blob: 142a4e5826ba2dbb54679010e7df270ca469976b [file] [log] [blame]
Tristan Matthews0a329cc2013-07-17 13:20:14 -04001/* $Id$ */
2/*
3 * This is the implementation of MD5 algorithm, based on the code
4 * written by Colin Plumb. This file is put in public domain.
5 */
6#include <pjlib-util/md5.h>
7#include <pj/string.h> /* pj_memcpy */
8/*
9 * This code implements the MD5 message-digest algorithm.
10 * The algorithm is due to Ron Rivest. This code was
11 * written by Colin Plumb in 1993, no copyright is claimed.
12 * This code is in the public domain; do with it what you wish.
13 *
14 * Equivalent code is available from RSA Data Security, Inc.
15 * This code has been tested against that, and is equivalent,
16 * except that you don't need to include two pages of legalese
17 * with every copy.
18 *
19 * To compute the message digest of a chunk of bytes, declare an
20 * MD5Context structure, pass it to MD5Init, call MD5Update as
21 * needed on buffers full of bytes, and then call MD5Final, which
22 * will fill a supplied 16-byte array with the digest.
23 */
24
25#if defined(PJ_IS_BIG_ENDIAN) && PJ_IS_BIG_ENDIAN != 0
26#define HIGHFIRST 1
27#endif
28
29#ifndef HIGHFIRST
30#define byteReverse(buf, len) /* Nothing */
31#else
32void byteReverse(unsigned char *buf, unsigned longs);
33
34#ifndef ASM_MD5
35/*
36 * Note: this code is harmless on little-endian machines.
37 */
38void byteReverse(unsigned char *buf, unsigned longs)
39{
40 pj_uint32_t t;
41 do {
42 t = (pj_uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
43 ((unsigned) buf[1] << 8 | buf[0]);
44 *(pj_uint32_t *) buf = t;
45 buf += 4;
46 } while (--longs);
47}
48#endif
49#endif
50
51static void MD5Transform(pj_uint32_t buf[4], pj_uint32_t const in[16]);
52
53
54/*
55 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
56 * initialization constants.
57 */
58PJ_DEF(void) pj_md5_init(pj_md5_context *ctx)
59{
60 ctx->buf[0] = 0x67452301;
61 ctx->buf[1] = 0xefcdab89;
62 ctx->buf[2] = 0x98badcfe;
63 ctx->buf[3] = 0x10325476;
64
65 ctx->bits[0] = 0;
66 ctx->bits[1] = 0;
67}
68
69/*
70 * Update context to reflect the concatenation of another buffer full
71 * of bytes.
72 */
73PJ_DEF(void) pj_md5_update( pj_md5_context *ctx,
74 unsigned char const *buf, unsigned len)
75{
76 pj_uint32_t t;
77
78 /* Update bitcount */
79
80 t = ctx->bits[0];
81 if ((ctx->bits[0] = t + ((pj_uint32_t) len << 3)) < t)
82 ctx->bits[1]++; /* Carry from low to high */
83 ctx->bits[1] += len >> 29;
84
85 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
86
87 /* Handle any leading odd-sized chunks */
88
89 if (t) {
90 unsigned char *p = (unsigned char *) ctx->in + t;
91
92 t = 64 - t;
93 if (len < t) {
94 pj_memcpy(p, buf, len);
95 return;
96 }
97 pj_memcpy(p, buf, t);
98 byteReverse(ctx->in, 16);
99 MD5Transform(ctx->buf, (pj_uint32_t *) ctx->in);
100 buf += t;
101 len -= t;
102 }
103 /* Process data in 64-byte chunks */
104
105 while (len >= 64) {
106 pj_memcpy(ctx->in, buf, 64);
107 byteReverse(ctx->in, 16);
108 MD5Transform(ctx->buf, (pj_uint32_t *) ctx->in);
109 buf += 64;
110 len -= 64;
111 }
112
113 /* Handle any remaining bytes of data. */
114
115 pj_memcpy(ctx->in, buf, len);
116}
117
118/*
119 * Final wrapup - pad to 64-byte boundary with the bit pattern
120 * 1 0* (64-bit count of bits processed, MSB-first)
121 */
122PJ_DEF(void) pj_md5_final(pj_md5_context *ctx, unsigned char digest[16])
123{
124 unsigned count;
125 unsigned char *p;
126
127 /* Compute number of bytes mod 64 */
128 count = (ctx->bits[0] >> 3) & 0x3F;
129
130 /* Set the first char of padding to 0x80. This is safe since there is
131 always at least one byte free */
132 p = ctx->in + count;
133 *p++ = 0x80;
134
135 /* Bytes of padding needed to make 64 bytes */
136 count = 64 - 1 - count;
137
138 /* Pad out to 56 mod 64 */
139 if (count < 8) {
140 /* Two lots of padding: Pad the first block to 64 bytes */
141 pj_bzero(p, count);
142 byteReverse(ctx->in, 16);
143 MD5Transform(ctx->buf, (pj_uint32_t *) ctx->in);
144
145 /* Now fill the next block with 56 bytes */
146 pj_bzero(ctx->in, 56);
147 } else {
148 /* Pad block to 56 bytes */
149 pj_bzero(p, count - 8);
150 }
151 byteReverse(ctx->in, 14);
152
153 /* Append length in bits and transform */
154 ((pj_uint32_t *) ctx->in)[14] = ctx->bits[0];
155 ((pj_uint32_t *) ctx->in)[15] = ctx->bits[1];
156
157 MD5Transform(ctx->buf, (pj_uint32_t *) ctx->in);
158 byteReverse((unsigned char *) ctx->buf, 4);
159 pj_memcpy(digest, ctx->buf, 16);
160 pj_bzero(ctx, sizeof(ctx)); /* In case it's sensitive */
161}
162
163#ifndef ASM_MD5
164
165/* The four core functions - F1 is optimized somewhat */
166
167/* #define F1(x, y, z) (x & y | ~x & z) */
168#define F1(x, y, z) (z ^ (x & (y ^ z)))
169#define F2(x, y, z) F1(z, x, y)
170#define F3(x, y, z) (x ^ y ^ z)
171#define F4(x, y, z) (y ^ (x | ~z))
172
173/* This is the central step in the MD5 algorithm. */
174#define MD5STEP(f, w, x, y, z, data, s) \
175 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
176
177/*
178 * The core of the MD5 algorithm, this alters an existing MD5 hash to
179 * reflect the addition of 16 longwords of new data. MD5Update blocks
180 * the data and converts bytes into longwords for this routine.
181 */
182static void MD5Transform(pj_uint32_t buf[4], pj_uint32_t const in[16])
183{
184 register pj_uint32_t a, b, c, d;
185
186 a = buf[0];
187 b = buf[1];
188 c = buf[2];
189 d = buf[3];
190
191 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
192 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
193 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
194 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
195 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
196 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
197 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
198 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
199 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
200 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
201 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
202 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
203 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
204 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
205 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
206 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
207
208 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
209 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
210 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
211 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
212 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
213 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
214 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
215 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
216 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
217 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
218 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
219 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
220 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
221 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
222 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
223 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
224
225 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
226 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
227 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
228 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
229 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
230 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
231 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
232 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
233 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
234 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
235 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
236 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
237 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
238 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
239 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
240 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
241
242 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
243 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
244 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
245 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
246 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
247 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
248 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
249 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
250 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
251 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
252 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
253 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
254 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
255 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
256 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
257 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
258
259 buf[0] += a;
260 buf[1] += b;
261 buf[2] += c;
262 buf[3] += d;
263}
264
265#endif
266