blob: d6eac205e98e1002ed95d694fcce1afe1eba6837 [file] [log] [blame]
Alexandre Savard1b09e312012-08-07 20:33:29 -04001#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# July 2004
11#
12# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
13# "hand-coded assembler"] doesn't stand for the whole improvement
14# coefficient. It turned out that eliminating RC4_CHAR from config
15# line results in ~40% improvement (yes, even for C implementation).
16# Presumably it has everything to do with AMD cache architecture and
17# RAW or whatever penalties. Once again! The module *requires* config
18# line *without* RC4_CHAR! As for coding "secret," I bet on partial
19# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
20# I simply 'inc %r8b'. Even though optimization manual discourages
21# to operate on partial registers, it turned out to be the best bet.
22# At least for AMD... How IA32E would perform remains to be seen...
23
24# November 2004
25#
26# As was shown by Marc Bevand reordering of couple of load operations
27# results in even higher performance gain of 3.3x:-) At least on
28# Opteron... For reference, 1x in this case is RC4_CHAR C-code
29# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
30# Latter means that if you want to *estimate* what to expect from
31# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
32
33# November 2004
34#
35# Intel P4 EM64T core was found to run the AMD64 code really slow...
36# The only way to achieve comparable performance on P4 was to keep
37# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
38# compose blended code, which would perform even within 30% marginal
39# on either AMD and Intel platforms, I implement both cases. See
40# rc4_skey.c for further details...
41
42# April 2005
43#
44# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
45# those with add/sub results in 50% performance improvement of folded
46# loop...
47
48# May 2005
49#
50# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
51# performance by >30% [unlike P4 32-bit case that is]. But this is
52# provided that loads are reordered even more aggressively! Both code
53# pathes, AMD64 and EM64T, reorder loads in essentially same manner
54# as my IA-64 implementation. On Opteron this resulted in modest 5%
55# improvement [I had to test it], while final Intel P4 performance
56# achieves respectful 432MBps on 2.8GHz processor now. For reference.
57# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
58# RC4_INT code-path. While if executed on Opteron, it's only 25%
59# slower than the RC4_INT one [meaning that if CPU ยต-arch detection
60# is not implemented, then this final RC4_CHAR code-path should be
61# preferred, as it provides better *all-round* performance].
62
63# March 2007
64#
65# Intel Core2 was observed to perform poorly on both code paths:-( It
66# apparently suffers from some kind of partial register stall, which
67# occurs in 64-bit mode only [as virtually identical 32-bit loop was
68# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
69# cloop1 boosts its performance by 80%! This loop appears to be optimal
70# fit for Core2 and therefore the code was modified to skip cloop8 on
71# this CPU.
72
73# May 2010
74#
75# Intel Westmere was observed to perform suboptimally. Adding yet
76# another movzb to cloop1 improved performance by almost 50%! Core2
77# performance is improved too, but nominally...
78
79# May 2011
80#
81# The only code path that was not modified is P4-specific one. Non-P4
82# Intel code path optimization is heavily based on submission by Maxim
83# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
84# some of the ideas even in attempt to optmize the original RC4_INT
85# code path... Current performance in cycles per processed byte (less
86# is better) and improvement coefficients relative to previous
87# version of this module are:
88#
89# Opteron 5.3/+0%(*)
90# P4 6.5
91# Core2 6.2/+15%(**)
92# Westmere 4.2/+60%
93# Sandy Bridge 4.2/+120%
94# Atom 9.3/+80%
95#
96# (*) But corresponding loop has less instructions, which should have
97# positive effect on upcoming Bulldozer, which has one less ALU.
98# For reference, Intel code runs at 6.8 cpb rate on Opteron.
99# (**) Note that Core2 result is ~15% lower than corresponding result
100# for 32-bit code, meaning that it's possible to improve it,
101# but more than likely at the cost of the others (see rc4-586.pl
102# to get the idea)...
103
104$flavour = shift;
105$output = shift;
106if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
107
108$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
109
110$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
111( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
112( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
113die "can't locate x86_64-xlate.pl";
114
115open STDOUT,"| $^X $xlate $flavour $output";
116
117$dat="%rdi"; # arg1
118$len="%rsi"; # arg2
119$inp="%rdx"; # arg3
120$out="%rcx"; # arg4
121
122{
123$code=<<___;
124.text
125.extern OPENSSL_ia32cap_P
126
127.globl RC4
128.type RC4,\@function,4
129.align 16
130RC4: or $len,$len
131 jne .Lentry
132 ret
133.Lentry:
134 push %rbx
135 push %r12
136 push %r13
137.Lprologue:
138 mov $len,%r11
139 mov $inp,%r12
140 mov $out,%r13
141___
142my $len="%r11"; # reassign input arguments
143my $inp="%r12";
144my $out="%r13";
145
146my @XX=("%r10","%rsi");
147my @TX=("%rax","%rbx");
148my $YY="%rcx";
149my $TY="%rdx";
150
151$code.=<<___;
152 xor $XX[0],$XX[0]
153 xor $YY,$YY
154
155 lea 8($dat),$dat
156 mov -8($dat),$XX[0]#b
157 mov -4($dat),$YY#b
158 cmpl \$-1,256($dat)
159 je .LRC4_CHAR
160 mov OPENSSL_ia32cap_P(%rip),%r8d
161 xor $TX[1],$TX[1]
162 inc $XX[0]#b
163 sub $XX[0],$TX[1]
164 sub $inp,$out
165 movl ($dat,$XX[0],4),$TX[0]#d
166 test \$-16,$len
167 jz .Lloop1
168 bt \$30,%r8d # Intel CPU?
169 jc .Lintel
170 and \$7,$TX[1]
171 lea 1($XX[0]),$XX[1]
172 jz .Loop8
173 sub $TX[1],$len
174.Loop8_warmup:
175 add $TX[0]#b,$YY#b
176 movl ($dat,$YY,4),$TY#d
177 movl $TX[0]#d,($dat,$YY,4)
178 movl $TY#d,($dat,$XX[0],4)
179 add $TY#b,$TX[0]#b
180 inc $XX[0]#b
181 movl ($dat,$TX[0],4),$TY#d
182 movl ($dat,$XX[0],4),$TX[0]#d
183 xorb ($inp),$TY#b
184 movb $TY#b,($out,$inp)
185 lea 1($inp),$inp
186 dec $TX[1]
187 jnz .Loop8_warmup
188
189 lea 1($XX[0]),$XX[1]
190 jmp .Loop8
191.align 16
192.Loop8:
193___
194for ($i=0;$i<8;$i++) {
195$code.=<<___ if ($i==7);
196 add \$8,$XX[1]#b
197___
198$code.=<<___;
199 add $TX[0]#b,$YY#b
200 movl ($dat,$YY,4),$TY#d
201 movl $TX[0]#d,($dat,$YY,4)
202 movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
203 ror \$8,%r8 # ror is redundant when $i=0
204 movl $TY#d,4*$i($dat,$XX[0],4)
205 add $TX[0]#b,$TY#b
206 movb ($dat,$TY,4),%r8b
207___
208push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
209}
210$code.=<<___;
211 add \$8,$XX[0]#b
212 ror \$8,%r8
213 sub \$8,$len
214
215 xor ($inp),%r8
216 mov %r8,($out,$inp)
217 lea 8($inp),$inp
218
219 test \$-8,$len
220 jnz .Loop8
221 cmp \$0,$len
222 jne .Lloop1
223 jmp .Lexit
224
225.align 16
226.Lintel:
227 test \$-32,$len
228 jz .Lloop1
229 and \$15,$TX[1]
230 jz .Loop16_is_hot
231 sub $TX[1],$len
232.Loop16_warmup:
233 add $TX[0]#b,$YY#b
234 movl ($dat,$YY,4),$TY#d
235 movl $TX[0]#d,($dat,$YY,4)
236 movl $TY#d,($dat,$XX[0],4)
237 add $TY#b,$TX[0]#b
238 inc $XX[0]#b
239 movl ($dat,$TX[0],4),$TY#d
240 movl ($dat,$XX[0],4),$TX[0]#d
241 xorb ($inp),$TY#b
242 movb $TY#b,($out,$inp)
243 lea 1($inp),$inp
244 dec $TX[1]
245 jnz .Loop16_warmup
246
247 mov $YY,$TX[1]
248 xor $YY,$YY
249 mov $TX[1]#b,$YY#b
250
251.Loop16_is_hot:
252 lea ($dat,$XX[0],4),$XX[1]
253___
254sub RC4_loop {
255 my $i=shift;
256 my $j=$i<0?0:$i;
257 my $xmm="%xmm".($j&1);
258
259 $code.=" add \$16,$XX[0]#b\n" if ($i==15);
260 $code.=" movdqu ($inp),%xmm2\n" if ($i==15);
261 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
262 $code.=" movl ($dat,$YY,4),$TY#d\n";
263 $code.=" pxor %xmm0,%xmm2\n" if ($i==0);
264 $code.=" psllq \$8,%xmm1\n" if ($i==0);
265 $code.=" pxor $xmm,$xmm\n" if ($i<=1);
266 $code.=" movl $TX[0]#d,($dat,$YY,4)\n";
267 $code.=" add $TY#b,$TX[0]#b\n";
268 $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
269 $code.=" movz $TX[0]#b,$TX[0]#d\n";
270 $code.=" movl $TY#d,4*$j($XX[1])\n";
271 $code.=" pxor %xmm1,%xmm2\n" if ($i==0);
272 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
273 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
274 $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
275 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
276 $code.=" lea 16($inp),$inp\n" if ($i==0);
277 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
278}
279 RC4_loop(-1);
280$code.=<<___;
281 jmp .Loop16_enter
282.align 16
283.Loop16:
284___
285
286for ($i=0;$i<16;$i++) {
287 $code.=".Loop16_enter:\n" if ($i==1);
288 RC4_loop($i);
289 push(@TX,shift(@TX)); # "rotate" registers
290}
291$code.=<<___;
292 mov $YY,$TX[1]
293 xor $YY,$YY # keyword to partial register
294 sub \$16,$len
295 mov $TX[1]#b,$YY#b
296 test \$-16,$len
297 jnz .Loop16
298
299 psllq \$8,%xmm1
300 pxor %xmm0,%xmm2
301 pxor %xmm1,%xmm2
302 movdqu %xmm2,($out,$inp)
303 lea 16($inp),$inp
304
305 cmp \$0,$len
306 jne .Lloop1
307 jmp .Lexit
308
309.align 16
310.Lloop1:
311 add $TX[0]#b,$YY#b
312 movl ($dat,$YY,4),$TY#d
313 movl $TX[0]#d,($dat,$YY,4)
314 movl $TY#d,($dat,$XX[0],4)
315 add $TY#b,$TX[0]#b
316 inc $XX[0]#b
317 movl ($dat,$TX[0],4),$TY#d
318 movl ($dat,$XX[0],4),$TX[0]#d
319 xorb ($inp),$TY#b
320 movb $TY#b,($out,$inp)
321 lea 1($inp),$inp
322 dec $len
323 jnz .Lloop1
324 jmp .Lexit
325
326.align 16
327.LRC4_CHAR:
328 add \$1,$XX[0]#b
329 movzb ($dat,$XX[0]),$TX[0]#d
330 test \$-8,$len
331 jz .Lcloop1
332 jmp .Lcloop8
333.align 16
334.Lcloop8:
335 mov ($inp),%r8d
336 mov 4($inp),%r9d
337___
338# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
339for ($i=0;$i<4;$i++) {
340$code.=<<___;
341 add $TX[0]#b,$YY#b
342 lea 1($XX[0]),$XX[1]
343 movzb ($dat,$YY),$TY#d
344 movzb $XX[1]#b,$XX[1]#d
345 movzb ($dat,$XX[1]),$TX[1]#d
346 movb $TX[0]#b,($dat,$YY)
347 cmp $XX[1],$YY
348 movb $TY#b,($dat,$XX[0])
349 jne .Lcmov$i # Intel cmov is sloooow...
350 mov $TX[0],$TX[1]
351.Lcmov$i:
352 add $TX[0]#b,$TY#b
353 xor ($dat,$TY),%r8b
354 ror \$8,%r8d
355___
356push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
357}
358for ($i=4;$i<8;$i++) {
359$code.=<<___;
360 add $TX[0]#b,$YY#b
361 lea 1($XX[0]),$XX[1]
362 movzb ($dat,$YY),$TY#d
363 movzb $XX[1]#b,$XX[1]#d
364 movzb ($dat,$XX[1]),$TX[1]#d
365 movb $TX[0]#b,($dat,$YY)
366 cmp $XX[1],$YY
367 movb $TY#b,($dat,$XX[0])
368 jne .Lcmov$i # Intel cmov is sloooow...
369 mov $TX[0],$TX[1]
370.Lcmov$i:
371 add $TX[0]#b,$TY#b
372 xor ($dat,$TY),%r9b
373 ror \$8,%r9d
374___
375push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
376}
377$code.=<<___;
378 lea -8($len),$len
379 mov %r8d,($out)
380 lea 8($inp),$inp
381 mov %r9d,4($out)
382 lea 8($out),$out
383
384 test \$-8,$len
385 jnz .Lcloop8
386 cmp \$0,$len
387 jne .Lcloop1
388 jmp .Lexit
389___
390$code.=<<___;
391.align 16
392.Lcloop1:
393 add $TX[0]#b,$YY#b
394 movzb $YY#b,$YY#d
395 movzb ($dat,$YY),$TY#d
396 movb $TX[0]#b,($dat,$YY)
397 movb $TY#b,($dat,$XX[0])
398 add $TX[0]#b,$TY#b
399 add \$1,$XX[0]#b
400 movzb $TY#b,$TY#d
401 movzb $XX[0]#b,$XX[0]#d
402 movzb ($dat,$TY),$TY#d
403 movzb ($dat,$XX[0]),$TX[0]#d
404 xorb ($inp),$TY#b
405 lea 1($inp),$inp
406 movb $TY#b,($out)
407 lea 1($out),$out
408 sub \$1,$len
409 jnz .Lcloop1
410 jmp .Lexit
411
412.align 16
413.Lexit:
414 sub \$1,$XX[0]#b
415 movl $XX[0]#d,-8($dat)
416 movl $YY#d,-4($dat)
417
418 mov (%rsp),%r13
419 mov 8(%rsp),%r12
420 mov 16(%rsp),%rbx
421 add \$24,%rsp
422.Lepilogue:
423 ret
424.size RC4,.-RC4
425___
426}
427
428$idx="%r8";
429$ido="%r9";
430
431$code.=<<___;
432.globl private_RC4_set_key
433.type private_RC4_set_key,\@function,3
434.align 16
435private_RC4_set_key:
436 lea 8($dat),$dat
437 lea ($inp,$len),$inp
438 neg $len
439 mov $len,%rcx
440 xor %eax,%eax
441 xor $ido,$ido
442 xor %r10,%r10
443 xor %r11,%r11
444
445 mov OPENSSL_ia32cap_P(%rip),$idx#d
446 bt \$20,$idx#d # RC4_CHAR?
447 jc .Lc1stloop
448 jmp .Lw1stloop
449
450.align 16
451.Lw1stloop:
452 mov %eax,($dat,%rax,4)
453 add \$1,%al
454 jnc .Lw1stloop
455
456 xor $ido,$ido
457 xor $idx,$idx
458.align 16
459.Lw2ndloop:
460 mov ($dat,$ido,4),%r10d
461 add ($inp,$len,1),$idx#b
462 add %r10b,$idx#b
463 add \$1,$len
464 mov ($dat,$idx,4),%r11d
465 cmovz %rcx,$len
466 mov %r10d,($dat,$idx,4)
467 mov %r11d,($dat,$ido,4)
468 add \$1,$ido#b
469 jnc .Lw2ndloop
470 jmp .Lexit_key
471
472.align 16
473.Lc1stloop:
474 mov %al,($dat,%rax)
475 add \$1,%al
476 jnc .Lc1stloop
477
478 xor $ido,$ido
479 xor $idx,$idx
480.align 16
481.Lc2ndloop:
482 mov ($dat,$ido),%r10b
483 add ($inp,$len),$idx#b
484 add %r10b,$idx#b
485 add \$1,$len
486 mov ($dat,$idx),%r11b
487 jnz .Lcnowrap
488 mov %rcx,$len
489.Lcnowrap:
490 mov %r10b,($dat,$idx)
491 mov %r11b,($dat,$ido)
492 add \$1,$ido#b
493 jnc .Lc2ndloop
494 movl \$-1,256($dat)
495
496.align 16
497.Lexit_key:
498 xor %eax,%eax
499 mov %eax,-8($dat)
500 mov %eax,-4($dat)
501 ret
502.size private_RC4_set_key,.-private_RC4_set_key
503
504.globl RC4_options
505.type RC4_options,\@abi-omnipotent
506.align 16
507RC4_options:
508 lea .Lopts(%rip),%rax
509 mov OPENSSL_ia32cap_P(%rip),%edx
510 bt \$20,%edx
511 jc .L8xchar
512 bt \$30,%edx
513 jnc .Ldone
514 add \$25,%rax
515 ret
516.L8xchar:
517 add \$12,%rax
518.Ldone:
519 ret
520.align 64
521.Lopts:
522.asciz "rc4(8x,int)"
523.asciz "rc4(8x,char)"
524.asciz "rc4(16x,int)"
525.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
526.align 64
527.size RC4_options,.-RC4_options
528___
529
530# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
531# CONTEXT *context,DISPATCHER_CONTEXT *disp)
532if ($win64) {
533$rec="%rcx";
534$frame="%rdx";
535$context="%r8";
536$disp="%r9";
537
538$code.=<<___;
539.extern __imp_RtlVirtualUnwind
540.type stream_se_handler,\@abi-omnipotent
541.align 16
542stream_se_handler:
543 push %rsi
544 push %rdi
545 push %rbx
546 push %rbp
547 push %r12
548 push %r13
549 push %r14
550 push %r15
551 pushfq
552 sub \$64,%rsp
553
554 mov 120($context),%rax # pull context->Rax
555 mov 248($context),%rbx # pull context->Rip
556
557 lea .Lprologue(%rip),%r10
558 cmp %r10,%rbx # context->Rip<prologue label
559 jb .Lin_prologue
560
561 mov 152($context),%rax # pull context->Rsp
562
563 lea .Lepilogue(%rip),%r10
564 cmp %r10,%rbx # context->Rip>=epilogue label
565 jae .Lin_prologue
566
567 lea 24(%rax),%rax
568
569 mov -8(%rax),%rbx
570 mov -16(%rax),%r12
571 mov -24(%rax),%r13
572 mov %rbx,144($context) # restore context->Rbx
573 mov %r12,216($context) # restore context->R12
574 mov %r13,224($context) # restore context->R13
575
576.Lin_prologue:
577 mov 8(%rax),%rdi
578 mov 16(%rax),%rsi
579 mov %rax,152($context) # restore context->Rsp
580 mov %rsi,168($context) # restore context->Rsi
581 mov %rdi,176($context) # restore context->Rdi
582
583 jmp .Lcommon_seh_exit
584.size stream_se_handler,.-stream_se_handler
585
586.type key_se_handler,\@abi-omnipotent
587.align 16
588key_se_handler:
589 push %rsi
590 push %rdi
591 push %rbx
592 push %rbp
593 push %r12
594 push %r13
595 push %r14
596 push %r15
597 pushfq
598 sub \$64,%rsp
599
600 mov 152($context),%rax # pull context->Rsp
601 mov 8(%rax),%rdi
602 mov 16(%rax),%rsi
603 mov %rsi,168($context) # restore context->Rsi
604 mov %rdi,176($context) # restore context->Rdi
605
606.Lcommon_seh_exit:
607
608 mov 40($disp),%rdi # disp->ContextRecord
609 mov $context,%rsi # context
610 mov \$154,%ecx # sizeof(CONTEXT)
611 .long 0xa548f3fc # cld; rep movsq
612
613 mov $disp,%rsi
614 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
615 mov 8(%rsi),%rdx # arg2, disp->ImageBase
616 mov 0(%rsi),%r8 # arg3, disp->ControlPc
617 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
618 mov 40(%rsi),%r10 # disp->ContextRecord
619 lea 56(%rsi),%r11 # &disp->HandlerData
620 lea 24(%rsi),%r12 # &disp->EstablisherFrame
621 mov %r10,32(%rsp) # arg5
622 mov %r11,40(%rsp) # arg6
623 mov %r12,48(%rsp) # arg7
624 mov %rcx,56(%rsp) # arg8, (NULL)
625 call *__imp_RtlVirtualUnwind(%rip)
626
627 mov \$1,%eax # ExceptionContinueSearch
628 add \$64,%rsp
629 popfq
630 pop %r15
631 pop %r14
632 pop %r13
633 pop %r12
634 pop %rbp
635 pop %rbx
636 pop %rdi
637 pop %rsi
638 ret
639.size key_se_handler,.-key_se_handler
640
641.section .pdata
642.align 4
643 .rva .LSEH_begin_RC4
644 .rva .LSEH_end_RC4
645 .rva .LSEH_info_RC4
646
647 .rva .LSEH_begin_private_RC4_set_key
648 .rva .LSEH_end_private_RC4_set_key
649 .rva .LSEH_info_private_RC4_set_key
650
651.section .xdata
652.align 8
653.LSEH_info_RC4:
654 .byte 9,0,0,0
655 .rva stream_se_handler
656.LSEH_info_private_RC4_set_key:
657 .byte 9,0,0,0
658 .rva key_se_handler
659___
660}
661
662sub reg_part {
663my ($reg,$conv)=@_;
664 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
665 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
666 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
667 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
668 return $reg;
669}
670
671$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
672$code =~ s/\`([^\`]*)\`/eval $1/gem;
673
674print $code;
675
676close STDOUT;