);
FAIL_IF(!code);
*code = op_rm;
}
else if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= SLJIT_NO_REGISTERS) {
code = emit_x86_instruction(compiler, 1, src2, src2w, dst, dstw);
FAIL_IF(!code);
*code = op_mr;
}
else {
EMIT_MOV(compiler, TMP_REGISTER, 0, src2, src2w);
code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, dst, dstw);
FAIL_IF(!code);
*code = op_mr;
}
return SLJIT_SUCCESS;
}
/* General version. */
if ((dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) && dst != src2) {
EMIT_MOV(compiler, dst, 0, src1, src1w);
if (src2 & SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, dst, 0);
}
else {
code = emit_x86_instruction(compiler, 1, dst, 0, src2, src2w);
FAIL_IF(!code);
*code = op_rm;
}
}
else {
/* This version requires less memory writing. */
EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w);
if (src2 & SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, TMP_REGISTER, 0);
}
else {
code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w);
FAIL_IF(!code);
*code = op_rm;
}
EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0);
}
return SLJIT_SUCCESS;
}
static int emit_mul(struct sljit_compiler *compiler,
int dst, sljit_w dstw,
int src1, sljit_w src1w,
int src2, sljit_w src2w)
{
sljit_ub* code;
int dst_r;
dst_r = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REGISTER;
/* Register destination. */
if (dst_r == src1 && !(src2 & SLJIT_IMM)) {
code = emit_x86_instruction(compiler, 2, dst_r, 0, src2, src2w);
FAIL_IF(!code);
*code++ = 0x0f;
*code = 0xaf;
}
else if (dst_r == src2 && !(src1 & SLJIT_IMM)) {
code = emit_x86_instruction(compiler, 2, dst_r, 0, src1, src1w);
FAIL_IF(!code);
*code++ = 0x0f;
*code = 0xaf;
}
else if (src1 & SLJIT_IMM) {
if (src2 & SLJIT_IMM) {
EMIT_MOV(compiler, dst_r, 0, SLJIT_IMM, src2w);
src2 = dst_r;
src2w = 0;
}
if (src1w <= 127 && src1w >= -128) {
code = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w);
FAIL_IF(!code);
*code = 0x6b;
code = (sljit_ub*)ensure_buf(compiler, 1 + 1);
FAIL_IF(!code);
INC_CSIZE(1);
*code = (sljit_b)src1w;
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
else {
code = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w);
FAIL_IF(!code);
*code = 0x69;
code = (sljit_ub*)ensure_buf(compiler, 1 + 4);
FAIL_IF(!code);
INC_CSIZE(4);
*(sljit_w*)code = src1w;
}
#else
else if (IS_HALFWORD(src1w)) {
code = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w);
FAIL_IF(!code);
*code = 0x69;
code = (sljit_ub*)ensure_buf(compiler, 1 + 4);
FAIL_IF(!code);
INC_CSIZE(4);
*(sljit_hw*)code = (sljit_hw)src1w;
}
else {
EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_IMM, src1w);
if (dst_r != src2)
EMIT_MOV(compiler, dst_r, 0, src2, src2w);
code = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG2, 0);
FAIL_IF(!code);
*code++ = 0x0f;
*code = 0xaf;
}
#endif
}
else if (src2 & SLJIT_IMM) {
/* Note: src1 is NOT immediate. */
if (src2w <= 127 && src2w >= -128) {
code = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w);
FAIL_IF(!code);
*code = 0x6b;
code = (sljit_ub*)ensure_buf(compiler, 1 + 1);
FAIL_IF(!code);
INC_CSIZE(1);
*code = (sljit_b)src2w;
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
else {
code = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w);
FAIL_IF(!code);
*code = 0x69;
code = (sljit_ub*)ensure_buf(compiler, 1 + 4);
FAIL_IF(!code);
INC_CSIZE(4);
*(sljit_w*)code = src2w;
}
#else
else if (IS_HALFWORD(src2w)) {
code = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w);
FAIL_IF(!code);
*code = 0x69;
code = (sljit_ub*)ensure_buf(compiler, 1 + 4);
FAIL_IF(!code);
INC_CSIZE(4);
*(sljit_hw*)code = (sljit_hw)src2w;
}
else {
EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_IMM, src1w);
if (dst_r != src1)
EMIT_MOV(compiler, dst_r, 0, src1, src1w);
code = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG2, 0);
FAIL_IF(!code);
*code++ = 0x0f;
*code = 0xaf;
}
#endif
}
else {
/* Neither argument is immediate. */
if (ADDRESSING_DEPENDS_ON(src2, dst_r))
dst_r = TMP_REGISTER;
EMIT_MOV(compiler, dst_r, 0, src1, src1w);
code = emit_x86_instruction(compiler, 2, dst_r, 0, src2, src2w);
FAIL_IF(!code);
*code++ = 0x0f;
*code = 0xaf;
}
if (dst_r == TMP_REGISTER)
EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0);
return SLJIT_SUCCESS;
}
static int emit_lea_binary(struct sljit_compiler *compiler,
int dst, sljit_w dstw,
int src1, sljit_w src1w,
int src2, sljit_w src2w)
{
sljit_ub* code;
int dst_r, done = 0;
/* These cases better be left to handled by normal way. */
if (dst == src1 && dstw == src1w)
return SLJIT_ERR_UNSUPPORTED;
if (dst == src2 && dstw == src2w)
return SLJIT_ERR_UNSUPPORTED;
dst_r = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REGISTER;
if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= SLJIT_NO_REGISTERS) {
if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= SLJIT_NO_REGISTERS) {
/* It is not possible to be both SLJIT_LOCALS_REG. */
if (src1 != SLJIT_LOCALS_REG || src2 != SLJIT_LOCALS_REG) {
code = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM2(src1, src2), 0);
FAIL_IF(!code);
*code = 0x8d;
done = 1;
}
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((src2 & SLJIT_IMM) && (compiler->mode32 || IS_HALFWORD(src2w))) {
code = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src1), (int)src2w);
#else
if (src2 & SLJIT_IMM) {
code = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src1), src2w);
#endif
FAIL_IF(!code);
*code = 0x8d;
done = 1;
}
}
else if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= SLJIT_NO_REGISTERS) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((src1 & SLJIT_IMM) && (compiler->mode32 || IS_HALFWORD(src1w))) {
code = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src2), (int)src1w);
#else
if (src1 & SLJIT_IMM) {
code = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src2), src1w);
#endif
FAIL_IF(!code);
*code = 0x8d;
done = 1;
}
}
if (done) {
if (dst_r == TMP_REGISTER)
return emit_mov(compiler, dst, dstw, TMP_REGISTER, 0);
return SLJIT_SUCCESS;
}
return SLJIT_ERR_UNSUPPORTED;
}
static int emit_cmp_binary(struct sljit_compiler *compiler,
int src1, sljit_w src1w,
int src2, sljit_w src2w)
{
sljit_ub* code;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (src1 == SLJIT_TEMPORARY_REG1 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) {
#else
if (src1 == SLJIT_TEMPORARY_REG1 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128)) {
#endif
BINARY_EAX_IMM(0x3d, src2w);
return SLJIT_SUCCESS;
}
if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= SLJIT_NO_REGISTERS) {
if (src2 & SLJIT_IMM) {
BINARY_IMM(0x7 << 3, 0x39, src2w, src1, 0);
}
else {
code = emit_x86_instruction(compiler, 1, src1, 0, src2, src2w);
FAIL_IF(!code);
*code = 0x3b;
}
return SLJIT_SUCCESS;
}
if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= SLJIT_NO_REGISTERS && !(src1 & SLJIT_IMM)) {
code = emit_x86_instruction(compiler, 1, src2, 0, src1, src1w);
FAIL_IF(!code);
*code = 0x39;
return SLJIT_SUCCESS;
}
if (src2 & SLJIT_IMM) {
if (src1 & SLJIT_IMM) {
EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w);
src1 = TMP_REGISTER;
src1w = 0;
}
BINARY_IMM(0x7 << 3, 0x39, src2w, src1, src1w);
}
else {
EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w);
code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w);
FAIL_IF(!code);
*code = 0x3b;
}
return SLJIT_SUCCESS;
}
static int emit_test_binary(struct sljit_compiler *compiler,
int src1, sljit_w src1w,
int src2, sljit_w src2w)
{
sljit_ub* code;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (src1 == SLJIT_TEMPORARY_REG1 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) {
#else
if (src1 == SLJIT_TEMPORARY_REG1 && (src2 & SLJIT_IMM) && (src2w > 127 || src2w < -128)) {
#endif
BINARY_EAX_IMM(0xa9, src2w);
return SLJIT_SUCCESS;
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (src2 == SLJIT_TEMPORARY_REG1 && (src2 & SLJIT_IMM) && (src1w > 127 || src1w < -128) && (compiler->mode32 || IS_HALFWORD(src1w))) {
#else
if (src2 == SLJIT_TEMPORARY_REG1 && (src1 & SLJIT_IMM) && (src1w > 127 || src1w < -128)) {
#endif
BINARY_EAX_IMM(0xa9, src1w);
return SLJIT_SUCCESS;
}
if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= SLJIT_NO_REGISTERS) {
if (src2 & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (IS_HALFWORD(src2w) || compiler->mode32) {
code = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, src1, 0);
FAIL_IF(!code);
*code = 0xf7;
}
else {
FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src2w));
code = emit_x86_instruction(compiler, 1, TMP_REG2, 0, src1, 0);
FAIL_IF(!code);
*code = 0x85;
}
#else
code = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, src1, 0);
FAIL_IF(!code);
*code = 0xf7;
#endif
}
else {
code = emit_x86_instruction(compiler, 1, src1, 0, src2, src2w);
FAIL_IF(!code);
*code = 0x85;
}
return SLJIT_SUCCESS;
}
if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= SLJIT_NO_REGISTERS) {
if (src1 & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (IS_HALFWORD(src1w) || compiler->mode32) {
code = emit_x86_instruction(compiler, 1, SLJIT_IMM, src1w, src2, 0);
FAIL_IF(!code);
*code = 0xf7;
}
else {
FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src1w));
code = emit_x86_instruction(compiler, 1, TMP_REG2, 0, src2, 0);
FAIL_IF(!code);
*code = 0x85;
}
#else
code = emit_x86_instruction(compiler, 1, src1, src1w, src2, 0);
FAIL_IF(!code);
*code = 0xf7;
#endif
}
else {
code = emit_x86_instruction(compiler, 1, src2, 0, src1, src1w);
FAIL_IF(!code);
*code = 0x85;
}
return SLJIT_SUCCESS;
}
EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w);
if (src2 & SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (IS_HALFWORD(src2w) || compiler->mode32) {
code = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, TMP_REGISTER, 0);
FAIL_IF(!code);
*code = 0xf7;
}
else {
FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src2w));
code = emit_x86_instruction(compiler, 1, TMP_REG2, 0, TMP_REGISTER, 0);
FAIL_IF(!code);
*code = 0x85;
}
#else
code = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, TMP_REGISTER, 0);
FAIL_IF(!code);
*code = 0xf7;
#endif
}
else {
code = emit_x86_instruction(compiler, 1, TMP_REGISTER, 0, src2, src2w);
FAIL_IF(!code);
*code = 0x85;
}
return SLJIT_SUCCESS;
}
static int emit_shift(struct sljit_compiler *compiler,
sljit_ub mode,
int dst, sljit_w dstw,
int src1, sljit_w src1w,
int src2, sljit_w src2w)
{
sljit_ub* code;
if ((src2 & SLJIT_IMM) || (src2 == SLJIT_PREF_SHIFT_REG)) {
if (dst == src1 && dstw == src1w) {
code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, dst, dstw);
FAIL_IF(!code);
*code |= mode;
return SLJIT_SUCCESS;
}
if (dst == SLJIT_UNUSED) {
EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w);
code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, TMP_REGISTER, 0);
FAIL_IF(!code);
*code |= mode;
return SLJIT_SUCCESS;
}
if (dst == SLJIT_PREF_SHIFT_REG && src2 == SLJIT_PREF_SHIFT_REG) {
EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w);
code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0);
FAIL_IF(!code);
*code |= mode;
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0);
return SLJIT_SUCCESS;
}
if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) {
EMIT_MOV(compiler, dst, 0, src1, src1w);
code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, dst, 0);
FAIL_IF(!code);
*code |= mode;
return SLJIT_SUCCESS;
}
EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w);
code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, TMP_REGISTER, 0);
FAIL_IF(!code);
*code |= mode;
EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0);
return SLJIT_SUCCESS;
}
if (dst == SLJIT_PREF_SHIFT_REG) {
EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w);
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w);
code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0);
FAIL_IF(!code);
*code |= mode;
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0);
}
else if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS && dst != src2 && !ADDRESSING_DEPENDS_ON(src2, dst)) {
if (src1 != dst)
EMIT_MOV(compiler, dst, 0, src1, src1w);
EMIT_MOV(compiler, TMP_REGISTER, 0, SLJIT_PREF_SHIFT_REG, 0);
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w);
code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, dst, 0);
FAIL_IF(!code);
*code |= mode;
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0);
}
else {
/* This case is really difficult, since ecx can be used for
addressing as well, and we must ensure to work even in that case. */
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_PREF_SHIFT_REG, 0);
#else
/* [esp - 4] is reserved for eflags. */
EMIT_MOV(compiler, SLJIT_MEM1(SLJIT_LOCALS_REG), -(int)(2 * sizeof(sljit_w)), SLJIT_PREF_SHIFT_REG, 0);
#endif
EMIT_MOV(compiler, TMP_REGISTER, 0, src1, src1w);
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w);
code = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REGISTER, 0);
FAIL_IF(!code);
*code |= mode;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG2, 0);
#else
/* [esp - 4] is reserved for eflags. */
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), -(int)(2 * sizeof(sljit_w)));
#endif
EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op2(struct sljit_compiler *compiler, int op,
int dst, sljit_w dstw,
int src1, sljit_w src1w,
int src2, sljit_w src2w)
{
CHECK_ERROR();
check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = op & SLJIT_INT_OP;
#endif
CHECK_EXTRA_REGS(dst, dstw, (void)0);
CHECK_EXTRA_REGS(src1, src1w, (void)0);
CHECK_EXTRA_REGS(src2, src2w, (void)0);
if (GET_OPCODE(op) >= SLJIT_MUL) {
if (SLJIT_UNLIKELY(GET_FLAGS(op)))
compiler->flags_saved = 0;
else if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved)
FAIL_IF(emit_save_flags(compiler));
}
switch (GET_OPCODE(op)) {
case SLJIT_ADD:
if (!GET_FLAGS(op)) {
if (emit_lea_binary(compiler, dst, dstw, src1, src1w, src2, src2w) != SLJIT_ERR_UNSUPPORTED)
return compiler->error;
}
else
compiler->flags_saved = 0;
if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved)
FAIL_IF(emit_save_flags(compiler));
return emit_cum_binary(compiler, 0x03, 0x01, 0x0 << 3, 0x05,
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_ADDC:
if (SLJIT_UNLIKELY(compiler->flags_saved)) /* C flag must be restored. */
FAIL_IF(emit_restore_flags(compiler, 1));
else if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS))
FAIL_IF(emit_save_flags(compiler));
if (SLJIT_UNLIKELY(GET_FLAGS(op)))
compiler->flags_saved = 0;
return emit_cum_binary(compiler, 0x13, 0x11, 0x2 << 3, 0x15,
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SUB:
if (!GET_FLAGS(op)) {
if ((src2 & SLJIT_IMM) && emit_lea_binary(compiler, dst, dstw, src1, src1w, SLJIT_IMM, -src2w) != SLJIT_ERR_UNSUPPORTED)
return compiler->error;
}
else
compiler->flags_saved = 0;
if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS) && !compiler->flags_saved)
FAIL_IF(emit_save_flags(compiler));
if (dst == SLJIT_UNUSED)
return emit_cmp_binary(compiler, src1, src1w, src2, src2w);
return emit_non_cum_binary(compiler, 0x2b, 0x29, 0x5 << 3, 0x2d,
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SUBC:
if (SLJIT_UNLIKELY(compiler->flags_saved)) /* C flag must be restored. */
FAIL_IF(emit_restore_flags(compiler, 1));
else if (SLJIT_UNLIKELY(op & SLJIT_KEEP_FLAGS))
FAIL_IF(emit_save_flags(compiler));
if (SLJIT_UNLIKELY(GET_FLAGS(op)))
compiler->flags_saved = 0;
return emit_non_cum_binary(compiler, 0x1b, 0x19, 0x3 << 3, 0x1d,
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_MUL:
return emit_mul(compiler, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_AND:
if (dst == SLJIT_UNUSED)
return emit_test_binary(compiler, src1, src1w, src2, src2w);
return emit_cum_binary(compiler, 0x23, 0x21, 0x4 << 3, 0x25,
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_OR:
return emit_cum_binary(compiler, 0x0b, 0x09, 0x1 << 3, 0x0d,
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_XOR:
return emit_cum_binary(compiler, 0x33, 0x31, 0x6 << 3, 0x35,
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SHL:
return emit_shift(compiler, 0x4 << 3,
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_LSHR:
return emit_shift(compiler, 0x5 << 3,
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_ASHR:
return emit_shift(compiler, 0x7 << 3,
dst, dstw, src1, src1w, src2, src2w);
}
return SLJIT_SUCCESS;
}
/* --------------------------------------------------------------------- */
/* Floating point operators */
/* --------------------------------------------------------------------- */
#if (defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO)
static int sse2_available = 0;
#endif
#if (defined SLJIT_SSE2 && SLJIT_SSE2)
/* Alignment + 2 * 16 bytes. */
static sljit_i sse2_data[3 + 4 + 4];
static sljit_i *sse2_buffer;
static void init_compiler()
{
#if (defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO)
int features = 0;
#endif
sse2_buffer = (sljit_i*)(((sljit_uw)sse2_data + 15) & ~0xf);
sse2_buffer[0] = 0;
sse2_buffer[1] = 0x80000000;
sse2_buffer[4] = 0xffffffff;
sse2_buffer[5] = 0x7fffffff;
#if (defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO)
#ifdef __GNUC__
/* AT&T syntax. */
asm (
"pushl %%ebx\n"
"movl $0x1, %%eax\n"
"cpuid\n"
"popl %%ebx\n"
"movl %%edx, %0\n"
: "=g" (features)
:
: "%eax", "%ecx", "%edx"
);
#elif defined(_MSC_VER) || defined(__BORLANDC__)
/* Intel syntax. */
__asm {
mov eax, 1
push ebx
cpuid
pop ebx
mov features, edx
}
#else
#error "SLJIT_SSE2_AUTO is not implemented for this C compiler"
#endif
sse2_available = (features >> 26) & 0x1;
#endif
}
#endif
SLJIT_API_FUNC_ATTRIBUTE int sljit_is_fpu_available(void)
{
/* Always available. */
return 1;
}
#if (defined SLJIT_SSE2 && SLJIT_SSE2)
static int emit_sse2(struct sljit_compiler *compiler, sljit_ub opcode,
int xmm1, int xmm2, sljit_w xmm2w)
{
sljit_ub *buf;
buf = emit_x86_instruction(compiler, 2 | EX86_PREF_F2 | EX86_SSE2, xmm1, 0, xmm2, xmm2w);
FAIL_IF(!buf);
*buf++ = 0x0f;
*buf = opcode;
return SLJIT_SUCCESS;
}
static int emit_sse2_logic(struct sljit_compiler *compiler, sljit_ub opcode,
int xmm1, int xmm2, sljit_w xmm2w)
{
sljit_ub *buf;
buf = emit_x86_instruction(compiler, 2 | EX86_PREF_66 | EX86_SSE2, xmm1, 0, xmm2, xmm2w);
FAIL_IF(!buf);
*buf++ = 0x0f;
*buf = opcode;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE int emit_sse2_load(struct sljit_compiler *compiler,
int dst, int src, sljit_w srcw)
{
return emit_sse2(compiler, 0x10, dst, src, srcw);
}
static SLJIT_INLINE int emit_sse2_store(struct sljit_compiler *compiler,
int dst, sljit_w dstw, int src)
{
return emit_sse2(compiler, 0x11, src, dst, dstw);
}
#if !(defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO)
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop1(struct sljit_compiler *compiler, int op,
#else
static int sljit_emit_sse2_fop1(struct sljit_compiler *compiler, int op,
#endif
int dst, sljit_w dstw,
int src, sljit_w srcw)
{
int dst_r;
CHECK_ERROR();
check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif
if (GET_OPCODE(op) == SLJIT_FCMP) {
compiler->flags_saved = 0;
if (dst >= SLJIT_FLOAT_REG1 && dst <= SLJIT_FLOAT_REG4)
dst_r = dst;
else {
dst_r = TMP_FREG;
FAIL_IF(emit_sse2_load(compiler, dst_r, dst, dstw));
}
return emit_sse2_logic(compiler, 0x2e, dst_r, src, srcw);
}
if (op == SLJIT_FMOV) {
if (dst >= SLJIT_FLOAT_REG1 && dst <= SLJIT_FLOAT_REG4)
return emit_sse2_load(compiler, dst, src, srcw);
if (src >= SLJIT_FLOAT_REG1 && src <= SLJIT_FLOAT_REG4)
return emit_sse2_store(compiler, dst, dstw, src);
FAIL_IF(emit_sse2_load(compiler, TMP_FREG, src, srcw));
return emit_sse2_store(compiler, dst, dstw, TMP_FREG);
}
if (dst >= SLJIT_FLOAT_REG1 && dst <= SLJIT_FLOAT_REG4) {
dst_r = dst;
if (dst != src)
FAIL_IF(emit_sse2_load(compiler, dst_r, src, srcw));
}
else {
dst_r = TMP_FREG;
FAIL_IF(emit_sse2_load(compiler, dst_r, src, srcw));
}
switch (op) {
case SLJIT_FNEG:
FAIL_IF(emit_sse2_logic(compiler, 0x57, dst_r, SLJIT_MEM0(), (sljit_w)sse2_buffer));
break;
case SLJIT_FABS:
FAIL_IF(emit_sse2_logic(compiler, 0x54, dst_r, SLJIT_MEM0(), (sljit_w)(sse2_buffer + 4)));
break;
}
if (dst_r == TMP_FREG)
return emit_sse2_store(compiler, dst, dstw, TMP_FREG);
return SLJIT_SUCCESS;
}
#if !(defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO)
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop2(struct sljit_compiler *compiler, int op,
#else
static int sljit_emit_sse2_fop2(struct sljit_compiler *compiler, int op,
#endif
int dst, sljit_w dstw,
int src1, sljit_w src1w,
int src2, sljit_w src2w)
{
int dst_r;
CHECK_ERROR();
check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif
if (dst >= SLJIT_FLOAT_REG1 && dst <= SLJIT_FLOAT_REG4) {
dst_r = dst;
if (dst == src1)
; /* Do nothing here. */
else if (dst == src2 && (op == SLJIT_FADD || op == SLJIT_FMUL)) {
/* Swap arguments. */
src2 = src1;
src2w = src1w;
}
else if (dst != src2)
FAIL_IF(emit_sse2_load(compiler, dst_r, src1, src1w));
else {
dst_r = TMP_FREG;
FAIL_IF(emit_sse2_load(compiler, TMP_FREG, src1, src1w));
}
}
else {
dst_r = TMP_FREG;
FAIL_IF(emit_sse2_load(compiler, TMP_FREG, src1, src1w));
}
switch (op) {
case SLJIT_FADD:
FAIL_IF(emit_sse2(compiler, 0x58, dst_r, src2, src2w));
break;
case SLJIT_FSUB:
FAIL_IF(emit_sse2(compiler, 0x5c, dst_r, src2, src2w));
break;
case SLJIT_FMUL:
FAIL_IF(emit_sse2(compiler, 0x59, dst_r, src2, src2w));
break;
case SLJIT_FDIV:
FAIL_IF(emit_sse2(compiler, 0x5e, dst_r, src2, src2w));
break;
}
if (dst_r == TMP_FREG)
return emit_sse2_store(compiler, dst, dstw, TMP_FREG);
return SLJIT_SUCCESS;
}
#endif
#if (defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO) || !(defined SLJIT_SSE2 && SLJIT_SSE2)
static int emit_fld(struct sljit_compiler *compiler,
int src, sljit_w srcw)
{
sljit_ub *buf;
if (src >= SLJIT_FLOAT_REG1 && src <= SLJIT_FLOAT_REG4) {
buf = (sljit_ub*)ensure_buf(compiler, 1 + 2);
FAIL_IF(!buf);
INC_SIZE(2);
*buf++ = 0xd9;
*buf = 0xc0 + src - 1;
return SLJIT_SUCCESS;
}
buf = emit_x86_instruction(compiler, 1, 0, 0, src, srcw);
FAIL_IF(!buf);
*buf = 0xdd;
return SLJIT_SUCCESS;
}
static int emit_fop(struct sljit_compiler *compiler,
sljit_ub st_arg, sljit_ub st_arg2,
sljit_ub m64fp_arg, sljit_ub m64fp_arg2,
int src, sljit_w srcw)
{
sljit_ub *buf;
if (src >= SLJIT_FLOAT_REG1 && src <= SLJIT_FLOAT_REG4) {
buf = (sljit_ub*)ensure_buf(compiler, 1 + 2);
FAIL_IF(!buf);
INC_SIZE(2);
*buf++ = st_arg;
*buf = st_arg2 + src;
return SLJIT_SUCCESS;
}
buf = emit_x86_instruction(compiler, 1, 0, 0, src, srcw);
FAIL_IF(!buf);
*buf++ = m64fp_arg;
*buf |= m64fp_arg2;
return SLJIT_SUCCESS;
}
static int emit_fop_regs(struct sljit_compiler *compiler,
sljit_ub st_arg, sljit_ub st_arg2,
int src)
{
sljit_ub *buf;
buf = (sljit_ub*)ensure_buf(compiler, 1 + 2);
FAIL_IF(!buf);
INC_SIZE(2);
*buf++ = st_arg;
*buf = st_arg2 + src;
return SLJIT_SUCCESS;
}
#if !(defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO)
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop1(struct sljit_compiler *compiler, int op,
#else
static int sljit_emit_fpu_fop1(struct sljit_compiler *compiler, int op,
#endif
int dst, sljit_w dstw,
int src, sljit_w srcw)
{
#if !(defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
sljit_ub *buf;
#endif
CHECK_ERROR();
check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif
if (GET_OPCODE(op) == SLJIT_FCMP) {
compiler->flags_saved = 0;
#if !(defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
FAIL_IF(emit_fld(compiler, dst, dstw));
FAIL_IF(emit_fop(compiler, 0xd8, 0xd8, 0xdc, 0x3 << 3, src, srcw));
/* Copy flags. */
EMIT_MOV(compiler, TMP_REGISTER, 0, SLJIT_TEMPORARY_REG1, 0);
buf = (sljit_ub*)ensure_buf(compiler, 1 + 3);
FAIL_IF(!buf);
INC_SIZE(3);
*buf++ = 0xdf;
*buf++ = 0xe0;
/* Note: lahf is not supported on all x86-64 architectures. */
*buf++ = 0x9e;
EMIT_MOV(compiler, SLJIT_TEMPORARY_REG1, 0, TMP_REGISTER, 0);
#else
if (src >= SLJIT_FLOAT_REG1 && src <= SLJIT_FLOAT_REG4) {
FAIL_IF(emit_fld(compiler, dst, dstw));
FAIL_IF(emit_fop_regs(compiler, 0xdf, 0xe8, src));
} else {
FAIL_IF(emit_fld(compiler, src, srcw));
FAIL_IF(emit_fld(compiler, dst + ((dst >= SLJIT_FLOAT_REG1 && dst <= SLJIT_FLOAT_REG4) ? 1 : 0), dstw));
FAIL_IF(emit_fop_regs(compiler, 0xdf, 0xe8, src));
FAIL_IF(emit_fop_regs(compiler, 0xdd, 0xd8, 0));
}
#endif
return SLJIT_SUCCESS;
}
FAIL_IF(emit_fld(compiler, src, srcw));
switch (op) {
case SLJIT_FNEG:
FAIL_IF(emit_fop_regs(compiler, 0xd9, 0xe0, 0));
break;
case SLJIT_FABS:
FAIL_IF(emit_fop_regs(compiler, 0xd9, 0xe1, 0));
break;
}
FAIL_IF(emit_fop(compiler, 0xdd, 0xd8, 0xdd, 0x3 << 3, dst, dstw));
return SLJIT_SUCCESS;
}
#if !(defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO)
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop2(struct sljit_compiler *compiler, int op,
#else
static int sljit_emit_fpu_fop2(struct sljit_compiler *compiler, int op,
#endif
int dst, sljit_w dstw,
int src1, sljit_w src1w,
int src2, sljit_w src2w)
{
CHECK_ERROR();
check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif
if (src1 >= SLJIT_FLOAT_REG1 && src1 <= SLJIT_FLOAT_REG4 && dst == src1) {
FAIL_IF(emit_fld(compiler, src2, src2w));
switch (op) {
case SLJIT_FADD:
FAIL_IF(emit_fop_regs(compiler, 0xde, 0xc0, src1));
break;
case SLJIT_FSUB:
FAIL_IF(emit_fop_regs(compiler, 0xde, 0xe8, src1));
break;
case SLJIT_FMUL:
FAIL_IF(emit_fop_regs(compiler, 0xde, 0xc8, src1));
break;
case SLJIT_FDIV:
FAIL_IF(emit_fop_regs(compiler, 0xde, 0xf8, src1));
break;
}
return SLJIT_SUCCESS;
}
FAIL_IF(emit_fld(compiler, src1, src1w));
if (src2 >= SLJIT_FLOAT_REG1 && src2 <= SLJIT_FLOAT_REG4 && dst == src2) {
switch (op) {
case SLJIT_FADD:
FAIL_IF(emit_fop_regs(compiler, 0xde, 0xc0, src2));
break;
case SLJIT_FSUB:
FAIL_IF(emit_fop_regs(compiler, 0xde, 0xe0, src2));
break;
case SLJIT_FMUL:
FAIL_IF(emit_fop_regs(compiler, 0xde, 0xc8, src2));
break;
case SLJIT_FDIV:
FAIL_IF(emit_fop_regs(compiler, 0xde, 0xf0, src2));
break;
}
return SLJIT_SUCCESS;
}
switch (op) {
case SLJIT_FADD:
FAIL_IF(emit_fop(compiler, 0xd8, 0xc0, 0xdc, 0x0 << 3, src2, src2w));
break;
case SLJIT_FSUB:
FAIL_IF(emit_fop(compiler, 0xd8, 0xe0, 0xdc, 0x4 << 3, src2, src2w));
break;
case SLJIT_FMUL:
FAIL_IF(emit_fop(compiler, 0xd8, 0xc8, 0xdc, 0x1 << 3, src2, src2w));
break;
case SLJIT_FDIV:
FAIL_IF(emit_fop(compiler, 0xd8, 0xf0, 0xdc, 0x6 << 3, src2, src2w));
break;
}
FAIL_IF(emit_fop(compiler, 0xdd, 0xd8, 0xdd, 0x3 << 3, dst, dstw));
return SLJIT_SUCCESS;
}
#endif
#if (defined SLJIT_SSE2_AUTO && SLJIT_SSE2_AUTO)
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop1(struct sljit_compiler *compiler, int op,
int dst, sljit_w dstw,
int src, sljit_w srcw)
{
if (sse2_available)
return sljit_emit_sse2_fop1(compiler, op, dst, dstw, src, srcw);
else
return sljit_emit_fpu_fop1(compiler, op, dst, dstw, src, srcw);
}
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop2(struct sljit_compiler *compiler, int op,
int dst, sljit_w dstw,
int src1, sljit_w src1w,
int src2, sljit_w src2w)
{
if (sse2_available)
return sljit_emit_sse2_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
else
return sljit_emit_fpu_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
}
#endif
/* --------------------------------------------------------------------- */
/* Conditional instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
sljit_ub *buf;
struct sljit_label *label;
CHECK_ERROR_PTR();
check_sljit_emit_label(compiler);
/* We should restore the flags before the label,
since other taken jumps has their own flags as well. */
if (SLJIT_UNLIKELY(compiler->flags_saved))
PTR_FAIL_IF(emit_restore_flags(compiler, 0));
if (compiler->last_label && compiler->last_label->size == compiler->size)
return compiler->last_label;
label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
PTR_FAIL_IF(!label);
set_label(label, compiler);
buf = (sljit_ub*)ensure_buf(compiler, 2);
PTR_FAIL_IF(!buf);
*buf++ = 0;
*buf++ = 0;
return label;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, int type)
{
sljit_ub *buf;
struct sljit_jump *jump;
CHECK_ERROR_PTR();
check_sljit_emit_jump(compiler, type);
if (SLJIT_UNLIKELY(compiler->flags_saved)) {
if ((type & 0xff) <= SLJIT_JUMP)
PTR_FAIL_IF(emit_restore_flags(compiler, 0));
compiler->flags_saved = 0;
}
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF_NULL(jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
if (type >= SLJIT_CALL1)
PTR_FAIL_IF(call_with_args(compiler, type));
/* Worst case size. */
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
compiler->size += (type >= SLJIT_JUMP) ? 5 : 6;
#else
compiler->size += (type >= SLJIT_JUMP) ? (10 + 3) : (2 + 10 + 3);
#endif
buf = (sljit_ub*)ensure_buf(compiler, 2);
PTR_FAIL_IF_NULL(buf);
*buf++ = 0;
*buf++ = type + 4;
return jump;
}
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_ijump(struct sljit_compiler *compiler, int type, int src, sljit_w srcw)
{
sljit_ub *code;
struct sljit_jump *jump;
CHECK_ERROR();
check_sljit_emit_ijump(compiler, type, src, srcw);
CHECK_EXTRA_REGS(src, srcw, (void)0);
if (SLJIT_UNLIKELY(compiler->flags_saved)) {
if (type <= SLJIT_JUMP)
FAIL_IF(emit_restore_flags(compiler, 0));
compiler->flags_saved = 0;
}
if (type >= SLJIT_CALL1) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
#if (defined SLJIT_X86_32_FASTCALL && SLJIT_X86_32_FASTCALL)
if (src == SLJIT_TEMPORARY_REG3) {
EMIT_MOV(compiler, TMP_REGISTER, 0, src, 0);
src = TMP_REGISTER;
}
if ((src & SLJIT_MEM) && (src & 0xf) == SLJIT_LOCALS_REG && type >= SLJIT_CALL3) {
if (src & 0xf0) {
EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw);
src = TMP_REGISTER;
}
else
srcw += sizeof(sljit_w);
}
#else
if ((src & SLJIT_MEM) && (src & 0xf) == SLJIT_LOCALS_REG) {
if (src & 0xf0) {
EMIT_MOV(compiler, TMP_REGISTER, 0, src, srcw);
src = TMP_REGISTER;
}
else
srcw += sizeof(sljit_w) * (type - SLJIT_CALL0);
}
#endif
#endif
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) && defined(_WIN64)
if (src == SLJIT_TEMPORARY_REG3) {
EMIT_MOV(compiler, TMP_REGISTER, 0, src, 0);
src = TMP_REGISTER;
}
#endif
FAIL_IF(call_with_args(compiler, type));
}
if (src == SLJIT_IMM) {
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
FAIL_IF_NULL(jump);
set_jump(jump, compiler, JUMP_ADDR);
jump->u.target = srcw;
/* Worst case size. */
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
compiler->size += 5;
#else
compiler->size += 10 + 3;
#endif
code = (sljit_ub*)ensure_buf(compiler, 2);
FAIL_IF_NULL(code);
*code++ = 0;
*code++ = type + 4;
}
else {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
/* REX_W is not necessary (src is not immediate). */
compiler->mode32 = 1;
#endif
code = emit_x86_instruction(compiler, 1, 0, 0, src, srcw);
FAIL_IF(!code);
*code++ = 0xff;
*code |= (type >= SLJIT_FAST_CALL) ? (2 << 3) : (4 << 3);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_cond_value(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int type)
{
sljit_ub *buf;
sljit_ub cond_set = 0;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
int reg;
#endif
CHECK_ERROR();
check_sljit_emit_cond_value(compiler, op, dst, dstw, type);
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
CHECK_EXTRA_REGS(dst, dstw, (void)0);
if (SLJIT_UNLIKELY(compiler->flags_saved))
FAIL_IF(emit_restore_flags(compiler, 0));
switch (type) {
case SLJIT_C_EQUAL:
case SLJIT_C_FLOAT_EQUAL:
cond_set = 0x94;
break;
case SLJIT_C_NOT_EQUAL:
case SLJIT_C_FLOAT_NOT_EQUAL:
cond_set = 0x95;
break;
case SLJIT_C_LESS:
case SLJIT_C_FLOAT_LESS:
cond_set = 0x92;
break;
case SLJIT_C_GREATER_EQUAL:
case SLJIT_C_FLOAT_GREATER_EQUAL:
cond_set = 0x93;
break;
case SLJIT_C_GREATER:
case SLJIT_C_FLOAT_GREATER:
cond_set = 0x97;
break;
case SLJIT_C_LESS_EQUAL:
case SLJIT_C_FLOAT_LESS_EQUAL:
cond_set = 0x96;
break;
case SLJIT_C_SIG_LESS:
cond_set = 0x9c;
break;
case SLJIT_C_SIG_GREATER_EQUAL:
cond_set = 0x9d;
break;
case SLJIT_C_SIG_GREATER:
cond_set = 0x9f;
break;
case SLJIT_C_SIG_LESS_EQUAL:
cond_set = 0x9e;
break;
case SLJIT_C_OVERFLOW:
case SLJIT_C_MUL_OVERFLOW:
cond_set = 0x90;
break;
case SLJIT_C_NOT_OVERFLOW:
case SLJIT_C_MUL_NOT_OVERFLOW:
cond_set = 0x91;
break;
case SLJIT_C_FLOAT_NAN:
cond_set = 0x9a;
break;
case SLJIT_C_FLOAT_NOT_NAN:
cond_set = 0x9b;
break;
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
reg = (op == SLJIT_MOV && dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REGISTER;
buf = (sljit_ub*)ensure_buf(compiler, 1 + 4 + 4);
FAIL_IF(!buf);
INC_SIZE(4 + 4);
/* Set low register to conditional flag. */
*buf++ = (reg_map[reg] <= 7) ? 0x40 : REX_B;
*buf++ = 0x0f;
*buf++ = cond_set;
*buf++ = 0xC0 | reg_lmap[reg];
*buf++ = REX_W | (reg_map[reg] <= 7 ? 0 : (REX_B | REX_R));
*buf++ = 0x0f;
*buf++ = 0xb6;
*buf = 0xC0 | (reg_lmap[reg] << 3) | reg_lmap[reg];
if (reg == TMP_REGISTER) {
if (op == SLJIT_MOV) {
compiler->mode32 = 0;
EMIT_MOV(compiler, dst, dstw, TMP_REGISTER, 0);
}
else {
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
compiler->skip_checks = 1;
#endif
return sljit_emit_op2(compiler, op, dst, dstw, dst, dstw, TMP_REGISTER, 0);
}
}
#else
if (op == SLJIT_MOV) {
if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_TEMPORARY_REG3) {
buf = (sljit_ub*)ensure_buf(compiler, 1 + 3 + 3);
FAIL_IF(!buf);
INC_SIZE(3 + 3);
/* Set low byte to conditional flag. */
*buf++ = 0x0f;
*buf++ = cond_set;
*buf++ = 0xC0 | reg_map[dst];
*buf++ = 0x0f;
*buf++ = 0xb6;
*buf = 0xC0 | (reg_map[dst] << 3) | reg_map[dst];
}
else {
EMIT_MOV(compiler, TMP_REGISTER, 0, SLJIT_TEMPORARY_REG1, 0);
buf = (sljit_ub*)ensure_buf(compiler, 1 + 3 + 3);
FAIL_IF(!buf);
INC_SIZE(3 + 3);
/* Set al to conditional flag. */
*buf++ = 0x0f;
*buf++ = cond_set;
*buf++ = 0xC0;
*buf++ = 0x0f;
*buf++ = 0xb6;
if (dst >= SLJIT_GENERAL_REG1 && dst <= SLJIT_NO_REGISTERS)
*buf = 0xC0 | (reg_map[dst] << 3);
else {
*buf = 0xC0;
EMIT_MOV(compiler, dst, dstw, SLJIT_TEMPORARY_REG1, 0);
}
EMIT_MOV(compiler, SLJIT_TEMPORARY_REG1, 0, TMP_REGISTER, 0);
}
}
else {
if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_TEMPORARY_REG3) {
EMIT_MOV(compiler, TMP_REGISTER, 0, dst, 0);
buf = (sljit_ub*)ensure_buf(compiler, 1 + 3);
FAIL_IF(!buf);
INC_SIZE(3);
*buf++ = 0x0f;
*buf++ = cond_set;
*buf++ = 0xC0 | reg_map[dst];
}
else {
EMIT_MOV(compiler, TMP_REGISTER, 0, SLJIT_TEMPORARY_REG1, 0);
buf = (sljit_ub*)ensure_buf(compiler, 1 + 3 + 3 + 1);
FAIL_IF(!buf);
INC_SIZE(3 + 3 + 1);
/* Set al to conditional flag. */
*buf++ = 0x0f;
*buf++ = cond_set;
*buf++ = 0xC0;
*buf++ = 0x0f;
*buf++ = 0xb6;
*buf++ = 0xC0;
*buf++ = 0x90 + reg_map[TMP_REGISTER];
}
#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
compiler->skip_checks = 1;
#endif
return sljit_emit_op2(compiler, op, dst, dstw, dst, dstw, TMP_REGISTER, 0);
}
#endif
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, int dst, sljit_w dstw, sljit_w init_value)
{
sljit_ub *buf;
struct sljit_const *const_;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
int reg;
#endif
CHECK_ERROR_PTR();
check_sljit_emit_const(compiler, dst, dstw, init_value);
CHECK_EXTRA_REGS(dst, dstw, (void)0);
const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
PTR_FAIL_IF(!const_);
set_const(const_, compiler);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
reg = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REGISTER;
if (emit_load_imm64(compiler, reg, init_value))
return NULL;
#else
if (dst == SLJIT_UNUSED)
dst = TMP_REGISTER;
if (emit_mov(compiler, dst, dstw, SLJIT_IMM, init_value))
return NULL;
#endif
buf = (sljit_ub*)ensure_buf(compiler, 2);
PTR_FAIL_IF(!buf);
*buf++ = 0;
*buf++ = 1;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (reg == TMP_REGISTER && dst != SLJIT_UNUSED)
if (emit_mov(compiler, dst, dstw, TMP_REGISTER, 0))
return NULL;
#endif
return const_;
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
{
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
*(sljit_w*)addr = new_addr - (addr + 4);
#else
*(sljit_uw*)addr = new_addr;
#endif
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_w new_constant)
{
*(sljit_w*)addr = new_constant;
}