* #40116: Switch to 2.3.0 libzrtpcpp version
diff --git a/jni/libzrtp/sources/srtp/crypto/SrtpSymCrypto.cpp b/jni/libzrtp/sources/srtp/crypto/SrtpSymCrypto.cpp
deleted file mode 100644
index f92514d..0000000
--- a/jni/libzrtp/sources/srtp/crypto/SrtpSymCrypto.cpp
+++ /dev/null
@@ -1,328 +0,0 @@
-/*
-  Copyright (C) 2012 Werner Dittmann
-
-  This library is free software; you can redistribute it and/or
-  modify it under the terms of the GNU Lesser General Public
-  License as published by the Free Software Foundation; either
-  version 2.1 of the License, or (at your option) any later version.
-
-  This library is distributed in the hope that it will be useful,
-  but WITHOUT ANY WARRANTY; without even the implied warranty of
-  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-  Lesser General Public License for more details.
-
-  You should have received a copy of the GNU Lesser General Public
-  License along with this library; if not, write to the Free Software
-  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
-
-  * In addition, as a special exception, the copyright holders give
-  * permission to link the code of portions of this program with the
-  * OpenSSL library under certain conditions as described in each
-  * individual source file, and distribute linked combinations
-  * including the two.
-  * You must obey the GNU General Public License in all respects
-  * for all of the code used other than OpenSSL.  If you modify
-  * file(s) with this exception, you may extend this exception to your
-  * version of the file(s), but you are not obligated to do so.  If you
-  * do not wish to do so, delete this exception statement from your
-  * version.  If you delete this exception statement from all source
-  * files in the program, then also delete it here.
-  */
-
-/**
- * @author Werner Dittmann <Werner.Dittmann@t-online.de>
- */
-
-#define MAKE_F8_TEST
-
-#include <stdlib.h>
-#include <crypto/SrtpSymCrypto.h>
-#include <cryptcommon/twofish.h>
-#include <cryptcommon/aesopt.h>
-#include <string.h>
-#include <stdio.h>
-#include <common/osSpecifics.h>
-
-SrtpSymCrypto::SrtpSymCrypto(int algo):key(NULL), algorithm(algo) {
-}
-
-SrtpSymCrypto::SrtpSymCrypto( uint8_t* k, int32_t keyLength, int algo):
-    key(NULL), algorithm(algo) {
-
-    setNewKey(k, keyLength);
-}
-
-SrtpSymCrypto::~SrtpSymCrypto() {
-    if (key != NULL) {
-        if (algorithm == SrtpEncryptionAESCM || algorithm == SrtpEncryptionAESF8) {
-            AESencrypt *saAes = reinterpret_cast<AESencrypt*>(key);
-            memset(saAes->cx, 0, sizeof(aes_encrypt_ctx));
-            delete saAes;
-        }
-        else if (algorithm == SrtpEncryptionTWOCM || algorithm == SrtpEncryptionTWOF8) {
-            memset(key, 0, sizeof(Twofish_key));
-            delete[] (uint8_t*)key;
-        }
-        key = NULL;
-    }
-}
-
-static int twoFishInit = 0;
-
-bool SrtpSymCrypto::setNewKey(const uint8_t* k, int32_t keyLength) {
-    // release an existing key before setting a new one
-    if (key != NULL) {
-        if (algorithm == SrtpEncryptionAESCM || algorithm == SrtpEncryptionAESF8) {
-            AESencrypt *saAes = reinterpret_cast<AESencrypt*>(key);
-            memset(saAes->cx, 0, sizeof(aes_encrypt_ctx));
-            delete saAes;
-        }
-        else if (algorithm == SrtpEncryptionTWOCM || algorithm == SrtpEncryptionTWOF8) {
-            memset(key, 0, sizeof(Twofish_key));
-            delete[] (uint8_t*)key;
-        }
-        key = NULL;
-    }
-
-    if (!(keyLength == 16 || keyLength == 32)) {
-        return false;
-    }
-    if (algorithm == SrtpEncryptionAESCM || algorithm == SrtpEncryptionAESF8) {
-        AESencrypt *saAes = new AESencrypt();
-        if (keyLength == 16)
-            saAes->key128(k);
-        else
-            saAes->key256(k);
-        key = saAes;
-    }
-    else if (algorithm == SrtpEncryptionTWOCM || algorithm == SrtpEncryptionTWOF8) {
-        if (!twoFishInit) {
-            Twofish_initialise();
-            twoFishInit = 1;
-        }
-        key = new uint8_t[sizeof(Twofish_key)];
-        memset(key, 0, sizeof(Twofish_key));
-        Twofish_prepare_key((Twofish_Byte*)k, keyLength,  (Twofish_key*)key);
-    }
-    else
-        return false;
-
-    return true;
-}
-
-void SrtpSymCrypto::encrypt(const uint8_t* input, uint8_t* output) {
-    if (algorithm == SrtpEncryptionAESCM || algorithm == SrtpEncryptionAESF8) {
-        AESencrypt *saAes = reinterpret_cast<AESencrypt*>(key);
-        saAes->encrypt(input, output);
-    }
-    else if (algorithm == SrtpEncryptionTWOCM || algorithm == SrtpEncryptionTWOF8) {
-        Twofish_encrypt((Twofish_key*)key, (Twofish_Byte*)input,
-                        (Twofish_Byte*)output); 
-    }
-}
-
-void SrtpSymCrypto::get_ctr_cipher_stream(uint8_t* output, uint32_t length, uint8_t* iv) {
-    uint16_t ctr = 0;
-    unsigned char temp[SRTP_BLOCK_SIZE];
-
-    for(ctr = 0; ctr < length/SRTP_BLOCK_SIZE; ctr++) {
-        //compute the cipher stream
-        iv[14] = (uint8_t)((ctr & 0xFF00) >>  8);
-        iv[15] = (uint8_t)((ctr & 0x00FF));
-
-        encrypt(iv, &output[ctr*SRTP_BLOCK_SIZE]);
-    }
-    if ((length % SRTP_BLOCK_SIZE) > 0) {
-        // Treat the last bytes:
-        iv[14] = (uint8_t)((ctr & 0xFF00) >>  8);
-        iv[15] = (uint8_t)((ctr & 0x00FF));
-
-        encrypt(iv, temp);
-        memcpy(&output[ctr*SRTP_BLOCK_SIZE], temp, length % SRTP_BLOCK_SIZE );
-    }
-}
-
-void SrtpSymCrypto::ctr_encrypt(const uint8_t* input, uint32_t input_length, uint8_t* output, uint8_t* iv) {
-
-    if (key == NULL)
-        return;
-
-    uint16_t ctr = 0;
-    unsigned char temp[SRTP_BLOCK_SIZE];
-
-    int l = input_length/SRTP_BLOCK_SIZE;
-    for (ctr = 0; ctr < l; ctr++ ) {
-        iv[14] = (uint8_t)((ctr & 0xFF00) >>  8);
-        iv[15] = (uint8_t)((ctr & 0x00FF));
-
-        encrypt(iv, temp);
-        for (int i = 0; i < SRTP_BLOCK_SIZE; i++ ) {
-            *output++ = temp[i] ^ *input++;
-        }
-
-    }
-    l = input_length % SRTP_BLOCK_SIZE;
-    if (l > 0) {
-        // Treat the last bytes:
-        iv[14] = (uint8_t)((ctr & 0xFF00) >>  8);
-        iv[15] = (uint8_t)((ctr & 0x00FF));
-
-        encrypt(iv, temp);
-        for (int i = 0; i < l; i++ ) {
-            *output++ = temp[i] ^ *input++;
-        }
-    }
-}
-
-void SrtpSymCrypto::ctr_encrypt( uint8_t* data, uint32_t data_length, uint8_t* iv ) {
-
-    if (key == NULL)
-        return;
-
-    uint16_t ctr = 0;
-    unsigned char temp[SRTP_BLOCK_SIZE];
-
-    int l = data_length/SRTP_BLOCK_SIZE;
-    for (ctr = 0; ctr < l; ctr++ ) {
-        iv[14] = (uint8_t)((ctr & 0xFF00) >>  8);
-        iv[15] = (uint8_t)((ctr & 0x00FF));
-
-        encrypt(iv, temp);
-        for (int i = 0; i < SRTP_BLOCK_SIZE; i++ ) {
-            *data++ ^= temp[i];
-        }
-
-    }
-    l = data_length % SRTP_BLOCK_SIZE;
-    if (l > 0) {
-        // Treat the last bytes:
-        iv[14] = (uint8_t)((ctr & 0xFF00) >>  8);
-        iv[15] = (uint8_t)((ctr & 0x00FF));
-
-        encrypt(iv, temp);
-        for (int i = 0; i < l; i++ ) {
-            *data++ ^= temp[i];
-        }
-    }
-}
-
-void SrtpSymCrypto::f8_encrypt(const uint8_t* data, uint32_t data_length,
-                         uint8_t* iv, SrtpSymCrypto* f8Cipher ) {
-
-    f8_encrypt(data, data_length, const_cast<uint8_t*>(data), iv, f8Cipher);
-}
-
-#define MAX_KEYLEN 32
-
-void SrtpSymCrypto::f8_deriveForIV(SrtpSymCrypto* f8Cipher, uint8_t* key, int32_t keyLen,
-             uint8_t* salt, int32_t saltLen) {
-
-    unsigned char *cp_in, *cp_in1, *cp_out;
-
-    unsigned char maskedKey[MAX_KEYLEN];
-    unsigned char saltMask[MAX_KEYLEN];
-
-    if (keyLen > MAX_KEYLEN)
-        return;
-
-    if (saltLen > keyLen)
-        return;
-    /*
-     * First copy the salt into the mask field, then fill with 0x55 to
-     * get a full key.
-     */
-    memcpy(saltMask, salt, saltLen);
-    memset(saltMask+saltLen, 0x55, keyLen-saltLen);
-
-    /*
-     * XOR the original key with the above created mask to
-     * get the special key.
-     */
-    cp_out = maskedKey;
-    cp_in = key;
-    cp_in1 = saltMask;
-    for (int i = 0; i < keyLen; i++) {
-        *cp_out++ = *cp_in++ ^ *cp_in1++;
-    }
-    /*
-     * Prepare the a new AES cipher with the special key to compute IV'
-     */
-    f8Cipher->setNewKey(maskedKey, keyLen);
-}
-
-void SrtpSymCrypto::f8_encrypt(const uint8_t* in, uint32_t in_length, uint8_t* out,
-                         uint8_t* iv, SrtpSymCrypto* f8Cipher ) {
-
-
-    int offset = 0;
-
-    unsigned char ivAccent[SRTP_BLOCK_SIZE];
-    unsigned char S[SRTP_BLOCK_SIZE];
-
-    F8_CIPHER_CTX f8ctx;
-
-    if (key == NULL)
-        return;
-    /*
-     * Get memory for the derived IV (IV')
-     */
-    f8ctx.ivAccent = ivAccent;
-    /*
-     * Use the derived IV encryption setup to encrypt the original IV to produce IV'.
-     */
-    f8Cipher->encrypt(iv, f8ctx.ivAccent);
-
-    f8ctx.J = 0;                       // initialize the counter
-    f8ctx.S = S;               // get the key stream buffer
-
-    memset(f8ctx.S, 0, SRTP_BLOCK_SIZE); // initial value for key stream
-
-    while (in_length >= SRTP_BLOCK_SIZE) {
-        processBlock(&f8ctx, in+offset, SRTP_BLOCK_SIZE, out+offset);
-        in_length -= SRTP_BLOCK_SIZE;
-        offset += SRTP_BLOCK_SIZE;
-    }
-    if (in_length > 0) {
-        processBlock(&f8ctx, in+offset, in_length, out+offset);
-    }
-}
-
-int SrtpSymCrypto::processBlock(F8_CIPHER_CTX *f8ctx, const uint8_t* in, int32_t length, uint8_t* out) {
-
-    int i;
-    const uint8_t *cp_in;
-    uint8_t* cp_in1, *cp_out;
-    uint32_t *ui32p;
-
-    /*
-     * XOR the previous key stream with IV'
-     * ( S(-1) xor IV' )
-     */
-    cp_in = f8ctx->ivAccent;
-    cp_out = f8ctx->S;
-    for (i = 0; i < SRTP_BLOCK_SIZE; i++) {
-        *cp_out++ ^= *cp_in++;
-    }
-    /*
-     * Now XOR (S(n-1) xor IV') with the current counter, then increment the counter
-     */
-    ui32p = (uint32_t *)f8ctx->S;
-    ui32p[3] ^= zrtpHtonl(f8ctx->J);
-    f8ctx->J++;
-    /*
-     * Now compute the new key stream using AES encrypt
-     */
-    encrypt(f8ctx->S, f8ctx->S);
-    /*
-     * as the last step XOR the plain text with the key stream to produce
-     * the ciphertext.
-     */
-    cp_out = out;
-    cp_in = in;
-    cp_in1 = f8ctx->S;
-    for (i = 0; i < length; i++) {
-        *cp_out++ = *cp_in++ ^ *cp_in1++;
-    }
-    return length;
-}
-
diff --git a/jni/libzrtp/sources/srtp/crypto/SrtpSymCrypto.h b/jni/libzrtp/sources/srtp/crypto/SrtpSymCrypto.h
index 09bdcab..1b596c8 100644
--- a/jni/libzrtp/sources/srtp/crypto/SrtpSymCrypto.h
+++ b/jni/libzrtp/sources/srtp/crypto/SrtpSymCrypto.h
@@ -1,5 +1,5 @@
 /*

-  Copyright (C) 2008-2012 Werner Dittmann

+  Copyright (C) 2005, 2004, 2010, 2012 Erik Eliasson, Johan Bilien, Werner Dittmann

 

   This library is free software; you can redistribute it and/or

   modify it under the terms of the GNU Lesser General Public

@@ -36,7 +36,7 @@
 

 /**

  * @file SrtpSymCrypto.h

- * @brief Class which implements SRTP cryptographic functions

+ * @brief Class which implements SRTP AES cryptographic functions

  * 

  * @ingroup GNU_ZRTP

  * @{

@@ -56,7 +56,7 @@
 } F8_CIPHER_CTX;

 

 /**

- * @brief Implments the SRTP encryption modes as defined in RFC3711

+ * Implments the SRTP encryption modes as defined in RFC3711

  *

  * The SRTP specification defines two encryption modes, AES-CTR

  * (AES Counter mode) and AES-F8 mode. The AES-CTR is required,

@@ -70,43 +70,31 @@
  * The implementation uses the openSSL library as its cryptographic

  * backend.

  *

+ * @author Erik Eliasson <eliasson@it.kth.se>

+ * @author Johan Bilien <jobi@via.ecp.fr>

  * @author Werner Dittmann <Werner.Dittmann@t-online.de>

  */

 class SrtpSymCrypto {

 public:

-    /**

-     * @brief Constructor that does not initialize key data

-     *

-     * @param algo

-     *    The Encryption algorithm to use.Possible values are <code>

-     *    SrtpEncryptionNull, SrtpEncryptionAESCM, SrtpEncryptionAESF8

-     *    SrtpEncryptionTWOCM, SrtpEncryptionTWOF8</code>. See chapter 4.1.1

-     *    for CM (Counter mode) and 4.1.2 for F8 mode.

-     */

     SrtpSymCrypto(int algo = SrtpEncryptionAESCM);

 

     /**

-     * @brief Constructor that initializes key data

+     * Constructor that initializes key data

      * 

      * @param key

      *     Pointer to key bytes.

      * @param key_length

      *     Number of key bytes.

-     * @param algo

-     *    The Encryption algorithm to use.Possible values are <code>

-     *    SrtpEncryptionNull, SrtpEncryptionAESCM, SrtpEncryptionAESF8

-     *    SrtpEncryptionTWOCM, SrtpEncryptionTWOF8</code>. See chapter 4.1.1

-     *    for CM (Counter mode) and 4.1.2 for F8 mode.

      */

     SrtpSymCrypto(uint8_t* key, int32_t key_length, int algo = SrtpEncryptionAESCM);

 

     ~SrtpSymCrypto();

 

     /**

-     * @brief Encrypts the input to the output.

+     * Encrypts the inpout to the output.

      *

      * Encrypts one input block to one output block. Each block

-     * is 16 bytes according to the encryption algorithms used.

+     * is 16 bytes according to the AES encryption algorithm used.

      *

      * @param input

      *    Pointer to input block, must be 16 bytes

@@ -117,7 +105,7 @@
     void encrypt( const uint8_t* input, uint8_t* output );

 

     /**

-     * @brief Set new key

+     * Set new key

      *

      * @param key

      *   Pointer to key data, must have at least a size of keyLength 

@@ -131,7 +119,7 @@
     bool setNewKey(const uint8_t* key, int32_t keyLength);

 

     /**

-     * @brief Computes the cipher stream for AES CM mode.

+     * Computes the cipher stream for AES CM mode.

      *

      * @param output

      *    Pointer to a buffer that receives the cipher stream. Must be

@@ -148,9 +136,9 @@
     void get_ctr_cipher_stream(uint8_t* output, uint32_t length, uint8_t* iv);

 

     /**

-     * @brief Counter-mode encryption.

+     * Counter-mode encryption.

      *

-     * This method performs the CM encryption.

+     * This method performs the AES CM encryption.

      *

      * @param input

      *    Pointer to input buffer, must be <code>inputLen</code> bytes.

@@ -168,9 +156,9 @@
     void ctr_encrypt(const uint8_t* input, uint32_t inputLen, uint8_t* output, uint8_t* iv );

 

     /**

-     * @brief Counter-mode encryption, in place.

+     * Counter-mode encryption, in place.

      *

-     * This method performs the CM encryption.

+     * This method performs the AES CM encryption.

      *

      * @param data

      *    Pointer to input and output block, must be <code>dataLen</code>

@@ -186,12 +174,12 @@
     void ctr_encrypt(uint8_t* data, uint32_t data_length, uint8_t* iv );

 

     /**

-     * @brief Derive a cipher context to compute the IV'.

+     * Derive a AES context to compute the IV'.

      *

      * See chapter 4.1.2.1 in RFC 3711.

      *

      * @param f8Cipher

-     *    Pointer to the cipher context that will be used to encrypt IV to IV'

+     *    Pointer to the AES context that will be used to encrypt IV to IV'

      *

      * @param key

      *    The master key

@@ -208,9 +196,10 @@
     void f8_deriveForIV(SrtpSymCrypto* f8Cipher, uint8_t* key, int32_t keyLen, uint8_t* salt, int32_t saltLen);

 

     /**

-     * @brief F8 mode encryption, in place.

+     * AES F8 mode encryption, in place.

      *

-     * This method performs the F8 encryption, see chapter 4.1.2 in RFC 3711.

+     * This method performs the AES F8 encryption, see chapter 4.1.2

+     * in RFC 3711.

      *

      * @param data

      *    Pointer to input and output block, must be <code>dataLen</code>

@@ -229,9 +218,10 @@
     void f8_encrypt(const uint8_t* data, uint32_t dataLen, uint8_t* iv, SrtpSymCrypto* f8Cipher);

 

     /**

-     * @brief F8 mode encryption.

+     * AES F8 mode encryption.

      *

-     * This method performs the F8 encryption, see chapter 4.1.2 in RFC 3711.

+     * This method performs the AES F8 encryption, see chapter 4.1.2

+     * in RFC 3711.

      *

      * @param data

      *    Pointer to input and output block, must be <code>dataLen</code>

@@ -262,13 +252,13 @@
 int testF8();

 #pragma GCC visibility pop

 

-/* Only SrtpSymCrypto functions defines the MAKE_F8_TEST */

+/* Only SrtpSymCrypto functions define the MAKE_F8_TEST */

 #ifdef MAKE_F8_TEST

 

 #include <cstring>

 #include <iostream>

 #include <cstdio>

-#include <common/osSpecifics.h>

+#include <arpa/inet.h>

 

 using namespace std;

 

@@ -348,7 +338,7 @@
     derivedIv[0] = 0;

 

     // set ROC in network order into IV

-    ui32p[3] = zrtpHtonl(ROC);

+    ui32p[3] = htonl(ROC);

 

     int32_t pad = 0;

 

@@ -393,3 +383,11 @@
 

 #endif

 

+/** EMACS **

+ * Local variables:

+ * mode: c++

+ * c-default-style: ellemtel

+ * c-basic-offset: 4

+ * End:

+ */

+

diff --git a/jni/libzrtp/sources/srtp/crypto/brg_endian.h b/jni/libzrtp/sources/srtp/crypto/brg_endian.h
new file mode 100644
index 0000000..c03c7c5
--- /dev/null
+++ b/jni/libzrtp/sources/srtp/crypto/brg_endian.h
@@ -0,0 +1,148 @@
+/*

+ ---------------------------------------------------------------------------

+ Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.

+

+ LICENSE TERMS

+

+ The free distribution and use of this software in both source and binary

+ form is allowed (with or without changes) provided that:

+

+   1. distributions of this source code include the above copyright

+      notice, this list of conditions and the following disclaimer;

+

+   2. distributions in binary form include the above copyright

+      notice, this list of conditions and the following disclaimer

+      in the documentation and/or other associated materials;

+

+   3. the copyright holder's name is not used to endorse products

+      built using this software without specific written permission.

+

+ ALTERNATIVELY, provided that this notice is retained in full, this product

+ may be distributed under the terms of the GNU General Public License (GPL),

+ in which case the provisions of the GPL apply INSTEAD OF those given above.

+

+ DISCLAIMER

+

+ This software is provided 'as is' with no explicit or implied warranties

+ in respect of its properties, including, but not limited to, correctness

+ and/or fitness for purpose.

+ ---------------------------------------------------------------------------

+ Issue 20/10/2006

+*/

+

+#ifndef BRG_ENDIAN_H

+#define BRG_ENDIAN_H

+

+#define IS_BIG_ENDIAN      4321 /* byte 0 is most significant (mc68k) */

+#define IS_LITTLE_ENDIAN   1234 /* byte 0 is least significant (i386) */

+

+/* Include files where endian defines and byteswap functions may reside */

+#if defined( __FreeBSD__ ) || defined( __OpenBSD__ ) || defined( __NetBSD__ )

+#  include <sys/endian.h>

+#elif defined( BSD ) && ( BSD >= 199103 ) || defined( __APPLE__ ) || \

+      defined( __CYGWIN32__ ) || defined( __DJGPP__ ) || defined( __osf__ )

+#  include <machine/endian.h>

+#elif defined( __linux__ ) || defined( __GNUC__ ) || defined( __GNU_LIBRARY__ )

+#  if !defined( __MINGW32__ ) && !defined(AVR)

+#    include <endian.h>

+#    if !defined( __BEOS__ )

+#      include <byteswap.h>

+#    endif

+#  endif

+#endif

+

+/* Now attempt to set the define for platform byte order using any  */

+/* of the four forms SYMBOL, _SYMBOL, __SYMBOL & __SYMBOL__, which  */

+/* seem to encompass most endian symbol definitions                 */

+

+#if defined( BIG_ENDIAN ) && defined( LITTLE_ENDIAN )

+#  if defined( BYTE_ORDER ) && BYTE_ORDER == BIG_ENDIAN

+#    define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

+#  elif defined( BYTE_ORDER ) && BYTE_ORDER == LITTLE_ENDIAN

+#    define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

+#  endif

+#elif defined( BIG_ENDIAN )

+#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

+#elif defined( LITTLE_ENDIAN )

+#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

+#endif

+

+#if defined( _BIG_ENDIAN ) && defined( _LITTLE_ENDIAN )

+#  if defined( _BYTE_ORDER ) && _BYTE_ORDER == _BIG_ENDIAN

+#    define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

+#  elif defined( _BYTE_ORDER ) && _BYTE_ORDER == _LITTLE_ENDIAN

+#    define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

+#  endif

+#elif defined( _BIG_ENDIAN )

+#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

+#elif defined( _LITTLE_ENDIAN )

+#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

+#endif

+

+#if defined( __BIG_ENDIAN ) && defined( __LITTLE_ENDIAN )

+#  if defined( __BYTE_ORDER ) && __BYTE_ORDER == __BIG_ENDIAN

+#    define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

+#  elif defined( __BYTE_ORDER ) && __BYTE_ORDER == __LITTLE_ENDIAN

+#    define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

+#  endif

+#elif defined( __BIG_ENDIAN )

+#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

+#elif defined( __LITTLE_ENDIAN )

+#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

+#endif

+

+#if defined( __BIG_ENDIAN__ ) && defined( __LITTLE_ENDIAN__ )

+#  if defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __BIG_ENDIAN__

+#    define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

+#  elif defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __LITTLE_ENDIAN__

+#    define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

+#  endif

+#elif defined( __BIG_ENDIAN__ )

+#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

+#elif defined( __LITTLE_ENDIAN__ )

+#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

+#endif

+

+/*  if the platform byte order could not be determined, then try to */

+/*  set this define using common machine defines                    */

+#if !defined(PLATFORM_BYTE_ORDER)

+

+#if   defined( __alpha__ ) || defined( __alpha ) || defined( i386 )       || \

+      defined( __i386__ )  || defined( _M_I86 )  || defined( _M_IX86 )    || \

+      defined( __OS2__ )   || defined( sun386 )  || defined( __TURBOC__ ) || \

+      defined( vax )       || defined( vms )     || defined( VMS )        || \

+      defined( __VMS )     || defined( _M_X64 )  || defined( AVR )

+#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

+

+#elif defined( AMIGA )   || defined( applec )    || defined( __AS400__ )  || \

+      defined( _CRAY )   || defined( __hppa )    || defined( __hp9000 )   || \

+      defined( ibm370 )  || defined( mc68000 )   || defined( m68k )       || \

+      defined( __MRC__ ) || defined( __MVS__ )   || defined( __MWERKS__ ) || \

+      defined( sparc )   || defined( __sparc)    || defined( SYMANTEC_C ) || \

+      defined( __VOS__ ) || defined( __TIGCC__ ) || defined( __TANDEM )   || \

+      defined( THINK_C ) || defined( __VMCMS__ )

+#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

+

+#elif 0     /* **** EDIT HERE IF NECESSARY **** */

+#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

+#elif 0     /* **** EDIT HERE IF NECESSARY **** */

+#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

+#else

+#  error Please edit lines 126 or 128 in brg_endian.h to set the platform byte order

+#endif

+#endif

+

+/* special handler for IA64, which may be either endianness (?)  */

+/* here we assume little-endian, but this may need to be changed */

+#if defined(__ia64) || defined(__ia64__) || defined(_M_IA64)

+#  define PLATFORM_MUST_ALIGN (1)

+#ifndef PLATFORM_BYTE_ORDER

+#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

+#endif

+#endif

+

+#ifndef   PLATFORM_MUST_ALIGN

+#  define PLATFORM_MUST_ALIGN (0)

+#endif

+

+#endif  /* ifndef BRG_ENDIAN_H */

diff --git a/jni/libzrtp/sources/srtp/crypto/brg_types.h b/jni/libzrtp/sources/srtp/crypto/brg_types.h
new file mode 100644
index 0000000..6db737d
--- /dev/null
+++ b/jni/libzrtp/sources/srtp/crypto/brg_types.h
@@ -0,0 +1,188 @@
+/*

+ ---------------------------------------------------------------------------

+ Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved.

+

+ LICENSE TERMS

+

+ The free distribution and use of this software in both source and binary

+ form is allowed (with or without changes) provided that:

+

+   1. distributions of this source code include the above copyright

+      notice, this list of conditions and the following disclaimer;

+

+   2. distributions in binary form include the above copyright

+      notice, this list of conditions and the following disclaimer

+      in the documentation and/or other associated materials;

+

+   3. the copyright holder's name is not used to endorse products

+      built using this software without specific written permission.

+

+ ALTERNATIVELY, provided that this notice is retained in full, this product

+ may be distributed under the terms of the GNU General Public License (GPL),

+ in which case the provisions of the GPL apply INSTEAD OF those given above.

+

+ DISCLAIMER

+

+ This software is provided 'as is' with no explicit or implied warranties

+ in respect of its properties, including, but not limited to, correctness

+ and/or fitness for purpose.

+ ---------------------------------------------------------------------------

+ Issue 09/09/2006

+

+ The unsigned integer types defined here are of the form uint_<nn>t where

+ <nn> is the length of the type; for example, the unsigned 32-bit type is

+ 'uint_32t'.  These are NOT the same as the 'C99 integer types' that are

+ defined in the inttypes.h and stdint.h headers since attempts to use these

+ types have shown that support for them is still highly variable.  However,

+ since the latter are of the form uint<nn>_t, a regular expression search

+ and replace (in VC++ search on 'uint_{:z}t' and replace with 'uint\1_t')

+ can be used to convert the types used here to the C99 standard types.

+*/

+

+#ifndef BRG_TYPES_H

+#define BRG_TYPES_H

+

+#if defined(__cplusplus)

+extern "C" {

+#endif

+

+#include <limits.h>

+

+#ifndef BRG_UI8

+#  define BRG_UI8

+#  if UCHAR_MAX == 255u

+     typedef unsigned char uint_8t;

+#  else

+#    error Please define uint_8t as an 8-bit unsigned integer type in brg_types.h

+#  endif

+#endif

+

+#ifndef BRG_UI16

+#  define BRG_UI16

+#  if USHRT_MAX == 65535u

+     typedef unsigned short uint_16t;

+#  else

+#    error Please define uint_16t as a 16-bit unsigned short type in brg_types.h

+#  endif

+#endif

+

+#ifndef BRG_UI32

+#  define BRG_UI32

+#  if UINT_MAX == 4294967295u

+#    define li_32(h) 0x##h##u

+     typedef unsigned int uint_32t;

+#  elif ULONG_MAX == 4294967295u

+#    define li_32(h) 0x##h##ul

+     typedef unsigned long uint_32t;

+#  elif defined( _CRAY )

+#    error This code needs 32-bit data types, which Cray machines do not provide

+#  else

+#    error Please define uint_32t as a 32-bit unsigned integer type in brg_types.h

+#  endif

+#endif

+

+#ifndef BRG_UI64

+#  if defined( __BORLANDC__ ) && !defined( __MSDOS__ )

+#    define BRG_UI64

+#    define li_64(h) 0x##h##ui64

+     typedef unsigned __int64 uint_64t;

+#  elif defined( _MSC_VER ) && ( _MSC_VER < 1300 )    /* 1300 == VC++ 7.0 */

+#    define BRG_UI64

+#    define li_64(h) 0x##h##ui64

+     typedef unsigned __int64 uint_64t;

+#  elif defined( __sun ) && defined(ULONG_MAX) && ULONG_MAX == 0xfffffffful

+#    define BRG_UI64

+#    define li_64(h) 0x##h##ull

+     typedef unsigned long long uint_64t;

+#  elif defined( UINT_MAX ) && UINT_MAX > 4294967295u

+#    if UINT_MAX == 18446744073709551615u

+#      define BRG_UI64

+#      define li_64(h) 0x##h##u

+       typedef unsigned int uint_64t;

+#    endif

+#  elif defined( ULONG_MAX ) && ULONG_MAX > 4294967295u

+#    if ULONG_MAX == 18446744073709551615ul

+#      define BRG_UI64

+#      define li_64(h) 0x##h##ul

+       typedef unsigned long uint_64t;

+#    endif

+#  elif defined( ULLONG_MAX ) && ULLONG_MAX > 4294967295u

+#    if ULLONG_MAX == 18446744073709551615ull

+#      define BRG_UI64

+#      define li_64(h) 0x##h##ull

+       typedef unsigned long long uint_64t;

+#    endif

+#  elif defined( ULONG_LONG_MAX ) && ULONG_LONG_MAX > 4294967295u

+#    if ULONG_LONG_MAX == 18446744073709551615ull

+#      define BRG_UI64

+#      define li_64(h) 0x##h##ull

+       typedef unsigned long long uint_64t;

+#    endif

+#  elif defined(__GNUC__)  /* DLW: avoid mingw problem with -ansi */

+#      define BRG_UI64

+#      define li_64(h) 0x##h##ull

+       typedef unsigned long long uint_64t;

+#  endif

+#endif

+

+#if defined( NEED_UINT_64T ) && !defined( BRG_UI64 )

+#  error Please define uint_64t as an unsigned 64 bit type in brg_types.h

+#endif

+

+#ifndef RETURN_VALUES

+#  define RETURN_VALUES

+#  if defined( DLL_EXPORT )

+#    if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )

+#      define VOID_RETURN    __declspec( dllexport ) void __stdcall

+#      define INT_RETURN     __declspec( dllexport ) int  __stdcall

+#    elif defined( __GNUC__ )

+#      define VOID_RETURN    __declspec( __dllexport__ ) void

+#      define INT_RETURN     __declspec( __dllexport__ ) int

+#    else

+#      error Use of the DLL is only available on the Microsoft, Intel and GCC compilers

+#    endif

+#  elif defined( DLL_IMPORT )

+#    if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )

+#      define VOID_RETURN    __declspec( dllimport ) void __stdcall

+#      define INT_RETURN     __declspec( dllimport ) int  __stdcall

+#    elif defined( __GNUC__ )

+#      define VOID_RETURN    __declspec( __dllimport__ ) void

+#      define INT_RETURN     __declspec( __dllimport__ ) int

+#    else

+#      error Use of the DLL is only available on the Microsoft, Intel and GCC compilers

+#    endif

+#  elif defined( __WATCOMC__ )

+#    define VOID_RETURN  void __cdecl

+#    define INT_RETURN   int  __cdecl

+#  else

+#    define VOID_RETURN  void

+#    define INT_RETURN   int

+#  endif

+#endif

+

+/*  These defines are used to declare buffers in a way that allows

+    faster operations on longer variables to be used.  In all these

+    defines 'size' must be a power of 2 and >= 8

+

+    dec_unit_type(size,x)       declares a variable 'x' of length 

+                                'size' bits

+

+    dec_bufr_type(size,bsize,x) declares a buffer 'x' of length 'bsize' 

+                                bytes defined as an array of variables

+                                each of 'size' bits (bsize must be a 

+                                multiple of size / 8)

+

+    ptr_cast(x,size)            casts a pointer to a pointer to a 

+                                varaiable of length 'size' bits

+*/

+

+#define ui_type(size)               uint_##size##t

+#define dec_unit_type(size,x)       typedef ui_type(size) x

+#define dec_bufr_type(size,bsize,x) typedef ui_type(size) x[bsize / (size >> 3)]

+#define ptr_cast(x,size)            ((ui_type(size)*)(x))

+

+#if defined(__cplusplus)

+}

+#endif

+

+#endif

diff --git a/jni/libzrtp/sources/srtp/crypto/gcrypt/InitializeGcrypt.cpp b/jni/libzrtp/sources/srtp/crypto/gcrypt/InitializeGcrypt.cpp
index 1c743d2..78fad51 100644
--- a/jni/libzrtp/sources/srtp/crypto/gcrypt/InitializeGcrypt.cpp
+++ b/jni/libzrtp/sources/srtp/crypto/gcrypt/InitializeGcrypt.cpp
@@ -1,8 +1,8 @@
 /*
-  Copyright (C) 2006-2013 Werner Dittmann
+  Copyright (C) 2006-2007 Werner Dittmann
 
   This program is free software: you can redistribute it and/or modify
-  it under the terms of the GNU Lesser General Public License as published by
+  it under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.
 
@@ -17,7 +17,7 @@
 
 #include <stdio.h>
 
-#include <string.h>
+#include <malloc.h>
 #include <pthread.h>
 #include <errno.h>
 #include <gcrypt.h>
diff --git a/jni/libzrtp/sources/srtp/crypto/hmac.cpp b/jni/libzrtp/sources/srtp/crypto/hmac.cpp
deleted file mode 100644
index 38028a3..0000000
--- a/jni/libzrtp/sources/srtp/crypto/hmac.cpp
+++ /dev/null
@@ -1,186 +0,0 @@
-/*
-  Copyright (C) 2012 Werner Dittmann
-
-  This library is free software; you can redistribute it and/or
-  modify it under the terms of the GNU Lesser General Public
-  License as published by the Free Software Foundation; either
-  version 2.1 of the License, or (at your option) any later version.
-
-  This library is distributed in the hope that it will be useful,
-  but WITHOUT ANY WARRANTY; without even the implied warranty of
-  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-  Lesser General Public License for more details.
-
-  You should have received a copy of the GNU Lesser General Public
-  License along with this library; if not, write to the Free Software
-  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
-
- * In addition, as a special exception, the copyright holders give
- * permission to link the code of portions of this program with the
- * OpenSSL library under certain conditions as described in each
- * individual source file, and distribute linked combinations
- * including the two.
- * You must obey the GNU General Public License in all respects
- * for all of the code used other than OpenSSL.  If you modify
- * file(s) with this exception, you may extend this exception to your
- * version of the file(s), but you are not obligated to do so.  If you
- * do not wish to do so, delete this exception statement from your
- * version.  If you delete this exception statement from all source
- * files in the program, then also delete it here.
- */
-
-/*
- * Authors: Werner Dittmann
- */
-
-#include <stdint.h>
-#include <string.h>
-#include <stdio.h>
-#include "crypto/sha1.h"
-#include "crypto/hmac.h"
-
-typedef struct _hmacSha1Context {
-    sha1_ctx ctx;
-    sha1_ctx innerCtx;
-    sha1_ctx outerCtx;
-} hmacSha1Context;
-
-static int32_t hmacSha1Init(hmacSha1Context *ctx, const uint8_t *key, uint32_t kLength)
-{
-    int32_t i;
-    uint8_t localPad[SHA1_BLOCK_SIZE] = {0};
-    uint8_t localKey[SHA1_BLOCK_SIZE] = {0};
-
-    if (key == NULL)
-        return 0;
-
-    memset(ctx, 0, sizeof(hmacSha1Context));
-
-    /* check key length and reduce it if necessary */
-    if (kLength > SHA1_BLOCK_SIZE) {
-        sha1_begin(&ctx->ctx);
-        sha1_hash(key, kLength, &ctx->ctx);
-        sha1_end(localKey, &ctx->ctx);
-    }
-    else {
-        memcpy(localKey, key, kLength);
-    }
-    /* prepare inner hash and hold the context */
-    for (i = 0; i < SHA1_BLOCK_SIZE; i++)
-        localPad[i] = localKey[i] ^ 0x36;
-
-    sha1_begin(&ctx->innerCtx);
-    sha1_hash(localPad, SHA1_BLOCK_SIZE, &ctx->innerCtx);
-
-    /* prepare outer hash and hold the context */
-    for (i = 0; i < SHA1_BLOCK_SIZE; i++)
-        localPad[i] = localKey[i] ^ 0x5c;
-
-    sha1_begin(&ctx->outerCtx);
-    sha1_hash(localPad, SHA1_BLOCK_SIZE, &ctx->outerCtx);
-
-    /* copy prepared inner hash to work hash - ready to process data */
-    memcpy(&ctx->ctx, &ctx->innerCtx, sizeof(sha1_ctx));
-
-    memset(localKey, 0, sizeof(localKey));
-
-    return 1;
-}
-
-static void hmacSha1Reset(hmacSha1Context *ctx)
-{
-    /* copy prepared inner hash to work hash context */
-    memcpy(&ctx->ctx, &ctx->innerCtx, sizeof(sha1_ctx));
-}
-
-static void hmacSha1Update(hmacSha1Context *ctx, const uint8_t *data, uint32_t dLength)
-{
-    /* hash new data to work hash context */
-    sha1_hash(data, dLength, &ctx->ctx);
-}
-
-static void hmacSha1Final(hmacSha1Context *ctx, uint8_t *mac)
-{
-    uint8_t tmpDigest[SHA1_DIGEST_SIZE];
-
-    /* finalize work hash context */
-    sha1_end(tmpDigest, &ctx->ctx);
-
-    /* copy prepared outer hash to work hash */
-    memcpy(&ctx->ctx, &ctx->outerCtx, sizeof(sha1_ctx));
-
-    /* hash inner digest to work (outer) hash context */
-    sha1_hash(tmpDigest, SHA1_DIGEST_SIZE, &ctx->ctx);
-
-    /* finalize work hash context to get the hmac*/
-    sha1_end(mac, &ctx->ctx);
-}
-
-
-void hmac_sha1(uint8_t *key, int32_t keyLength, const uint8_t* data, uint32_t dataLength, uint8_t* mac, int32_t* macLength)
-{
-    hmacSha1Context ctx;
-
-    hmacSha1Init(&ctx, key, keyLength);
-    hmacSha1Update(&ctx, data, dataLength);
-    hmacSha1Final(&ctx, mac);
-    *macLength = SHA1_BLOCK_SIZE;
-}
-
-void hmac_sha1( uint8_t* key, int32_t keyLength, const uint8_t* dataChunks[], uint32_t dataChunckLength[],
-                uint8_t* mac, int32_t* macLength )
-{
-    hmacSha1Context ctx;
-
-    hmacSha1Init(&ctx, key, keyLength);
-
-    while (*dataChunks) {
-        hmacSha1Update(&ctx, *dataChunks, *dataChunckLength);
-        dataChunks ++;
-        dataChunckLength ++;
-    }
-    hmacSha1Final(&ctx, mac);
-    *macLength = SHA1_BLOCK_SIZE;
-}
-
-void* createSha1HmacContext(uint8_t* key, int32_t keyLength)
-{
-    hmacSha1Context *ctx = reinterpret_cast<hmacSha1Context*>(malloc(sizeof(hmacSha1Context)));
-
-    hmacSha1Init(ctx, key, keyLength);
-    return ctx;
-}
-
-void hmacSha1Ctx(void* ctx, const uint8_t* data, uint32_t dataLength,
-                uint8_t* mac, int32_t* macLength)
-{
-    hmacSha1Context *pctx = (hmacSha1Context*)ctx;
-
-    hmacSha1Reset(pctx);
-    hmacSha1Update(pctx, data, dataLength);
-    hmacSha1Final(pctx, mac);
-    *macLength = SHA1_BLOCK_SIZE;
-}
-
-void hmacSha1Ctx(void* ctx, const uint8_t* data[], uint32_t dataLength[],
-                uint8_t* mac, int32_t* macLength )
-{
-    hmacSha1Context *pctx = (hmacSha1Context*)ctx;
-
-    hmacSha1Reset(pctx);
-    while (*data) {
-        hmacSha1Update(pctx, *data, *dataLength);
-        data++;
-        dataLength++;
-    }
-    hmacSha1Final(pctx, mac);
-    *macLength = SHA1_BLOCK_SIZE;
-}
-
-void freeSha1HmacContext(void* ctx)
-{
-    if (ctx) {
-        memset(ctx, 0, sizeof(hmacSha1Context));
-        free(ctx);
-    }
-}
\ No newline at end of file
diff --git a/jni/libzrtp/sources/srtp/crypto/hmac.h b/jni/libzrtp/sources/srtp/crypto/hmac.h
index 6d99f92..4abfa8f 100644
--- a/jni/libzrtp/sources/srtp/crypto/hmac.h
+++ b/jni/libzrtp/sources/srtp/crypto/hmac.h
@@ -1,5 +1,5 @@
 /*
-  Copyright (C) 2010 Werner Dittmann
+  Copyright (C) 2005, 2004, 2010 Erik Eliasson, Johan Bilien, Werner Dittmann
 
   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
@@ -32,6 +32,8 @@
 /**
  * Functions to compute SHA1 HAMAC.
  *
+ * @author Erik Eliasson <eliasson@it.kth.se>
+ * @author Johan Bilien <jobi@via.ecp.fr>
  * @author Werner Dittmann
  */
 
diff --git a/jni/libzrtp/sources/srtp/crypto/macSkein.cpp b/jni/libzrtp/sources/srtp/crypto/macSkein.cpp
new file mode 100644
index 0000000..ba4c260
--- /dev/null
+++ b/jni/libzrtp/sources/srtp/crypto/macSkein.cpp
@@ -0,0 +1,89 @@
+/*
+  Copyright (C) 2010 Werner Dittmann
+
+  This program is free software: you can redistribute it and/or modify
+  it under the terms of the GNU General Public License as published by
+  the Free Software Foundation, either version 3 of the License, or
+  (at your option) any later version.
+
+  This program is distributed in the hope that it will be useful,
+  but WITHOUT ANY WARRANTY; without even the implied warranty of
+  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  GNU General Public License for more details.
+
+  You should have received a copy of the GNU General Public License
+  along with this program.  If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#include <crypto/macSkein.h>
+#include <stdlib.h>
+
+void macSkein(uint8_t* key, int32_t key_length,
+               const uint8_t* data, uint32_t data_length,
+               uint8_t* mac, int32_t mac_length, SkeinSize_t skeinSize)
+{
+    SkeinCtx_t ctx;
+
+    skeinCtxPrepare(&ctx, skeinSize);
+
+    skeinMacInit(&ctx, key, key_length, mac_length);
+    skeinUpdate(&ctx, data, data_length);
+    skeinFinal(&ctx, mac);
+}
+
+void macSkein(uint8_t* key, int32_t key_length,
+               const uint8_t* data[], uint32_t data_length[],
+               uint8_t* mac, int32_t mac_length, SkeinSize_t skeinSize)
+{
+    SkeinCtx_t ctx;
+
+    skeinCtxPrepare(&ctx, skeinSize);
+
+    skeinMacInit(&ctx, key, key_length, mac_length);
+    while (*data) {
+        skeinUpdate(&ctx, *data, *data_length);
+        data++;
+        data_length ++;
+    }
+    skeinFinal(&ctx, mac);
+}
+
+void* createSkeinMacContext(uint8_t* key, int32_t key_length, 
+                            int32_t mac_length, SkeinSize_t skeinSize)
+{
+    SkeinCtx_t* ctx = (SkeinCtx_t*)malloc(sizeof(SkeinCtx_t));
+
+    skeinCtxPrepare(ctx, skeinSize);
+    skeinMacInit(ctx, key, key_length, mac_length);
+    return ctx;
+}
+
+void macSkeinCtx(void* ctx, const uint8_t* data, uint32_t data_length,
+                uint8_t* mac)
+{
+    SkeinCtx_t* pctx = (SkeinCtx_t*)ctx;
+
+    skeinUpdate(pctx, data, data_length);
+    skeinFinal(pctx, mac);
+    skeinReset(pctx);
+}
+
+void macSkeinCtx(void* ctx, const uint8_t* data[], uint32_t data_length[],
+                uint8_t* mac)
+{
+    SkeinCtx_t* pctx = (SkeinCtx_t*)ctx;
+
+    while (*data) {
+        skeinUpdate(pctx, *data, *data_length);
+        data++;
+        data_length++;
+    }
+    skeinFinal(pctx, mac);
+    skeinReset(pctx);
+}
+
+void freeSkeinMacContext(void* ctx)
+{
+    if (ctx)
+        free(ctx);
+}
diff --git a/jni/libzrtp/sources/srtp/crypto/macSkein.h b/jni/libzrtp/sources/srtp/crypto/macSkein.h
new file mode 100644
index 0000000..71c2ad9
--- /dev/null
+++ b/jni/libzrtp/sources/srtp/crypto/macSkein.h
@@ -0,0 +1,148 @@
+/*
+  Copyright (C) 2010 Werner Dittmann
+
+  This program is free software: you can redistribute it and/or modify
+  it under the terms of the GNU General Public License as published by
+  the Free Software Foundation, either version 3 of the License, or
+  (at your option) any later version.
+
+  This program is distributed in the hope that it will be useful,
+  but WITHOUT ANY WARRANTY; without even the implied warranty of
+  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  GNU General Public License for more details.
+
+  You should have received a copy of the GNU General Public License
+  along with this program.  If not, see <http://www.gnu.org/licenses/>.
+*/
+
+
+#ifndef MAC_SKEIN_H
+#define MAC_SKEIN_H
+
+#include <crypto/skeinApi.h>
+/**
+ * @file macSkein.h
+ * @brief Function that provide Skein MAC support
+ * 
+ *
+ * Functions to compute Skein MAC.
+ *
+ * @ingroup GNU_ZRTP
+ * @{
+ */
+
+/**
+ * Compute Skein MAC.
+ *
+ * This functions takes one data chunk and computes its Skein MAC.
+ *
+ * @param key
+ *    The MAC key.
+ * @param key_length
+ *    Lneght of the MAC key in bytes
+ * @param data
+ *    Points to the data chunk.
+ * @param data_length
+ *    Length of the data in bytes
+ * @param mac
+ *    Points to a buffer that receives the computed digest.
+ * @param mac_length
+ *    Integer that contains the length of the MAC in bits (not bytes).
+ * @param skeinSize
+ *    The Skein size to use.
+ */
+void macSkein( uint8_t* key, int32_t key_length,
+                const uint8_t* data, uint32_t data_length,
+                uint8_t* mac, int32_t mac_length, SkeinSize_t skeinSize );
+
+/**
+ * Compute Skein MAC over several data cunks.
+ *
+ * This functions takes several data chunk and computes the Skein MAC.
+ *
+ * @param key
+ *    The MAC key.
+ * @param key_length
+ *    Lneght of the MAC key in bytes
+ * @param data
+ *    Points to an array of pointers that point to the data chunks. A NULL
+ *    pointer in an array element terminates the data chunks.
+ * @param data_length
+ *    Points to an array of integers that hold the length of each data chunk.
+ * @param mac
+ *    Points to a buffer that receives the computed digest.
+ * @param mac_length
+ *    Integer that contains the length of the MAC in bits (not bytes).
+ * @param skeinSize
+ *    The Skein size to use.
+ */
+void macSkein( uint8_t* key, int32_t key_length,
+                const uint8_t* data[], uint32_t data_length[],
+                uint8_t* mac, int32_t mac_length, SkeinSize_t skeinSize);
+
+/**
+ * Create and initialize a Skein MAC context.
+ *
+ * An application uses this context to hash several data with on Skein MAC
+ * Context with the same key, key length and mac length
+ *
+ * @param key
+ *    The MAC key.
+ * @param key_length
+ *    Lenght of the MAC key in bytes
+ * @param mac_length
+ *    Integer that contains the length of the MAC in bits (not bytes).
+ * @param skeinSize
+ *    The Skein size to use.
+ * @return Returns a pointer to the initialized context
+ */
+void* createSkeinMacContext(uint8_t* key, int32_t key_length, 
+                            int32_t mac_length, SkeinSize_t skeinSize);
+
+/**
+ * Compute Skein MAC.
+ *
+ * This functions takes one data chunk and computes its Skein MAC.
+ *
+ * @param ctx
+ *     Pointer to initialized Skein MAC context
+ * @param data
+ *    Points to the data chunk.
+ * @param data_length
+ *    Length of the data in bytes
+ * @param mac
+ *    Points to a buffer that receives the computed digest.
+ */
+
+void macSkeinCtx(void* ctx, const uint8_t* data, uint32_t data_length,
+                uint8_t* mac);
+
+/**
+ * Compute Skein MAC over several data cunks.
+ *
+ * This functions takes several data chunk and computes the SHA1 HAMAC.
+ *
+ * @param ctx 
+ *     Pointer to initialized Skein MAC context
+ * @param data
+ *    Points to an array of pointers that point to the data chunks. A NULL
+ *    pointer in an array element terminates the data chunks.
+ * @param data_length
+ *    Points to an array of integers that hold the length of each data chunk.
+ * @param mac
+ *    Points to a buffer that receives the computed digest.
+ */
+void macSkeinCtx(void* ctx, const uint8_t* data[], uint32_t data_length[],
+                uint8_t* mac);
+
+/**
+ * Free Skein MAC context.
+ *
+ * @param ctx a pointer to Skein MAC context
+ */
+void freeSkeinMacContext(void* ctx);
+
+/**
+ * @}
+ */
+#endif
\ No newline at end of file
diff --git a/jni/libzrtp/sources/srtp/crypto/openssl/SrtpSymCrypto.cpp b/jni/libzrtp/sources/srtp/crypto/openssl/SrtpSymCrypto.cpp
index 00d4476..3d6747d 100644
--- a/jni/libzrtp/sources/srtp/crypto/openssl/SrtpSymCrypto.cpp
+++ b/jni/libzrtp/sources/srtp/crypto/openssl/SrtpSymCrypto.cpp
@@ -1,5 +1,5 @@
 /*
-  Copyright (C) 2012 Werner Dittmann
+  Copyright (C) 2005, 2004, 2012 Erik Eliasson, Johan Bilien, Werner Dittmann
 
   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
@@ -30,6 +30,8 @@
   */
 
 /**
+ * @author Erik Eliasson <eliasson@it.kth.se>
+ * @author Johan Bilien <jobi@via.ecp.fr>
  * @author Werner Dittmann <Werner.Dittmann@t-online.de>
  */
 
@@ -38,10 +40,10 @@
 #include <stdlib.h>
 #include <openssl/aes.h>                // the include of openSSL
 #include <crypto/SrtpSymCrypto.h>
-#include <cryptcommon/twofish.h>
+#include <crypto/twofish.h>
 #include <string.h>
 #include <stdio.h>
-#include <common/osSpecifics.h>
+#include <arpa/inet.h>
 
 SrtpSymCrypto::SrtpSymCrypto(int algo):key(NULL), algorithm(algo) {
 }
@@ -294,7 +296,7 @@
      * Now XOR (S(n-1) xor IV') with the current counter, then increment the counter
      */
     ui32p = (uint32_t *)f8ctx->S;
-    ui32p[3] ^= zrtpHtonl(f8ctx->J);
+    ui32p[3] ^= htonl(f8ctx->J);
     f8ctx->J++;
     /*
      * Now compute the new key stream using AES encrypt
@@ -313,3 +315,12 @@
     return length;
 }
 
+
+/** EMACS **
+ * Local variables:
+ * mode: c++
+ * c-default-style: ellemtel
+ * c-basic-offset: 4
+ * End:
+ */
+
diff --git a/jni/libzrtp/sources/srtp/crypto/openssl/hmac.cpp b/jni/libzrtp/sources/srtp/crypto/openssl/hmac.cpp
index cfe73c3..88d33a1 100644
--- a/jni/libzrtp/sources/srtp/crypto/openssl/hmac.cpp
+++ b/jni/libzrtp/sources/srtp/crypto/openssl/hmac.cpp
@@ -1,5 +1,5 @@
 /*
-  Copyright (C) 2010 Werner Dittmann
+  Copyright (C) 2005, 2004, 2010, Erik Eliasson, Johan Bilien, Werner Dittmann
 
   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
@@ -30,7 +30,9 @@
  */
 
 /*
- * Authors: Werner Dittmann
+ * Authors: Erik Eliasson <eliasson@it.kth.se>
+ *          Johan Bilien <jobi@via.ecp.fr>
+ *          Werner Dittmann
  */
 
 #include <stdint.h>
@@ -65,7 +67,7 @@
 void* createSha1HmacContext(uint8_t* key, int32_t key_length)
 {
     HMAC_CTX* ctx = (HMAC_CTX*)malloc(sizeof(HMAC_CTX));
-
+    
     HMAC_CTX_init(ctx);
     HMAC_Init_ex(ctx, key, key_length, EVP_sha1(), NULL);
     return ctx;
diff --git a/jni/libzrtp/sources/srtp/crypto/sha1.c b/jni/libzrtp/sources/srtp/crypto/sha1.c
deleted file mode 100644
index 31cee60..0000000
--- a/jni/libzrtp/sources/srtp/crypto/sha1.c
+++ /dev/null
@@ -1,258 +0,0 @@
-/*
- ---------------------------------------------------------------------------
- Copyright (c) 2002, Dr Brian Gladman, Worcester, UK.   All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
-
-   1. distributions of this source code include the above copyright
-      notice, this list of conditions and the following disclaimer;
-
-   2. distributions in binary form include the above copyright
-      notice, this list of conditions and the following disclaimer
-      in the documentation and/or other associated materials;
-
-   3. the copyright holder's name is not used to endorse products
-      built using this software without specific written permission.
-
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 01/08/2005
-
- This is a byte oriented version of SHA1 that operates on arrays of bytes
- stored in memory.
-*/
-
-#include <string.h>     /* for memcpy() etc.        */
-
-#include "sha1.h"
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
-#pragma intrinsic(memcpy)
-#endif
-
-#if 0 && defined(_MSC_VER)
-#define rotl32  _lrotl
-#define rotr32  _lrotr
-#else
-#define rotl32(x,n)   (((x) << n) | ((x) >> (32 - n)))
-#define rotr32(x,n)   (((x) >> n) | ((x) << (32 - n)))
-#endif
-
-#if !defined(bswap_32)
-#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
-#endif
-
-#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
-#define SWAP_BYTES
-#else
-#undef  SWAP_BYTES
-#endif
-
-#if defined(SWAP_BYTES)
-#define bsw_32(p,n) \
-    { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
-#else
-#define bsw_32(p,n)
-#endif
-
-#define SHA1_MASK   (SHA1_BLOCK_SIZE - 1)
-
-#if 0
-
-#define ch(x,y,z)       (((x) & (y)) ^ (~(x) & (z)))
-#define parity(x,y,z)   ((x) ^ (y) ^ (z))
-#define maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
-
-#else   /* Discovered by Rich Schroeppel and Colin Plumb   */
-
-#define ch(x,y,z)       ((z) ^ ((x) & ((y) ^ (z))))
-#define parity(x,y,z)   ((x) ^ (y) ^ (z))
-#define maj(x,y,z)      (((x) & (y)) | ((z) & ((x) ^ (y))))
-
-#endif
-
-/* Compile 64 bytes of hash data into SHA1 context. Note    */
-/* that this routine assumes that the byte order in the     */
-/* ctx->wbuf[] at this point is in such an order that low   */
-/* address bytes in the ORIGINAL byte stream will go in     */
-/* this buffer to the high end of 32-bit words on BOTH big  */
-/* and little endian systems                                */
-
-#ifdef ARRAY
-#define q(v,n)  v[n]
-#else
-#define q(v,n)  v##n
-#endif
-
-#define one_cycle(v,a,b,c,d,e,f,k,h)            \
-    q(v,e) += rotr32(q(v,a),27) +               \
-              f(q(v,b),q(v,c),q(v,d)) + k + h;  \
-    q(v,b)  = rotr32(q(v,b), 2)
-
-#define five_cycle(v,f,k,i)                 \
-    one_cycle(v, 0,1,2,3,4, f,k,hf(i  ));   \
-    one_cycle(v, 4,0,1,2,3, f,k,hf(i+1));   \
-    one_cycle(v, 3,4,0,1,2, f,k,hf(i+2));   \
-    one_cycle(v, 2,3,4,0,1, f,k,hf(i+3));   \
-    one_cycle(v, 1,2,3,4,0, f,k,hf(i+4))
-
-VOID_RETURN sha1_compile(sha1_ctx ctx[1])
-{   uint_32t    *w = ctx->wbuf;
-
-#ifdef ARRAY
-    uint_32t    v[5];
-    memcpy(v, ctx->hash, 5 * sizeof(uint_32t));
-#else
-    uint_32t    v0, v1, v2, v3, v4;
-    v0 = ctx->hash[0]; v1 = ctx->hash[1];
-    v2 = ctx->hash[2]; v3 = ctx->hash[3];
-    v4 = ctx->hash[4];
-#endif
-
-#define hf(i)   w[i]
-
-    five_cycle(v, ch, 0x5a827999,  0);
-    five_cycle(v, ch, 0x5a827999,  5);
-    five_cycle(v, ch, 0x5a827999, 10);
-    one_cycle(v,0,1,2,3,4, ch, 0x5a827999, hf(15)); \
-
-#undef  hf
-#define hf(i) (w[(i) & 15] = rotl32(                    \
-                 w[((i) + 13) & 15] ^ w[((i) + 8) & 15] \
-               ^ w[((i) +  2) & 15] ^ w[(i) & 15], 1))
-
-    one_cycle(v,4,0,1,2,3, ch, 0x5a827999, hf(16));
-    one_cycle(v,3,4,0,1,2, ch, 0x5a827999, hf(17));
-    one_cycle(v,2,3,4,0,1, ch, 0x5a827999, hf(18));
-    one_cycle(v,1,2,3,4,0, ch, 0x5a827999, hf(19));
-
-    five_cycle(v, parity, 0x6ed9eba1,  20);
-    five_cycle(v, parity, 0x6ed9eba1,  25);
-    five_cycle(v, parity, 0x6ed9eba1,  30);
-    five_cycle(v, parity, 0x6ed9eba1,  35);
-
-    five_cycle(v, maj, 0x8f1bbcdc,  40);
-    five_cycle(v, maj, 0x8f1bbcdc,  45);
-    five_cycle(v, maj, 0x8f1bbcdc,  50);
-    five_cycle(v, maj, 0x8f1bbcdc,  55);
-
-    five_cycle(v, parity, 0xca62c1d6,  60);
-    five_cycle(v, parity, 0xca62c1d6,  65);
-    five_cycle(v, parity, 0xca62c1d6,  70);
-    five_cycle(v, parity, 0xca62c1d6,  75);
-
-#ifdef ARRAY
-    ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
-    ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
-    ctx->hash[4] += v[4];
-#else
-    ctx->hash[0] += v0; ctx->hash[1] += v1;
-    ctx->hash[2] += v2; ctx->hash[3] += v3;
-    ctx->hash[4] += v4;
-#endif
-}
-
-VOID_RETURN sha1_begin(sha1_ctx ctx[1])
-{
-    ctx->count[0] = ctx->count[1] = 0;
-    ctx->hash[0] = 0x67452301;
-    ctx->hash[1] = 0xefcdab89;
-    ctx->hash[2] = 0x98badcfe;
-    ctx->hash[3] = 0x10325476;
-    ctx->hash[4] = 0xc3d2e1f0;
-}
-
-/* SHA1 hash data in an array of bytes into hash buffer and */
-/* call the hash_compile function as required.              */
-
-VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1])
-{   
-	uint_32t pos = (uint_32t)(ctx->count[0] & SHA1_MASK),
-            space = SHA1_BLOCK_SIZE - pos;
-    const unsigned char *sp = data;
-
-    if((ctx->count[0] += len) < len)
-        ++(ctx->count[1]);
-
-    while(len >= space)     /* tranfer whole blocks if possible  */
-    {
-        memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
-        sp += space; len -= space; space = SHA1_BLOCK_SIZE; pos = 0;
-        bsw_32(ctx->wbuf, SHA1_BLOCK_SIZE >> 2);
-        sha1_compile(ctx);
-    }
-
-    memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
-}
-
-/* SHA1 final padding and digest calculation  */
-
-VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1])
-{   uint_32t    i = (uint_32t)(ctx->count[0] & SHA1_MASK);
-
-    /* put bytes in the buffer in an order in which references to   */
-    /* 32-bit words will put bytes with lower addresses into the    */
-    /* top of 32 bit words on BOTH big and little endian machines   */
-    bsw_32(ctx->wbuf, (i + 3) >> 2);
-
-    /* we now need to mask valid bytes and add the padding which is */
-    /* a single 1 bit and as many zero bits as necessary. Note that */
-    /* we can always add the first padding byte here because the    */
-    /* buffer always has at least one empty slot                    */
-    ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
-    ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);
-
-    /* we need 9 or more empty positions, one for the padding byte  */
-    /* (above) and eight for the length count. If there is not      */
-    /* enough space, pad and empty the buffer                       */
-    if(i > SHA1_BLOCK_SIZE - 9)
-    {
-        if(i < 60) ctx->wbuf[15] = 0;
-        sha1_compile(ctx);
-        i = 0;
-    }
-    else    /* compute a word index for the empty buffer positions  */
-        i = (i >> 2) + 1;
-
-    while(i < 14) /* and zero pad all but last two positions        */
-        ctx->wbuf[i++] = 0;
-
-    /* the following 32-bit length fields are assembled in the      */
-    /* wrong byte order on little endian machines but this is       */
-    /* corrected later since they are only ever used as 32-bit      */
-    /* word values.                                                 */
-    ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
-    ctx->wbuf[15] = ctx->count[0] << 3;
-    sha1_compile(ctx);
-
-    /* extract the hash value as bytes in case the hash buffer is   */
-    /* misaligned for 32-bit words                                  */
-    for(i = 0; i < SHA1_DIGEST_SIZE; ++i)
-        hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
-}
-
-VOID_RETURN bg_sha1(unsigned char hval[], const unsigned char data[], unsigned long len)
-{   sha1_ctx    cx[1];
-
-    sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx);
-}
-
-#if defined(__cplusplus)
-}
-#endif
diff --git a/jni/libzrtp/sources/srtp/crypto/sha1.h b/jni/libzrtp/sources/srtp/crypto/sha1.h
deleted file mode 100644
index 79fb680..0000000
--- a/jni/libzrtp/sources/srtp/crypto/sha1.h
+++ /dev/null
@@ -1,73 +0,0 @@
-/*
- ---------------------------------------------------------------------------
- Copyright (c) 2002, Dr Brian Gladman, Worcester, UK.   All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
-
-   1. distributions of this source code include the above copyright
-      notice, this list of conditions and the following disclaimer;
-
-   2. distributions in binary form include the above copyright
-      notice, this list of conditions and the following disclaimer
-      in the documentation and/or other associated materials;
-
-   3. the copyright holder's name is not used to endorse products
-      built using this software without specific written permission.
-
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 01/08/2005
-*/
-
-#ifndef _SHA1_H
-#define _SHA1_H
-
-#include <stdlib.h>
-#include <cryptcommon/brg_types.h>
-
-#define SHA1_BLOCK_SIZE  64
-#define SHA1_DIGEST_SIZE 20
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-/* type to hold the SHA256 context  */
-
-typedef struct
-{   uint_32t count[2];
-    uint_32t hash[5];
-    uint_32t wbuf[16];
-} sha1_ctx;
-
-/* Note that these prototypes are the same for both bit and */
-/* byte oriented implementations. However the length fields */
-/* are in bytes or bits as appropriate for the version used */
-/* and bit sequences are input as arrays of bytes in which  */
-/* bit sequences run from the most to the least significant */
-/* end of each byte                                         */
-
-VOID_RETURN sha1_compile(sha1_ctx ctx[1]);
-
-VOID_RETURN sha1_begin(sha1_ctx ctx[1]);
-VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1]);
-VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1]);
-VOID_RETURN sha1(unsigned char hval[], const unsigned char data[], unsigned long len);
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif
diff --git a/jni/libzrtp/sources/srtp/crypto/skein.c b/jni/libzrtp/sources/srtp/crypto/skein.c
new file mode 100644
index 0000000..5935a2a
--- /dev/null
+++ b/jni/libzrtp/sources/srtp/crypto/skein.c
@@ -0,0 +1,742 @@
+/***********************************************************************

+**

+** Implementation of the Skein hash function.

+**

+** Source code author: Doug Whiting, 2008.

+**

+** This algorithm and source code is released to the public domain.

+**

+************************************************************************/

+

+#define  SKEIN_PORT_CODE /* instantiate any code in skein_port.h */

+

+#include <string.h>       /* get the memcpy/memset functions */

+#include <crypto/skein.h> /* get the Skein API definitions   */

+#include <crypto/skein_iv.h>    /* get precomputed IVs */

+

+/*****************************************************************/

+/* External function to process blkCnt (nonzero) full block(s) of data. */

+void    Skein_256_Process_Block(Skein_256_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);

+void    Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);

+void    Skein1024_Process_Block(Skein1024_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);

+

+/*****************************************************************/

+/*     256-bit Skein                                             */

+/*****************************************************************/

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* init the context for a straight hashing operation  */

+int Skein_256_Init(Skein_256_Ctxt_t *ctx, size_t hashBitLen)

+{

+    union

+    {

+        u08b_t  b[SKEIN_256_STATE_BYTES];

+        u64b_t  w[SKEIN_256_STATE_WORDS];

+    } cfg;                              /* config block */

+

+    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);

+    ctx->h.hashBitLen = hashBitLen;         /* output hash bit count */

+

+    switch (hashBitLen)

+    {             /* use pre-computed values, where available */

+    case  256:

+        memcpy(ctx->X,SKEIN_256_IV_256,sizeof(ctx->X));

+        break;

+    case  224:

+        memcpy(ctx->X,SKEIN_256_IV_224,sizeof(ctx->X));

+        break;

+    case  160:

+        memcpy(ctx->X,SKEIN_256_IV_160,sizeof(ctx->X));

+        break;

+    case  128:

+        memcpy(ctx->X,SKEIN_256_IV_128,sizeof(ctx->X));

+        break;

+    default:

+        /* here if there is no precomputed IV value available */

+        /* build/process the config block, type == CONFIG (could be precomputed) */

+        Skein_Start_New_Type(ctx,CFG_FINAL);        /* set tweaks: T0=0; T1=CFG | FINAL */

+

+        cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);  /* set the schema, version */

+        cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */

+        cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);

+        memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */

+

+        /* compute the initial chaining values from config block */

+        memset(ctx->X,0,sizeof(ctx->X));            /* zero the chaining variables */

+        Skein_256_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);

+        break;

+    }

+    /* The chaining vars ctx->X are now initialized for the given hashBitLen. */

+    /* Set up to process the data message portion of the hash (default) */

+    Skein_Start_New_Type(ctx,MSG);              /* T0=0, T1= MSG type */

+

+    return SKEIN_SUCCESS;

+}

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* init the context for a MAC and/or tree hash operation */

+/* [identical to Skein_256_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */

+int Skein_256_InitExt(Skein_256_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)

+{

+    union

+    {

+        u08b_t  b[SKEIN_256_STATE_BYTES];

+        u64b_t  w[SKEIN_256_STATE_WORDS];

+    } cfg;                              /* config block */

+

+    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);

+    Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);

+

+    /* compute the initial chaining values ctx->X[], based on key */

+    if (keyBytes == 0)                          /* is there a key? */

+    {

+        memset(ctx->X,0,sizeof(ctx->X));        /* no key: use all zeroes as key for config block */

+    }

+    else                                        /* here to pre-process a key */

+    {

+        Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));

+        /* do a mini-Init right here */

+        ctx->h.hashBitLen=8*sizeof(ctx->X);     /* set output hash bit count = state size */

+        Skein_Start_New_Type(ctx,KEY);          /* set tweaks: T0 = 0; T1 = KEY type */

+        memset(ctx->X,0,sizeof(ctx->X));        /* zero the initial chaining variables */

+        Skein_256_Update(ctx,key,keyBytes);     /* hash the key */

+        Skein_256_Final_Pad(ctx,cfg.b);         /* put result into cfg.b[] */

+        memcpy(ctx->X,cfg.b,sizeof(cfg.b));     /* copy over into ctx->X[] */

+#if SKEIN_NEED_SWAP

+        {

+            uint_t i;

+            for (i=0;i<SKEIN_256_STATE_WORDS;i++)   /* convert key bytes to context words */

+                ctx->X[i] = Skein_Swap64(ctx->X[i]);

+        }

+#endif

+    }

+    /* build/process the config block, type == CONFIG (could be precomputed for each key) */

+    ctx->h.hashBitLen = hashBitLen;             /* output hash bit count */

+    Skein_Start_New_Type(ctx,CFG_FINAL);

+

+    memset(&cfg.w,0,sizeof(cfg.w));             /* pre-pad cfg.w[] with zeroes */

+    cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);

+    cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */

+    cfg.w[2] = Skein_Swap64(treeInfo);          /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */

+

+    Skein_Show_Key(256,&ctx->h,key,keyBytes);

+

+    /* compute the initial chaining values from config block */

+    Skein_256_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);

+

+    /* The chaining vars ctx->X are now initialized */

+    /* Set up to process the data message portion of the hash (default) */

+    Skein_Start_New_Type(ctx,MSG);

+

+    return SKEIN_SUCCESS;

+}

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* process the input bytes */

+int Skein_256_Update(Skein_256_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)

+{

+    size_t n;

+

+    Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

+

+    /* process full blocks, if any */

+    if (msgByteCnt + ctx->h.bCnt > SKEIN_256_BLOCK_BYTES)

+    {

+        if (ctx->h.bCnt)                              /* finish up any buffered message data */

+        {

+            n = SKEIN_256_BLOCK_BYTES - ctx->h.bCnt;  /* # bytes free in buffer b[] */

+            if (n)

+            {

+                Skein_assert(n < msgByteCnt);         /* check on our logic here */

+                memcpy(&ctx->b[ctx->h.bCnt],msg,n);

+                msgByteCnt  -= n;

+                msg         += n;

+                ctx->h.bCnt += n;

+            }

+            Skein_assert(ctx->h.bCnt == SKEIN_256_BLOCK_BYTES);

+            Skein_256_Process_Block(ctx,ctx->b,1,SKEIN_256_BLOCK_BYTES);

+            ctx->h.bCnt = 0;

+        }

+        /* now process any remaining full blocks, directly from input message data */

+        if (msgByteCnt > SKEIN_256_BLOCK_BYTES)

+        {

+            n = (msgByteCnt-1) / SKEIN_256_BLOCK_BYTES;   /* number of full blocks to process */

+            Skein_256_Process_Block(ctx,msg,n,SKEIN_256_BLOCK_BYTES);

+            msgByteCnt -= n * SKEIN_256_BLOCK_BYTES;

+            msg        += n * SKEIN_256_BLOCK_BYTES;

+        }

+        Skein_assert(ctx->h.bCnt == 0);

+    }

+

+    /* copy any remaining source message data bytes into b[] */

+    if (msgByteCnt)

+    {

+        Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES);

+        memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);

+        ctx->h.bCnt += msgByteCnt;

+    }

+

+    return SKEIN_SUCCESS;

+}

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* finalize the hash computation and output the result */

+int Skein_256_Final(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)

+{

+    size_t i,n,byteCnt;

+    u64b_t X[SKEIN_256_STATE_WORDS];

+    Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

+

+    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;                 /* tag as the final block */

+    if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES)            /* zero pad b[] if necessary */

+        memset(&ctx->b[ctx->h.bCnt],0,SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);

+

+    Skein_256_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);  /* process the final block */

+

+    /* now output the result */

+    byteCnt = (ctx->h.hashBitLen + 7) >> 3;             /* total number of output bytes */

+

+    /* run Threefish in "counter mode" to generate output */

+    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */

+    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */

+    for (i=0;i*SKEIN_256_BLOCK_BYTES < byteCnt;i++)

+    {

+        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */

+        Skein_Start_New_Type(ctx,OUT_FINAL);

+        Skein_256_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */

+        n = byteCnt - i*SKEIN_256_BLOCK_BYTES;   /* number of output bytes left to go */

+        if (n >= SKEIN_256_BLOCK_BYTES)

+            n  = SKEIN_256_BLOCK_BYTES;

+        Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */

+        Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_256_BLOCK_BYTES);

+        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */

+    }

+    return SKEIN_SUCCESS;

+}

+

+/*****************************************************************/

+/*     512-bit Skein                                             */

+/*****************************************************************/

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* init the context for a straight hashing operation  */

+int Skein_512_Init(Skein_512_Ctxt_t *ctx, size_t hashBitLen)

+{

+    union

+    {

+        u08b_t  b[SKEIN_512_STATE_BYTES];

+        u64b_t  w[SKEIN_512_STATE_WORDS];

+    } cfg;                              /* config block */

+

+    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);

+    ctx->h.hashBitLen = hashBitLen;         /* output hash bit count */

+

+    switch (hashBitLen)

+    {             /* use pre-computed values, where available */

+    case  512:

+        memcpy(ctx->X,SKEIN_512_IV_512,sizeof(ctx->X));

+        break;

+    case  384:

+        memcpy(ctx->X,SKEIN_512_IV_384,sizeof(ctx->X));

+        break;

+    case  256:

+        memcpy(ctx->X,SKEIN_512_IV_256,sizeof(ctx->X));

+        break;

+    case  224:

+        memcpy(ctx->X,SKEIN_512_IV_224,sizeof(ctx->X));

+        break;

+    default:

+        /* here if there is no precomputed IV value available */

+        /* build/process the config block, type == CONFIG (could be precomputed) */

+        Skein_Start_New_Type(ctx,CFG_FINAL);        /* set tweaks: T0=0; T1=CFG | FINAL */

+

+        cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);  /* set the schema, version */

+        cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */

+        cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);

+        memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */

+

+        /* compute the initial chaining values from config block */

+        memset(ctx->X,0,sizeof(ctx->X));            /* zero the chaining variables */

+        Skein_512_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);

+        break;

+    }

+

+    /* The chaining vars ctx->X are now initialized for the given hashBitLen. */

+    /* Set up to process the data message portion of the hash (default) */

+    Skein_Start_New_Type(ctx,MSG);              /* T0=0, T1= MSG type */

+

+    return SKEIN_SUCCESS;

+}

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* init the context for a MAC and/or tree hash operation */

+/* [identical to Skein_512_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */

+int Skein_512_InitExt(Skein_512_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)

+{

+    union

+    {

+        u08b_t  b[SKEIN_512_STATE_BYTES];

+        u64b_t  w[SKEIN_512_STATE_WORDS];

+    } cfg;                              /* config block */

+

+    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);

+    Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);

+

+    /* compute the initial chaining values ctx->X[], based on key */

+    if (keyBytes == 0)                          /* is there a key? */

+    {

+        memset(ctx->X,0,sizeof(ctx->X));        /* no key: use all zeroes as key for config block */

+    }

+    else                                        /* here to pre-process a key */

+    {

+        Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));

+        /* do a mini-Init right here */

+        ctx->h.hashBitLen=8*sizeof(ctx->X);     /* set output hash bit count = state size */

+        Skein_Start_New_Type(ctx,KEY);          /* set tweaks: T0 = 0; T1 = KEY type */

+        memset(ctx->X,0,sizeof(ctx->X));        /* zero the initial chaining variables */

+        Skein_512_Update(ctx,key,keyBytes);     /* hash the key */

+        Skein_512_Final_Pad(ctx,cfg.b);         /* put result into cfg.b[] */

+        memcpy(ctx->X,cfg.b,sizeof(cfg.b));     /* copy over into ctx->X[] */

+#if SKEIN_NEED_SWAP

+        {

+            uint_t i;

+            for (i=0;i<SKEIN_512_STATE_WORDS;i++)   /* convert key bytes to context words */

+                ctx->X[i] = Skein_Swap64(ctx->X[i]);

+        }

+#endif

+    }

+    /* build/process the config block, type == CONFIG (could be precomputed for each key) */

+    ctx->h.hashBitLen = hashBitLen;             /* output hash bit count */

+    Skein_Start_New_Type(ctx,CFG_FINAL);

+

+    memset(&cfg.w,0,sizeof(cfg.w));             /* pre-pad cfg.w[] with zeroes */

+    cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);

+    cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */

+    cfg.w[2] = Skein_Swap64(treeInfo);          /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */

+

+    Skein_Show_Key(512,&ctx->h,key,keyBytes);

+

+    /* compute the initial chaining values from config block */

+    Skein_512_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);

+

+    /* The chaining vars ctx->X are now initialized */

+    /* Set up to process the data message portion of the hash (default) */

+    Skein_Start_New_Type(ctx,MSG);

+

+    return SKEIN_SUCCESS;

+}

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* process the input bytes */

+int Skein_512_Update(Skein_512_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)

+{

+    size_t n;

+

+    Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

+

+    /* process full blocks, if any */

+    if (msgByteCnt + ctx->h.bCnt > SKEIN_512_BLOCK_BYTES)

+    {

+        if (ctx->h.bCnt)                              /* finish up any buffered message data */

+        {

+            n = SKEIN_512_BLOCK_BYTES - ctx->h.bCnt;  /* # bytes free in buffer b[] */

+            if (n)

+            {

+                Skein_assert(n < msgByteCnt);         /* check on our logic here */

+                memcpy(&ctx->b[ctx->h.bCnt],msg,n);

+                msgByteCnt  -= n;

+                msg         += n;

+                ctx->h.bCnt += n;

+            }

+            Skein_assert(ctx->h.bCnt == SKEIN_512_BLOCK_BYTES);

+            Skein_512_Process_Block(ctx,ctx->b,1,SKEIN_512_BLOCK_BYTES);

+            ctx->h.bCnt = 0;

+        }

+        /* now process any remaining full blocks, directly from input message data */

+        if (msgByteCnt > SKEIN_512_BLOCK_BYTES)

+        {

+            n = (msgByteCnt-1) / SKEIN_512_BLOCK_BYTES;   /* number of full blocks to process */

+            Skein_512_Process_Block(ctx,msg,n,SKEIN_512_BLOCK_BYTES);

+            msgByteCnt -= n * SKEIN_512_BLOCK_BYTES;

+            msg        += n * SKEIN_512_BLOCK_BYTES;

+        }

+        Skein_assert(ctx->h.bCnt == 0);

+    }

+

+    /* copy any remaining source message data bytes into b[] */

+    if (msgByteCnt)

+    {

+        Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES);

+        memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);

+        ctx->h.bCnt += msgByteCnt;

+    }

+

+    return SKEIN_SUCCESS;

+}

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* finalize the hash computation and output the result */

+int Skein_512_Final(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)

+{

+    size_t i,n,byteCnt;

+    u64b_t X[SKEIN_512_STATE_WORDS];

+    Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

+

+    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;                 /* tag as the final block */

+    if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES)            /* zero pad b[] if necessary */

+        memset(&ctx->b[ctx->h.bCnt],0,SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);

+

+    Skein_512_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);  /* process the final block */

+

+    /* now output the result */

+    byteCnt = (ctx->h.hashBitLen + 7) >> 3;             /* total number of output bytes */

+

+    /* run Threefish in "counter mode" to generate output */

+    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */

+    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */

+    for (i=0;i*SKEIN_512_BLOCK_BYTES < byteCnt;i++)

+    {

+        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */

+        Skein_Start_New_Type(ctx,OUT_FINAL);

+        Skein_512_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */

+        n = byteCnt - i*SKEIN_512_BLOCK_BYTES;   /* number of output bytes left to go */

+        if (n >= SKEIN_512_BLOCK_BYTES)

+            n  = SKEIN_512_BLOCK_BYTES;

+        Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */

+        Skein_Show_Final(512,&ctx->h,n,hashVal+i*SKEIN_512_BLOCK_BYTES);

+        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */

+    }

+    return SKEIN_SUCCESS;

+}

+

+/*****************************************************************/

+/*    1024-bit Skein                                             */

+/*****************************************************************/

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* init the context for a straight hashing operation  */

+int Skein1024_Init(Skein1024_Ctxt_t *ctx, size_t hashBitLen)

+{

+    union

+    {

+        u08b_t  b[SKEIN1024_STATE_BYTES];

+        u64b_t  w[SKEIN1024_STATE_WORDS];

+    } cfg;                              /* config block */

+

+    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);

+    ctx->h.hashBitLen = hashBitLen;         /* output hash bit count */

+

+    switch (hashBitLen)

+    {              /* use pre-computed values, where available */

+    case  512:

+        memcpy(ctx->X,SKEIN1024_IV_512 ,sizeof(ctx->X));

+        break;

+    case  384:

+        memcpy(ctx->X,SKEIN1024_IV_384 ,sizeof(ctx->X));

+        break;

+    case 1024:

+        memcpy(ctx->X,SKEIN1024_IV_1024,sizeof(ctx->X));

+        break;

+    default:

+        /* here if there is no precomputed IV value available */

+        /* build/process the config block, type == CONFIG (could be precomputed) */

+        Skein_Start_New_Type(ctx,CFG_FINAL);        /* set tweaks: T0=0; T1=CFG | FINAL */

+

+        cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);  /* set the schema, version */

+        cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */

+        cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);

+        memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */

+

+        /* compute the initial chaining values from config block */

+        memset(ctx->X,0,sizeof(ctx->X));            /* zero the chaining variables */

+        Skein1024_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);

+        break;

+    }

+

+    /* The chaining vars ctx->X are now initialized for the given hashBitLen. */

+    /* Set up to process the data message portion of the hash (default) */

+    Skein_Start_New_Type(ctx,MSG);              /* T0=0, T1= MSG type */

+

+    return SKEIN_SUCCESS;

+}

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* init the context for a MAC and/or tree hash operation */

+/* [identical to Skein1024_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */

+int Skein1024_InitExt(Skein1024_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)

+{

+    union

+    {

+        u08b_t  b[SKEIN1024_STATE_BYTES];

+        u64b_t  w[SKEIN1024_STATE_WORDS];

+    } cfg;                              /* config block */

+

+    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);

+    Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);

+

+    /* compute the initial chaining values ctx->X[], based on key */

+    if (keyBytes == 0)                          /* is there a key? */

+    {

+        memset(ctx->X,0,sizeof(ctx->X));        /* no key: use all zeroes as key for config block */

+    }

+    else                                        /* here to pre-process a key */

+    {

+        Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));

+        /* do a mini-Init right here */

+        ctx->h.hashBitLen=8*sizeof(ctx->X);     /* set output hash bit count = state size */

+        Skein_Start_New_Type(ctx,KEY);          /* set tweaks: T0 = 0; T1 = KEY type */

+        memset(ctx->X,0,sizeof(ctx->X));        /* zero the initial chaining variables */

+        Skein1024_Update(ctx,key,keyBytes);     /* hash the key */

+        Skein1024_Final_Pad(ctx,cfg.b);         /* put result into cfg.b[] */

+        memcpy(ctx->X,cfg.b,sizeof(cfg.b));     /* copy over into ctx->X[] */

+#if SKEIN_NEED_SWAP

+        {

+            uint_t i;

+            for (i=0;i<SKEIN1024_STATE_WORDS;i++)   /* convert key bytes to context words */

+                ctx->X[i] = Skein_Swap64(ctx->X[i]);

+        }

+#endif

+    }

+    /* build/process the config block, type == CONFIG (could be precomputed for each key) */

+    ctx->h.hashBitLen = hashBitLen;             /* output hash bit count */

+    Skein_Start_New_Type(ctx,CFG_FINAL);

+

+    memset(&cfg.w,0,sizeof(cfg.w));             /* pre-pad cfg.w[] with zeroes */

+    cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);

+    cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */

+    cfg.w[2] = Skein_Swap64(treeInfo);          /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */

+

+    Skein_Show_Key(1024,&ctx->h,key,keyBytes);

+

+    /* compute the initial chaining values from config block */

+    Skein1024_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);

+

+    /* The chaining vars ctx->X are now initialized */

+    /* Set up to process the data message portion of the hash (default) */

+    Skein_Start_New_Type(ctx,MSG);

+

+    return SKEIN_SUCCESS;

+}

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* process the input bytes */

+int Skein1024_Update(Skein1024_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)

+{

+    size_t n;

+

+    Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

+

+    /* process full blocks, if any */

+    if (msgByteCnt + ctx->h.bCnt > SKEIN1024_BLOCK_BYTES)

+    {

+        if (ctx->h.bCnt)                              /* finish up any buffered message data */

+        {

+            n = SKEIN1024_BLOCK_BYTES - ctx->h.bCnt;  /* # bytes free in buffer b[] */

+            if (n)

+            {

+                Skein_assert(n < msgByteCnt);         /* check on our logic here */

+                memcpy(&ctx->b[ctx->h.bCnt],msg,n);

+                msgByteCnt  -= n;

+                msg         += n;

+                ctx->h.bCnt += n;

+            }

+            Skein_assert(ctx->h.bCnt == SKEIN1024_BLOCK_BYTES);

+            Skein1024_Process_Block(ctx,ctx->b,1,SKEIN1024_BLOCK_BYTES);

+            ctx->h.bCnt = 0;

+        }

+        /* now process any remaining full blocks, directly from input message data */

+        if (msgByteCnt > SKEIN1024_BLOCK_BYTES)

+        {

+            n = (msgByteCnt-1) / SKEIN1024_BLOCK_BYTES;   /* number of full blocks to process */

+            Skein1024_Process_Block(ctx,msg,n,SKEIN1024_BLOCK_BYTES);

+            msgByteCnt -= n * SKEIN1024_BLOCK_BYTES;

+            msg        += n * SKEIN1024_BLOCK_BYTES;

+        }

+        Skein_assert(ctx->h.bCnt == 0);

+    }

+

+    /* copy any remaining source message data bytes into b[] */

+    if (msgByteCnt)

+    {

+        Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES);

+        memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);

+        ctx->h.bCnt += msgByteCnt;

+    }

+

+    return SKEIN_SUCCESS;

+}

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* finalize the hash computation and output the result */

+int Skein1024_Final(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)

+{

+    size_t i,n,byteCnt;

+    u64b_t X[SKEIN1024_STATE_WORDS];

+    Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

+

+    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;                 /* tag as the final block */

+    if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES)            /* zero pad b[] if necessary */

+        memset(&ctx->b[ctx->h.bCnt],0,SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);

+

+    Skein1024_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);  /* process the final block */

+

+    /* now output the result */

+    byteCnt = (ctx->h.hashBitLen + 7) >> 3;             /* total number of output bytes */

+

+    /* run Threefish in "counter mode" to generate output */

+    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */

+    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */

+    for (i=0;i*SKEIN1024_BLOCK_BYTES < byteCnt;i++)

+    {

+        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */

+        Skein_Start_New_Type(ctx,OUT_FINAL);

+        Skein1024_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */

+        n = byteCnt - i*SKEIN1024_BLOCK_BYTES;   /* number of output bytes left to go */

+        if (n >= SKEIN1024_BLOCK_BYTES)

+            n  = SKEIN1024_BLOCK_BYTES;

+        Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */

+        Skein_Show_Final(1024,&ctx->h,n,hashVal+i*SKEIN1024_BLOCK_BYTES);

+        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */

+    }

+    return SKEIN_SUCCESS;

+}

+

+/**************** Functions to support MAC/tree hashing ***************/

+/*   (this code is identical for Optimized and Reference versions)    */

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* finalize the hash computation and output the block, no OUTPUT stage */

+int Skein_256_Final_Pad(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)

+{

+    Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

+

+    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;        /* tag as the final block */

+    if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES)   /* zero pad b[] if necessary */

+        memset(&ctx->b[ctx->h.bCnt],0,SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);

+    Skein_256_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);    /* process the final block */

+

+    Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN_256_BLOCK_BYTES);   /* "output" the state bytes */

+

+    return SKEIN_SUCCESS;

+}

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* finalize the hash computation and output the block, no OUTPUT stage */

+int Skein_512_Final_Pad(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)

+{

+    Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

+

+    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;        /* tag as the final block */

+    if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES)   /* zero pad b[] if necessary */

+        memset(&ctx->b[ctx->h.bCnt],0,SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);

+    Skein_512_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);    /* process the final block */

+

+    Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN_512_BLOCK_BYTES);   /* "output" the state bytes */

+

+    return SKEIN_SUCCESS;

+}

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* finalize the hash computation and output the block, no OUTPUT stage */

+int Skein1024_Final_Pad(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)

+{

+    Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

+

+    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;        /* tag as the final block */

+    if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES)   /* zero pad b[] if necessary */

+        memset(&ctx->b[ctx->h.bCnt],0,SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);

+    Skein1024_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);    /* process the final block */

+

+    Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN1024_BLOCK_BYTES);   /* "output" the state bytes */

+

+    return SKEIN_SUCCESS;

+}

+

+#if SKEIN_TREE_HASH

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* just do the OUTPUT stage                                       */

+int Skein_256_Output(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)

+{

+    size_t i,n,byteCnt;

+    u64b_t X[SKEIN_256_STATE_WORDS];

+    Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

+

+    /* now output the result */

+    byteCnt = (ctx->h.hashBitLen + 7) >> 3;    /* total number of output bytes */

+

+    /* run Threefish in "counter mode" to generate output */

+    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */

+    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */

+    for (i=0;i*SKEIN_256_BLOCK_BYTES < byteCnt;i++)

+    {

+        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */

+        Skein_Start_New_Type(ctx,OUT_FINAL);

+        Skein_256_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */

+        n = byteCnt - i*SKEIN_256_BLOCK_BYTES;   /* number of output bytes left to go */

+        if (n >= SKEIN_256_BLOCK_BYTES)

+            n  = SKEIN_256_BLOCK_BYTES;

+        Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */

+        Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_256_BLOCK_BYTES);

+        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */

+    }

+    return SKEIN_SUCCESS;

+}

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* just do the OUTPUT stage                                       */

+int Skein_512_Output(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)

+{

+    size_t i,n,byteCnt;

+    u64b_t X[SKEIN_512_STATE_WORDS];

+    Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

+

+    /* now output the result */

+    byteCnt = (ctx->h.hashBitLen + 7) >> 3;    /* total number of output bytes */

+

+    /* run Threefish in "counter mode" to generate output */

+    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */

+    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */

+    for (i=0;i*SKEIN_512_BLOCK_BYTES < byteCnt;i++)

+    {

+        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */

+        Skein_Start_New_Type(ctx,OUT_FINAL);

+        Skein_512_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */

+        n = byteCnt - i*SKEIN_512_BLOCK_BYTES;   /* number of output bytes left to go */

+        if (n >= SKEIN_512_BLOCK_BYTES)

+            n  = SKEIN_512_BLOCK_BYTES;

+        Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */

+        Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_512_BLOCK_BYTES);

+        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */

+    }

+    return SKEIN_SUCCESS;

+}

+

+/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

+/* just do the OUTPUT stage                                       */

+int Skein1024_Output(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)

+{

+    size_t i,n,byteCnt;

+    u64b_t X[SKEIN1024_STATE_WORDS];

+    Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

+

+    /* now output the result */

+    byteCnt = (ctx->h.hashBitLen + 7) >> 3;    /* total number of output bytes */

+

+    /* run Threefish in "counter mode" to generate output */

+    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */

+    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */

+    for (i=0;i*SKEIN1024_BLOCK_BYTES < byteCnt;i++)

+    {

+        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */

+        Skein_Start_New_Type(ctx,OUT_FINAL);

+        Skein1024_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */

+        n = byteCnt - i*SKEIN1024_BLOCK_BYTES;   /* number of output bytes left to go */

+        if (n >= SKEIN1024_BLOCK_BYTES)

+            n  = SKEIN1024_BLOCK_BYTES;

+        Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */

+        Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN1024_BLOCK_BYTES);

+        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */

+    }

+    return SKEIN_SUCCESS;

+}

+#endif

diff --git a/jni/libzrtp/sources/srtp/crypto/skein.h b/jni/libzrtp/sources/srtp/crypto/skein.h
new file mode 100644
index 0000000..345a112
--- /dev/null
+++ b/jni/libzrtp/sources/srtp/crypto/skein.h
@@ -0,0 +1,327 @@
+#ifndef _SKEIN_H_

+#define _SKEIN_H_     1

+/**************************************************************************

+**

+** Interface declarations and internal definitions for Skein hashing.

+**

+** Source code author: Doug Whiting, 2008.

+**

+** This algorithm and source code is released to the public domain.

+**

+***************************************************************************

+** 

+** The following compile-time switches may be defined to control some

+** tradeoffs between speed, code size, error checking, and security.

+**

+** The "default" note explains what happens when the switch is not defined.

+**

+**  SKEIN_DEBUG            -- make callouts from inside Skein code

+**                            to examine/display intermediate values.

+**                            [default: no callouts (no overhead)]

+**

+**  SKEIN_ERR_CHECK        -- how error checking is handled inside Skein

+**                            code. If not defined, most error checking 

+**                            is disabled (for performance). Otherwise, 

+**                            the switch value is interpreted as:

+**                                0: use assert()      to flag errors

+**                                1: return SKEIN_FAIL to flag errors

+**

+***************************************************************************/

+#ifdef __cplusplus

+extern "C"

+{

+#endif

+

+#include <stddef.h>                          /* get size_t definition */

+#include <crypto/skein_port.h>               /* get platform-specific definitions */

+

+enum

+    {

+    SKEIN_SUCCESS         =      0,          /* return codes from Skein calls */

+    SKEIN_FAIL            =      1,

+    SKEIN_BAD_HASHLEN     =      2

+    };

+

+#define  SKEIN_MODIFIER_WORDS  ( 2)          /* number of modifier (tweak) words */

+

+#define  SKEIN_256_STATE_WORDS ( 4)

+#define  SKEIN_512_STATE_WORDS ( 8)

+#define  SKEIN1024_STATE_WORDS (16)

+#define  SKEIN_MAX_STATE_WORDS (16)

+

+#define  SKEIN_256_STATE_BYTES ( 8*SKEIN_256_STATE_WORDS)

+#define  SKEIN_512_STATE_BYTES ( 8*SKEIN_512_STATE_WORDS)

+#define  SKEIN1024_STATE_BYTES ( 8*SKEIN1024_STATE_WORDS)

+

+#define  SKEIN_256_STATE_BITS  (64*SKEIN_256_STATE_WORDS)

+#define  SKEIN_512_STATE_BITS  (64*SKEIN_512_STATE_WORDS)

+#define  SKEIN1024_STATE_BITS  (64*SKEIN1024_STATE_WORDS)

+

+#define  SKEIN_256_BLOCK_BYTES ( 8*SKEIN_256_STATE_WORDS)

+#define  SKEIN_512_BLOCK_BYTES ( 8*SKEIN_512_STATE_WORDS)

+#define  SKEIN1024_BLOCK_BYTES ( 8*SKEIN1024_STATE_WORDS)

+

+typedef struct

+    {

+    size_t  hashBitLen;                      /* size of hash result, in bits */

+    size_t  bCnt;                            /* current byte count in buffer b[] */

+    u64b_t  T[SKEIN_MODIFIER_WORDS];         /* tweak words: T[0]=byte cnt, T[1]=flags */

+    } Skein_Ctxt_Hdr_t;

+

+typedef struct                               /*  256-bit Skein hash context structure */

+    {

+    Skein_Ctxt_Hdr_t h;                      /* common header context variables */

+    u64b_t  X[SKEIN_256_STATE_WORDS];        /* chaining variables */

+    u08b_t  b[SKEIN_256_BLOCK_BYTES];        /* partial block buffer (8-byte aligned) */

+    } Skein_256_Ctxt_t;

+

+typedef struct                               /*  512-bit Skein hash context structure */

+    {

+    Skein_Ctxt_Hdr_t h;                      /* common header context variables */

+    u64b_t  X[SKEIN_512_STATE_WORDS];        /* chaining variables */

+    u08b_t  b[SKEIN_512_BLOCK_BYTES];        /* partial block buffer (8-byte aligned) */

+    } Skein_512_Ctxt_t;

+

+typedef struct                               /* 1024-bit Skein hash context structure */

+    {

+    Skein_Ctxt_Hdr_t h;                      /* common header context variables */

+    u64b_t  X[SKEIN1024_STATE_WORDS];        /* chaining variables */

+    u08b_t  b[SKEIN1024_BLOCK_BYTES];        /* partial block buffer (8-byte aligned) */

+    } Skein1024_Ctxt_t;

+

+/*   Skein APIs for (incremental) "straight hashing" */

+int  Skein_256_Init  (Skein_256_Ctxt_t *ctx, size_t hashBitLen);

+int  Skein_512_Init  (Skein_512_Ctxt_t *ctx, size_t hashBitLen);

+int  Skein1024_Init  (Skein1024_Ctxt_t *ctx, size_t hashBitLen);

+

+int  Skein_256_Update(Skein_256_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);

+int  Skein_512_Update(Skein_512_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);

+int  Skein1024_Update(Skein1024_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);

+

+int  Skein_256_Final (Skein_256_Ctxt_t *ctx, u08b_t * hashVal);

+int  Skein_512_Final (Skein_512_Ctxt_t *ctx, u08b_t * hashVal);

+int  Skein1024_Final (Skein1024_Ctxt_t *ctx, u08b_t * hashVal);

+

+/*

+**   Skein APIs for "extended" initialization: MAC keys, tree hashing.

+**   After an InitExt() call, just use Update/Final calls as with Init().

+**

+**   Notes: Same parameters as _Init() calls, plus treeInfo/key/keyBytes.

+**          When keyBytes == 0 and treeInfo == SKEIN_SEQUENTIAL, 

+**              the results of InitExt() are identical to calling Init().

+**          The function Init() may be called once to "precompute" the IV for

+**              a given hashBitLen value, then by saving a copy of the context

+**              the IV computation may be avoided in later calls.

+**          Similarly, the function InitExt() may be called once per MAC key 

+**              to precompute the MAC IV, then a copy of the context saved and

+**              reused for each new MAC computation.

+**/

+int  Skein_256_InitExt(Skein_256_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);

+int  Skein_512_InitExt(Skein_512_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);

+int  Skein1024_InitExt(Skein1024_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);

+

+/*

+**   Skein APIs for MAC and tree hash:

+**      Final_Pad:  pad, do final block, but no OUTPUT type

+**      Output:     do just the output stage

+*/

+int  Skein_256_Final_Pad(Skein_256_Ctxt_t *ctx, u08b_t * hashVal);

+int  Skein_512_Final_Pad(Skein_512_Ctxt_t *ctx, u08b_t * hashVal);

+int  Skein1024_Final_Pad(Skein1024_Ctxt_t *ctx, u08b_t * hashVal);

+

+#ifndef SKEIN_TREE_HASH

+#define SKEIN_TREE_HASH (1)

+#endif

+#if  SKEIN_TREE_HASH

+int  Skein_256_Output   (Skein_256_Ctxt_t *ctx, u08b_t * hashVal);

+int  Skein_512_Output   (Skein_512_Ctxt_t *ctx, u08b_t * hashVal);

+int  Skein1024_Output   (Skein1024_Ctxt_t *ctx, u08b_t * hashVal);

+#endif

+

+/*****************************************************************

+** "Internal" Skein definitions

+**    -- not needed for sequential hashing API, but will be 

+**           helpful for other uses of Skein (e.g., tree hash mode).

+**    -- included here so that they can be shared between

+**           reference and optimized code.

+******************************************************************/

+

+/* tweak word T[1]: bit field starting positions */

+#define SKEIN_T1_BIT(BIT)       ((BIT) - 64)            /* offset 64 because it's the second word  */

+                                

+#define SKEIN_T1_POS_TREE_LVL   SKEIN_T1_BIT(112)       /* bits 112..118: level in hash tree       */

+#define SKEIN_T1_POS_BIT_PAD    SKEIN_T1_BIT(119)       /* bit  119     : partial final input byte */

+#define SKEIN_T1_POS_BLK_TYPE   SKEIN_T1_BIT(120)       /* bits 120..125: type field               */

+#define SKEIN_T1_POS_FIRST      SKEIN_T1_BIT(126)       /* bits 126     : first block flag         */

+#define SKEIN_T1_POS_FINAL      SKEIN_T1_BIT(127)       /* bit  127     : final block flag         */

+                                

+/* tweak word T[1]: flag bit definition(s) */

+#define SKEIN_T1_FLAG_FIRST     (((u64b_t)  1 ) << SKEIN_T1_POS_FIRST)

+#define SKEIN_T1_FLAG_FINAL     (((u64b_t)  1 ) << SKEIN_T1_POS_FINAL)

+#define SKEIN_T1_FLAG_BIT_PAD   (((u64b_t)  1 ) << SKEIN_T1_POS_BIT_PAD)

+                                

+/* tweak word T[1]: tree level bit field mask */

+#define SKEIN_T1_TREE_LVL_MASK  (((u64b_t)0x7F) << SKEIN_T1_POS_TREE_LVL)

+#define SKEIN_T1_TREE_LEVEL(n)  (((u64b_t) (n)) << SKEIN_T1_POS_TREE_LVL)

+

+/* tweak word T[1]: block type field */

+#define SKEIN_BLK_TYPE_KEY      ( 0)                    /* key, for MAC and KDF */

+#define SKEIN_BLK_TYPE_CFG      ( 4)                    /* configuration block */

+#define SKEIN_BLK_TYPE_PERS     ( 8)                    /* personalization string */

+#define SKEIN_BLK_TYPE_PK       (12)                    /* public key (for digital signature hashing) */

+#define SKEIN_BLK_TYPE_KDF      (16)                    /* key identifier for KDF */

+#define SKEIN_BLK_TYPE_NONCE    (20)                    /* nonce for PRNG */

+#define SKEIN_BLK_TYPE_MSG      (48)                    /* message processing */

+#define SKEIN_BLK_TYPE_OUT      (63)                    /* output stage */

+#define SKEIN_BLK_TYPE_MASK     (63)                    /* bit field mask */

+

+#define SKEIN_T1_BLK_TYPE(T)   (((u64b_t) (SKEIN_BLK_TYPE_##T)) << SKEIN_T1_POS_BLK_TYPE)

+#define SKEIN_T1_BLK_TYPE_KEY   SKEIN_T1_BLK_TYPE(KEY)  /* key, for MAC and KDF */

+#define SKEIN_T1_BLK_TYPE_CFG   SKEIN_T1_BLK_TYPE(CFG)  /* configuration block */

+#define SKEIN_T1_BLK_TYPE_PERS  SKEIN_T1_BLK_TYPE(PERS) /* personalization string */

+#define SKEIN_T1_BLK_TYPE_PK    SKEIN_T1_BLK_TYPE(PK)   /* public key (for digital signature hashing) */

+#define SKEIN_T1_BLK_TYPE_KDF   SKEIN_T1_BLK_TYPE(KDF)  /* key identifier for KDF */

+#define SKEIN_T1_BLK_TYPE_NONCE SKEIN_T1_BLK_TYPE(NONCE)/* nonce for PRNG */

+#define SKEIN_T1_BLK_TYPE_MSG   SKEIN_T1_BLK_TYPE(MSG)  /* message processing */

+#define SKEIN_T1_BLK_TYPE_OUT   SKEIN_T1_BLK_TYPE(OUT)  /* output stage */

+#define SKEIN_T1_BLK_TYPE_MASK  SKEIN_T1_BLK_TYPE(MASK) /* field bit mask */

+

+#define SKEIN_T1_BLK_TYPE_CFG_FINAL       (SKEIN_T1_BLK_TYPE_CFG | SKEIN_T1_FLAG_FINAL)

+#define SKEIN_T1_BLK_TYPE_OUT_FINAL       (SKEIN_T1_BLK_TYPE_OUT | SKEIN_T1_FLAG_FINAL)

+

+#define SKEIN_VERSION           (1)

+

+#ifndef SKEIN_ID_STRING_LE      /* allow compile-time personalization */

+#define SKEIN_ID_STRING_LE      (0x33414853)            /* "SHA3" (little-endian)*/

+#endif

+

+#define SKEIN_MK_64(hi32,lo32)  ((lo32) + (((u64b_t) (hi32)) << 32))

+#define SKEIN_SCHEMA_VER        SKEIN_MK_64(SKEIN_VERSION,SKEIN_ID_STRING_LE)

+#define SKEIN_KS_PARITY         SKEIN_MK_64(0x1BD11BDA,0xA9FC1A22)

+

+#define SKEIN_CFG_STR_LEN       (4*8)

+

+/* bit field definitions in config block treeInfo word */

+#define SKEIN_CFG_TREE_LEAF_SIZE_POS  ( 0)

+#define SKEIN_CFG_TREE_NODE_SIZE_POS  ( 8)

+#define SKEIN_CFG_TREE_MAX_LEVEL_POS  (16)

+

+#define SKEIN_CFG_TREE_LEAF_SIZE_MSK  (((u64b_t) 0xFF) << SKEIN_CFG_TREE_LEAF_SIZE_POS)

+#define SKEIN_CFG_TREE_NODE_SIZE_MSK  (((u64b_t) 0xFF) << SKEIN_CFG_TREE_NODE_SIZE_POS)

+#define SKEIN_CFG_TREE_MAX_LEVEL_MSK  (((u64b_t) 0xFF) << SKEIN_CFG_TREE_MAX_LEVEL_POS)

+

+#define SKEIN_CFG_TREE_INFO(leaf,node,maxLvl)                   \

+    ( (((u64b_t)(leaf  )) << SKEIN_CFG_TREE_LEAF_SIZE_POS) |    \

+      (((u64b_t)(node  )) << SKEIN_CFG_TREE_NODE_SIZE_POS) |    \

+      (((u64b_t)(maxLvl)) << SKEIN_CFG_TREE_MAX_LEVEL_POS) )

+

+#define SKEIN_CFG_TREE_INFO_SEQUENTIAL SKEIN_CFG_TREE_INFO(0,0,0) /* use as treeInfo in InitExt() call for sequential processing */

+

+/*

+**   Skein macros for getting/setting tweak words, etc.

+**   These are useful for partial input bytes, hash tree init/update, etc.

+**/

+#define Skein_Get_Tweak(ctxPtr,TWK_NUM)         ((ctxPtr)->h.T[TWK_NUM])

+#define Skein_Set_Tweak(ctxPtr,TWK_NUM,tVal)    {(ctxPtr)->h.T[TWK_NUM] = (tVal);}

+

+#define Skein_Get_T0(ctxPtr)    Skein_Get_Tweak(ctxPtr,0)

+#define Skein_Get_T1(ctxPtr)    Skein_Get_Tweak(ctxPtr,1)

+#define Skein_Set_T0(ctxPtr,T0) Skein_Set_Tweak(ctxPtr,0,T0)

+#define Skein_Set_T1(ctxPtr,T1) Skein_Set_Tweak(ctxPtr,1,T1)

+

+/* set both tweak words at once */

+#define Skein_Set_T0_T1(ctxPtr,T0,T1)           \

+    {                                           \

+    Skein_Set_T0(ctxPtr,(T0));                  \

+    Skein_Set_T1(ctxPtr,(T1));                  \

+    }

+

+#define Skein_Set_Type(ctxPtr,BLK_TYPE)         \

+    Skein_Set_T1(ctxPtr,SKEIN_T1_BLK_TYPE_##BLK_TYPE)

+

+/* set up for starting with a new type: h.T[0]=0; h.T[1] = NEW_TYPE; h.bCnt=0; */

+#define Skein_Start_New_Type(ctxPtr,BLK_TYPE)   \

+    { Skein_Set_T0_T1(ctxPtr,0,SKEIN_T1_FLAG_FIRST | SKEIN_T1_BLK_TYPE_##BLK_TYPE); (ctxPtr)->h.bCnt=0; }

+

+#define Skein_Clear_First_Flag(hdr)      { (hdr).T[1] &= ~SKEIN_T1_FLAG_FIRST;       }

+#define Skein_Set_Bit_Pad_Flag(hdr)      { (hdr).T[1] |=  SKEIN_T1_FLAG_BIT_PAD;     }

+

+#define Skein_Set_Tree_Level(hdr,height) { (hdr).T[1] |= SKEIN_T1_TREE_LEVEL(height);}

+

+/*****************************************************************

+** "Internal" Skein definitions for debugging and error checking

+******************************************************************/

+#ifdef  SKEIN_DEBUG             /* examine/display intermediate values? */

+#include "skein_debug.h"

+#else                           /* default is no callouts */

+#define Skein_Show_Block(bits,ctx,X,blkPtr,wPtr,ksEvenPtr,ksOddPtr)

+#define Skein_Show_Round(bits,ctx,r,X)

+#define Skein_Show_R_Ptr(bits,ctx,r,X_ptr)

+#define Skein_Show_Final(bits,ctx,cnt,outPtr)

+#define Skein_Show_Key(bits,ctx,key,keyBytes)

+#endif

+

+#ifndef SKEIN_ERR_CHECK        /* run-time checks (e.g., bad params, uninitialized context)? */

+#define Skein_Assert(x,retCode)/* default: ignore all Asserts, for performance */

+#define Skein_assert(x)

+#elif   defined(SKEIN_ASSERT)

+#include <assert.h>     

+#define Skein_Assert(x,retCode) assert(x) 

+#define Skein_assert(x)         assert(x) 

+#else

+#include <assert.h>     

+#define Skein_Assert(x,retCode) { if (!(x)) return retCode; } /*  caller  error */

+#define Skein_assert(x)         assert(x)                     /* internal error */

+#endif

+

+/*****************************************************************

+** Skein block function constants (shared across Ref and Opt code)

+******************************************************************/

+enum    

+    {   

+        /* Skein_256 round rotation constants */

+    R_256_0_0=14, R_256_0_1=16,

+    R_256_1_0=52, R_256_1_1=57,

+    R_256_2_0=23, R_256_2_1=40,

+    R_256_3_0= 5, R_256_3_1=37,

+    R_256_4_0=25, R_256_4_1=33,

+    R_256_5_0=46, R_256_5_1=12,

+    R_256_6_0=58, R_256_6_1=22,

+    R_256_7_0=32, R_256_7_1=32,

+

+        /* Skein_512 round rotation constants */

+    R_512_0_0=46, R_512_0_1=36, R_512_0_2=19, R_512_0_3=37,

+    R_512_1_0=33, R_512_1_1=27, R_512_1_2=14, R_512_1_3=42,

+    R_512_2_0=17, R_512_2_1=49, R_512_2_2=36, R_512_2_3=39,

+    R_512_3_0=44, R_512_3_1= 9, R_512_3_2=54, R_512_3_3=56,

+    R_512_4_0=39, R_512_4_1=30, R_512_4_2=34, R_512_4_3=24,

+    R_512_5_0=13, R_512_5_1=50, R_512_5_2=10, R_512_5_3=17,

+    R_512_6_0=25, R_512_6_1=29, R_512_6_2=39, R_512_6_3=43,

+    R_512_7_0= 8, R_512_7_1=35, R_512_7_2=56, R_512_7_3=22,

+

+        /* Skein1024 round rotation constants */

+    R1024_0_0=24, R1024_0_1=13, R1024_0_2= 8, R1024_0_3=47, R1024_0_4= 8, R1024_0_5=17, R1024_0_6=22, R1024_0_7=37,

+    R1024_1_0=38, R1024_1_1=19, R1024_1_2=10, R1024_1_3=55, R1024_1_4=49, R1024_1_5=18, R1024_1_6=23, R1024_1_7=52,

+    R1024_2_0=33, R1024_2_1= 4, R1024_2_2=51, R1024_2_3=13, R1024_2_4=34, R1024_2_5=41, R1024_2_6=59, R1024_2_7=17,

+    R1024_3_0= 5, R1024_3_1=20, R1024_3_2=48, R1024_3_3=41, R1024_3_4=47, R1024_3_5=28, R1024_3_6=16, R1024_3_7=25,

+    R1024_4_0=41, R1024_4_1= 9, R1024_4_2=37, R1024_4_3=31, R1024_4_4=12, R1024_4_5=47, R1024_4_6=44, R1024_4_7=30,

+    R1024_5_0=16, R1024_5_1=34, R1024_5_2=56, R1024_5_3=51, R1024_5_4= 4, R1024_5_5=53, R1024_5_6=42, R1024_5_7=41,

+    R1024_6_0=31, R1024_6_1=44, R1024_6_2=47, R1024_6_3=46, R1024_6_4=19, R1024_6_5=42, R1024_6_6=44, R1024_6_7=25,

+    R1024_7_0= 9, R1024_7_1=48, R1024_7_2=35, R1024_7_3=52, R1024_7_4=23, R1024_7_5=31, R1024_7_6=37, R1024_7_7=20

+    };

+

+#ifndef SKEIN_ROUNDS

+#define SKEIN_256_ROUNDS_TOTAL (72)          /* number of rounds for the different block sizes */

+#define SKEIN_512_ROUNDS_TOTAL (72)

+#define SKEIN1024_ROUNDS_TOTAL (80)

+#else                                        /* allow command-line define in range 8*(5..14)   */

+#define SKEIN_256_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/100) + 5) % 10) + 5))

+#define SKEIN_512_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/ 10) + 5) % 10) + 5))

+#define SKEIN1024_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS    ) + 5) % 10) + 5))

+#endif

+

+#ifdef __cplusplus

+}

+#endif

+

+#endif  /* ifndef _SKEIN_H_ */

diff --git a/jni/libzrtp/sources/srtp/crypto/skeinApi.c b/jni/libzrtp/sources/srtp/crypto/skeinApi.c
new file mode 100644
index 0000000..84f0120
--- /dev/null
+++ b/jni/libzrtp/sources/srtp/crypto/skeinApi.c
@@ -0,0 +1,225 @@
+/*
+Copyright (c) 2010 Werner Dittmann
+
+Permission is hereby granted, free of charge, to any person
+obtaining a copy of this software and associated documentation
+files (the "Software"), to deal in the Software without
+restriction, including without limitation the rights to use,
+copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the
+Software is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice shall be
+included in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
+OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
+HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+OTHER DEALINGS IN THE SOFTWARE.
+
+*/
+
+#define SKEIN_ERR_CHECK 1
+#include <crypto/skeinApi.h>
+#include <string.h>
+#include <stdio.h>
+
+int skeinCtxPrepare(SkeinCtx_t* ctx, SkeinSize_t size)
+{
+    Skein_Assert(ctx && size, SKEIN_FAIL);
+
+    memset(ctx ,0, sizeof(SkeinCtx_t));
+    ctx->skeinSize = size;
+
+    return SKEIN_SUCCESS;
+}
+
+int skeinInit(SkeinCtx_t* ctx, size_t hashBitLen)
+{
+    int ret = SKEIN_FAIL;
+    size_t Xlen = 0;
+    u64b_t*  X = NULL;
+    uint64_t treeInfo = SKEIN_CFG_TREE_INFO_SEQUENTIAL;
+
+    Skein_Assert(ctx, SKEIN_FAIL);
+    /*
+     * The following two lines rely of the fact that the real Skein contexts are
+     * a union in out context and thus have tha maximum memory available.
+     * The beauty of C :-) .
+     */
+    X = ctx->m.s256.X;
+    Xlen = (size_t)(ctx->skeinSize/8);
+    /*
+     * If size is the same and hash bit length is zero then reuse
+     * the save chaining variables.
+     */
+    switch (ctx->skeinSize) {
+    case Skein256:
+        ret = Skein_256_InitExt(&ctx->m.s256, hashBitLen,
+                                treeInfo, NULL, 0);
+        break;
+    case Skein512:
+        ret = Skein_512_InitExt(&ctx->m.s512, hashBitLen,
+                                treeInfo, NULL, 0);
+        break;
+    case Skein1024:
+        ret = Skein1024_InitExt(&ctx->m.s1024, hashBitLen,
+                                treeInfo, NULL, 0);
+        break;
+    }
+
+    if (ret == SKEIN_SUCCESS) {
+        /* Save chaining variables for this combination of size and hashBitLen */
+        memcpy(ctx->XSave, X, Xlen);
+    }
+    return ret;
+}
+
+int skeinMacInit(SkeinCtx_t* ctx, const uint8_t *key, size_t keyLen,
+                 size_t hashBitLen)
+{
+    int ret = SKEIN_FAIL;
+    u64b_t*  X = NULL;
+    size_t Xlen = 0;
+    uint64_t treeInfo = SKEIN_CFG_TREE_INFO_SEQUENTIAL;
+
+    Skein_Assert(ctx, SKEIN_FAIL);
+
+    X = ctx->m.s256.X;
+    Xlen = (size_t)(ctx->skeinSize/8);
+
+    Skein_Assert(hashBitLen, SKEIN_BAD_HASHLEN);
+
+    switch (ctx->skeinSize) {
+    case Skein256:
+        ret = Skein_256_InitExt(&ctx->m.s256, hashBitLen,
+                                treeInfo,
+                                (const u08b_t*)key, keyLen);
+
+        break;
+    case Skein512:
+        ret = Skein_512_InitExt(&ctx->m.s512, hashBitLen,
+                                treeInfo,
+                                (const u08b_t*)key, keyLen);
+        break;
+    case Skein1024:
+        ret = Skein1024_InitExt(&ctx->m.s1024, hashBitLen,
+                                treeInfo,
+                                (const u08b_t*)key, keyLen);
+
+        break;
+    }
+    if (ret == SKEIN_SUCCESS) {
+        /* Save chaining variables for this combination of key, keyLen, hashBitLen */
+        memcpy(ctx->XSave, X, Xlen);
+    }
+    return ret;
+}
+
+void skeinReset(SkeinCtx_t* ctx)
+{
+    size_t Xlen = 0;
+    u64b_t*  X = NULL;
+
+    /*
+     * The following two lines rely of the fact that the real Skein contexts are
+     * a union in out context and thus have tha maximum memory available.
+     * The beautiy of C :-) .
+     */
+    X = ctx->m.s256.X;
+    Xlen = (size_t)(ctx->skeinSize/8);
+    /*
+     * If size is the same and hash bit length is zero then reuse
+     * the save chaining variables.
+     */
+    /* Restore the chaing variable, reset byte counter */
+    memcpy(X, ctx->XSave, Xlen);
+
+    /* Setup context to process the message */
+    Skein_Start_New_Type(&ctx->m, MSG);
+}
+
+int skeinUpdate(SkeinCtx_t *ctx, const uint8_t *msg,
+                size_t msgByteCnt)
+{
+    int ret = SKEIN_FAIL;
+    Skein_Assert(ctx, SKEIN_FAIL);
+
+    switch (ctx->skeinSize) {
+    case Skein256:
+        ret = Skein_256_Update(&ctx->m.s256, (const u08b_t*)msg, msgByteCnt);
+        break;
+    case Skein512:
+        ret = Skein_512_Update(&ctx->m.s512, (const u08b_t*)msg, msgByteCnt);
+        break;
+    case Skein1024:
+        ret = Skein1024_Update(&ctx->m.s1024, (const u08b_t*)msg, msgByteCnt);
+        break;
+    }
+    return ret;
+
+}
+
+int skeinUpdateBits(SkeinCtx_t *ctx, const uint8_t *msg,
+                    size_t msgBitCnt)
+{
+    /*
+     * I've used the bit pad implementation from skein_test.c (see NIST CD)
+     * and modified it to use the convenience functions and added some pointer
+     * arithmetic.
+     */
+    size_t length;
+    uint8_t mask;
+    uint8_t* up;
+
+    /* only the final Update() call is allowed do partial bytes, else assert an error */
+    Skein_Assert((ctx->m.h.T[1] & SKEIN_T1_FLAG_BIT_PAD) == 0 || msgBitCnt == 0, SKEIN_FAIL);
+
+    /* if number of bits is a multiple of bytes - that's easy */
+    if ((msgBitCnt & 0x7) == 0) {
+        return skeinUpdate(ctx, msg, msgBitCnt >> 3);
+    }
+    skeinUpdate(ctx, msg, (msgBitCnt >> 3) + 1);
+
+    /*
+     * The next line rely on the fact that the real Skein contexts
+     * are a union in our context. After the addition the pointer points to
+     * Skein's real partial block buffer.
+     * If this layout ever changes we have to adapt this as well.
+     */
+    up = (uint8_t*)ctx->m.s256.X + ctx->skeinSize / 8;
+
+    Skein_Set_Bit_Pad_Flag(ctx->m.h);                       /* set tweak flag for the skeinFinal call */
+
+    /* now "pad" the final partial byte the way NIST likes */
+    length = ctx->m.h.bCnt;                                 /* get the bCnt value (same location for all block sizes) */
+    Skein_assert(length != 0);                              /* internal sanity check: there IS a partial byte in the buffer! */
+    mask = (uint8_t) (1u << (7 - (msgBitCnt & 7)));         /* partial byte bit mask */
+    up[length-1]  = (uint8_t)((up[length-1] & (0-mask))|mask);   /* apply bit padding on final byte (in the buffer) */
+
+    return SKEIN_SUCCESS;
+}
+
+int skeinFinal(SkeinCtx_t* ctx, uint8_t* hash)
+{
+    int ret = SKEIN_FAIL;
+    Skein_Assert(ctx, SKEIN_FAIL);
+
+    switch (ctx->skeinSize) {
+    case Skein256:
+        ret = Skein_256_Final(&ctx->m.s256, (u08b_t*)hash);
+        break;
+    case Skein512:
+        ret = Skein_512_Final(&ctx->m.s512, (u08b_t*)hash);
+        break;
+    case Skein1024:
+        ret = Skein1024_Final(&ctx->m.s1024, (u08b_t*)hash);
+        break;
+    }
+    return ret;
+}
diff --git a/jni/libzrtp/sources/srtp/crypto/skeinApi.h b/jni/libzrtp/sources/srtp/crypto/skeinApi.h
new file mode 100644
index 0000000..2f25073
--- /dev/null
+++ b/jni/libzrtp/sources/srtp/crypto/skeinApi.h
@@ -0,0 +1,253 @@
+/*
+Copyright (c) 2010 Werner Dittmann
+
+Permission is hereby granted, free of charge, to any person
+obtaining a copy of this software and associated documentation
+files (the "Software"), to deal in the Software without
+restriction, including without limitation the rights to use,
+copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the
+Software is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice shall be
+included in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
+OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
+HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+OTHER DEALINGS IN THE SOFTWARE.
+
+*/
+
+#ifndef SKEINAPI_H
+#define SKEINAPI_H
+
+/**
+ * @file skeinApi.h
+ * @brief A Skein API and its functions.
+ * @{
+ *
+ * This API and the functions that implement this API simplify the usage
+ * of Skein. The design and the way to use the functions follow the openSSL
+ * design but at the same time take care of some Skein specific behaviour
+ * and possibilities.
+ * 
+ * The functions enable applications to create a normal Skein hashes and
+ * message authentication codes (MAC).
+ * 
+ * Using these functions is simple and straight forward:
+ * 
+ * @code
+ * 
+ * #include <skeinApi.h>
+ * 
+ * ...
+ * SkeinCtx_t ctx;             // a Skein hash or MAC context
+ * 
+ * // prepare context, here for a Skein with a state size of 512 bits.
+ * skeinCtxPrepare(&ctx, Skein512);
+ * 
+ * // Initialize the context to set the requested hash length in bits
+ * // here request a output hash size of 31 bits (Skein supports variable
+ * // output sizes even very strange sizes)
+ * skeinInit(&ctx, 31);
+ * 
+ * // Now update Skein with any number of message bits. A function that
+ * // takes a number of bytes is also available.
+ * skeinUpdateBits(&ctx, message, msgLength);
+ * 
+ * // Now get the result of the Skein hash. The output buffer must be
+ * // large enough to hold the request number of output bits. The application
+ * // may now extract the bits.
+ * skeinFinal(&ctx, result);
+ * ...
+ * @endcode
+ * 
+ * An application may use @c skeinReset to reset a Skein context and use
+ * it for creation of another hash with the same Skein state size and output
+ * bit length. In this case the API implementation restores some internal
+ * internal state data and saves a full Skein initialization round.
+ * 
+ * To create a MAC the application just uses @c skeinMacInit instead of 
+ * @c skeinInit. All other functions calls remain the same.
+ * 
+ */
+
+#include <crypto/skein.h>
+
+#ifdef _MSC_VER
+typedef signed __int8 int8_t;
+typedef unsigned __int8 uint8_t;
+typedef signed __int16 int16_t;
+typedef unsigned __int16 uint16_t;
+typedef signed __int32 int32_t;
+typedef unsigned __int32 uint32_t;
+typedef signed __int64 int64_t;
+typedef unsigned __int64 uint64_t;
+#else
+#include <stdint.h>
+#endif
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+    /**
+     * Which Skein size to use
+     */
+    typedef enum SkeinSize {
+        Skein256 = 256,     /*!< Skein with 256 bit state */
+        Skein512 = 512,     /*!< Skein with 512 bit state */
+        Skein1024 = 1024    /*!< Skein with 1024 bit state */
+    } SkeinSize_t;
+
+    /**
+     * Context for Skein.
+     *
+     * This structure was setup with some know-how of the internal
+     * Skein structures, in particular ordering of header and size dependent
+     * variables. If Skein implementation changes this, then adapt these
+     * structures as well.
+     */
+    typedef struct SkeinCtx {
+        u64b_t skeinSize;
+        u64b_t  XSave[SKEIN_MAX_STATE_WORDS];   /* save area for state variables */
+        union {
+            Skein_Ctxt_Hdr_t h;
+            Skein_256_Ctxt_t s256;
+            Skein_512_Ctxt_t s512;
+            Skein1024_Ctxt_t s1024;
+        } m;
+    } SkeinCtx_t;
+
+    /**
+     * Prepare a Skein context.
+     * 
+     * An application must call this function before it can use the Skein
+     * context. The functions clears memory and initializes size dependent
+     * variables.
+     *
+     * @param ctx
+     *     Pointer to a Skein context.
+     * @param size
+     *     Which Skein size to use.
+     * @return
+     *     SKEIN_SUCESS of SKEIN_FAIL
+     */
+    int skeinCtxPrepare(SkeinCtx_t* ctx, SkeinSize_t size);
+
+    /**
+     * Initialize a Skein context.
+     *
+     * Initializes the context with this data and saves the resulting Skein 
+     * state variables for further use.
+     *
+     * @param ctx
+     *     Pointer to a Skein context.
+     * @param hashBitLen
+     *     Number of MAC hash bits to compute or zero
+     * @return
+     *     SKEIN_SUCESS of SKEIN_FAIL
+     * @see skeinReset
+     */
+    int skeinInit(SkeinCtx_t* ctx, size_t hashBitLen);
+
+    /**
+     * Resets a Skein context for furter use.
+     * 
+     * Restores the saved chaining variables to reset the Skein context. 
+     * Thus applications can reuse the same setup to  process several 
+     * messages. This saves a complete Skein initialization cycle.
+     * 
+     * @param ctx
+     *     Pointer to a pre-initialized Skein MAC context
+     */
+    void skeinReset(SkeinCtx_t* ctx);
+    
+    /**
+     * Initializes or reuses a Skein context for MAC usage.
+     * 
+     * Initializes the context with this data and saves the resulting Skein 
+     * state variables for further use.
+     *
+     * Applications call the normal Skein functions to update the MAC and
+     * get the final result.
+     *
+     * @param ctx
+     *     Pointer to an empty or preinitialized Skein MAC context
+     * @param key
+     *     Pointer to key bytes or NULL
+     * @param keyLen
+     *     Length of the key in bytes or zero
+     * @param hashBitLen
+     *     Number of MAC hash bits to compute or zero
+     * @return
+     *     SKEIN_SUCESS of SKEIN_FAIL
+     */
+    int skeinMacInit(SkeinCtx_t* ctx, const uint8_t *key, size_t keyLen,
+                     size_t hashBitLen);
+
+    /**
+     * Update Skein with the next part of the message.
+     *
+     * @param ctx
+     *     Pointer to initialized Skein context
+     * @param msg
+     *     Pointer to the message.
+     * @param msgByteCnt
+     *     Length of the message in @b bytes
+     * @return
+     *     Success or error code.
+     */
+    int skeinUpdate(SkeinCtx_t *ctx, const uint8_t *msg,
+                    size_t msgByteCnt);
+
+    /**
+     * Update the hash with a message bit string.
+     *
+     * Skein can handle data not only as bytes but also as bit strings of
+     * arbitrary length (up to its maximum design size).
+     *
+     * @param ctx
+     *     Pointer to initialized Skein context
+     * @param msg
+     *     Pointer to the message.
+     * @param msgBitCnt
+     *     Length of the message in @b bits.
+     */
+    int skeinUpdateBits(SkeinCtx_t *ctx, const uint8_t *msg,
+                        size_t msgBitCnt);
+
+    /**
+     * Finalize Skein and return the hash.
+     * 
+     * Before an application can reuse a Skein setup the application must
+     * reinitialize the Skein context.See the approriate initialization 
+     * methods how to achieve this.
+     *
+     * @param ctx
+     *     Pointer to initialized Skein context
+     * @param hash
+     *     Pointer to buffer that receives the hash. The buffer must be large
+     *     enough to store @c hashBitLen bits.
+     * @return
+     *     Success or error code.
+     * @see skeinInit
+     * @see skeinMacInit
+     */
+    int skeinFinal(SkeinCtx_t* ctx, uint8_t* hash);
+
+#ifdef __cplusplus
+}
+#endif
+
+/**
+ * @}
+ */
+#endif
diff --git a/jni/libzrtp/sources/srtp/crypto/skein_block.c b/jni/libzrtp/sources/srtp/crypto/skein_block.c
new file mode 100644
index 0000000..fbf37e7
--- /dev/null
+++ b/jni/libzrtp/sources/srtp/crypto/skein_block.c
@@ -0,0 +1,689 @@
+/***********************************************************************

+**

+** Implementation of the Skein block functions.

+**

+** Source code author: Doug Whiting, 2008.

+**

+** This algorithm and source code is released to the public domain.

+**

+** Compile-time switches:

+**

+**  SKEIN_USE_ASM  -- set bits (256/512/1024) to select which

+**                    versions use ASM code for block processing

+**                    [default: use C for all block sizes]

+**

+************************************************************************/

+

+#include <string.h>

+#include <crypto/skein.h>

+

+#ifndef SKEIN_USE_ASM

+#define SKEIN_USE_ASM   (0)                     /* default is all C code (no ASM) */

+#endif

+

+#ifndef SKEIN_LOOP

+#define SKEIN_LOOP 001                          /* default: unroll 256 and 512, but not 1024 */

+#endif

+

+#define BLK_BITS        (WCNT*64)               /* some useful definitions for code here */

+#define KW_TWK_BASE     (0)

+#define KW_KEY_BASE     (3)

+#define ks              (kw + KW_KEY_BASE)                

+#define ts              (kw + KW_TWK_BASE)

+

+#ifdef SKEIN_DEBUG

+#define DebugSaveTweak(ctx) { ctx->h.T[0] = ts[0]; ctx->h.T[1] = ts[1]; }

+#else

+#define DebugSaveTweak(ctx)

+#endif

+

+/*****************************  Skein_256 ******************************/

+#if !(SKEIN_USE_ASM & 256)

+void Skein_256_Process_Block(Skein_256_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)

+    { /* do it in C */

+    enum

+        {

+        WCNT = SKEIN_256_STATE_WORDS

+        };

+#undef  RCNT

+#define RCNT  (SKEIN_256_ROUNDS_TOTAL/8)

+

+#ifdef  SKEIN_LOOP                              /* configure how much to unroll the loop */

+#define SKEIN_UNROLL_256 (((SKEIN_LOOP)/100)%10)

+#else

+#define SKEIN_UNROLL_256 (0)

+#endif

+

+#if SKEIN_UNROLL_256

+#if (RCNT % SKEIN_UNROLL_256)

+#error "Invalid SKEIN_UNROLL_256"               /* sanity check on unroll count */

+#endif

+    size_t  r;

+    u64b_t  kw[WCNT+4+RCNT*2];                  /* key schedule words : chaining vars + tweak + "rotation"*/

+#else

+    u64b_t  kw[WCNT+4];                         /* key schedule words : chaining vars + tweak */

+#endif

+    u64b_t  X0,X1,X2,X3;                        /* local copy of context vars, for speed */

+    u64b_t  w [WCNT];                           /* local copy of input block */

+#ifdef SKEIN_DEBUG

+    const u64b_t *Xptr[4];                      /* use for debugging (help compiler put Xn in registers) */

+    Xptr[0] = &X0;  Xptr[1] = &X1;  Xptr[2] = &X2;  Xptr[3] = &X3;

+#endif

+    Skein_assert(blkCnt != 0);                  /* never call with blkCnt == 0! */

+    ts[0] = ctx->h.T[0];

+    ts[1] = ctx->h.T[1];

+    do  {

+        /* this implementation only supports 2**64 input bytes (no carry out here) */

+        ts[0] += byteCntAdd;                    /* update processed length */

+

+        /* precompute the key schedule for this block */

+        ks[0] = ctx->X[0];     

+        ks[1] = ctx->X[1];

+        ks[2] = ctx->X[2];

+        ks[3] = ctx->X[3];

+        ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;

+

+        ts[2] = ts[0] ^ ts[1];

+

+        Skein_Get64_LSB_First(w,blkPtr,WCNT);   /* get input block in little-endian format */

+        DebugSaveTweak(ctx);

+        Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);

+

+        X0 = w[0] + ks[0];                      /* do the first full key injection */

+        X1 = w[1] + ks[1] + ts[0];

+        X2 = w[2] + ks[2] + ts[1];

+        X3 = w[3] + ks[3];

+

+        Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);    /* show starting state values */

+

+        blkPtr += SKEIN_256_BLOCK_BYTES;

+

+        /* run the rounds */

+

+#define Round256(p0,p1,p2,p3,ROT,rNum)                              \

+    X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \

+    X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \

+

+#if SKEIN_UNROLL_256 == 0                       

+#define R256(p0,p1,p2,p3,ROT,rNum)           /* fully unrolled */   \

+    Round256(p0,p1,p2,p3,ROT,rNum)                                  \

+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);

+

+#define I256(R)                                                     \

+    X0   += ks[((R)+1) % 5];    /* inject the key schedule value */ \

+    X1   += ks[((R)+2) % 5] + ts[((R)+1) % 3];                      \

+    X2   += ks[((R)+3) % 5] + ts[((R)+2) % 3];                      \

+    X3   += ks[((R)+4) % 5] +     (R)+1;                            \

+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);

+#else                                       /* looping version */

+#define R256(p0,p1,p2,p3,ROT,rNum)                                  \

+    Round256(p0,p1,p2,p3,ROT,rNum)                                  \

+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);

+

+#define I256(R)                                                     \

+    X0   += ks[r+(R)+0];        /* inject the key schedule value */ \

+    X1   += ks[r+(R)+1] + ts[r+(R)+0];                              \

+    X2   += ks[r+(R)+2] + ts[r+(R)+1];                              \

+    X3   += ks[r+(R)+3] +    r+(R)   ;                              \

+    ks[r + (R)+4    ]   = ks[r+(R)-1];     /* rotate key schedule */\

+    ts[r + (R)+2    ]   = ts[r+(R)-1];                              \

+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);

+

+    for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_256)  /* loop thru it */

+#endif  

+        {    

+#define R256_8_rounds(R)                  \

+        R256(0,1,2,3,R_256_0,8*(R) + 1);  \

+        R256(0,3,2,1,R_256_1,8*(R) + 2);  \

+        R256(0,1,2,3,R_256_2,8*(R) + 3);  \

+        R256(0,3,2,1,R_256_3,8*(R) + 4);  \

+        I256(2*(R));                      \

+        R256(0,1,2,3,R_256_4,8*(R) + 5);  \

+        R256(0,3,2,1,R_256_5,8*(R) + 6);  \

+        R256(0,1,2,3,R_256_6,8*(R) + 7);  \

+        R256(0,3,2,1,R_256_7,8*(R) + 8);  \

+        I256(2*(R)+1);

+

+        R256_8_rounds( 0);

+

+#define R256_Unroll_R(NN) ((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_256 > (NN)))

+

+  #if   R256_Unroll_R( 1)

+        R256_8_rounds( 1);

+  #endif

+  #if   R256_Unroll_R( 2)

+        R256_8_rounds( 2);

+  #endif

+  #if   R256_Unroll_R( 3)

+        R256_8_rounds( 3);

+  #endif

+  #if   R256_Unroll_R( 4)

+        R256_8_rounds( 4);

+  #endif

+  #if   R256_Unroll_R( 5)

+        R256_8_rounds( 5);

+  #endif

+  #if   R256_Unroll_R( 6)

+        R256_8_rounds( 6);

+  #endif

+  #if   R256_Unroll_R( 7)

+        R256_8_rounds( 7);

+  #endif

+  #if   R256_Unroll_R( 8)

+        R256_8_rounds( 8);

+  #endif

+  #if   R256_Unroll_R( 9)

+        R256_8_rounds( 9);

+  #endif

+  #if   R256_Unroll_R(10)

+        R256_8_rounds(10);

+  #endif

+  #if   R256_Unroll_R(11)

+        R256_8_rounds(11);

+  #endif

+  #if   R256_Unroll_R(12)

+        R256_8_rounds(12);

+  #endif

+  #if   R256_Unroll_R(13)

+        R256_8_rounds(13);

+  #endif

+  #if   R256_Unroll_R(14)

+        R256_8_rounds(14);

+  #endif

+  #if  (SKEIN_UNROLL_256 > 14)

+#error  "need more unrolling in Skein_256_Process_Block"

+  #endif

+        }

+        /* do the final "feedforward" xor, update context chaining vars */

+        ctx->X[0] = X0 ^ w[0];

+        ctx->X[1] = X1 ^ w[1];

+        ctx->X[2] = X2 ^ w[2];

+        ctx->X[3] = X3 ^ w[3];

+

+        Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);

+

+        ts[1] &= ~SKEIN_T1_FLAG_FIRST;

+        }

+    while (--blkCnt);

+    ctx->h.T[0] = ts[0];

+    ctx->h.T[1] = ts[1];

+    }

+

+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)

+size_t Skein_256_Process_Block_CodeSize(void)

+    {

+    return ((u08b_t *) Skein_256_Process_Block_CodeSize) -

+           ((u08b_t *) Skein_256_Process_Block);

+    }

+uint_t Skein_256_Unroll_Cnt(void)

+    {

+    return SKEIN_UNROLL_256;

+    }

+#endif

+#endif

+

+/*****************************  Skein_512 ******************************/

+#if !(SKEIN_USE_ASM & 512)

+void Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)

+    { /* do it in C */

+    enum

+        {

+        WCNT = SKEIN_512_STATE_WORDS

+        };

+#undef  RCNT

+#define RCNT  (SKEIN_512_ROUNDS_TOTAL/8)

+

+#ifdef  SKEIN_LOOP                              /* configure how much to unroll the loop */

+#define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)

+#else

+#define SKEIN_UNROLL_512 (0)

+#endif

+

+#if SKEIN_UNROLL_512

+#if (RCNT % SKEIN_UNROLL_512)

+#error "Invalid SKEIN_UNROLL_512"               /* sanity check on unroll count */

+#endif

+    size_t  r;

+    u64b_t  kw[WCNT+4+RCNT*2];                  /* key schedule words : chaining vars + tweak + "rotation"*/

+#else

+    u64b_t  kw[WCNT+4];                         /* key schedule words : chaining vars + tweak */

+#endif

+    u64b_t  X0,X1,X2,X3,X4,X5,X6,X7;            /* local copy of vars, for speed */

+    u64b_t  w [WCNT];                           /* local copy of input block */

+#ifdef SKEIN_DEBUG

+    const u64b_t *Xptr[8];                      /* use for debugging (help compiler put Xn in registers) */

+    Xptr[0] = &X0;  Xptr[1] = &X1;  Xptr[2] = &X2;  Xptr[3] = &X3;

+    Xptr[4] = &X4;  Xptr[5] = &X5;  Xptr[6] = &X6;  Xptr[7] = &X7;

+#endif

+

+    Skein_assert(blkCnt != 0);                  /* never call with blkCnt == 0! */

+    ts[0] = ctx->h.T[0];

+    ts[1] = ctx->h.T[1];

+    do  {

+        /* this implementation only supports 2**64 input bytes (no carry out here) */

+        ts[0] += byteCntAdd;                    /* update processed length */

+

+        /* precompute the key schedule for this block */

+        ks[0] = ctx->X[0];

+        ks[1] = ctx->X[1];

+        ks[2] = ctx->X[2];

+        ks[3] = ctx->X[3];

+        ks[4] = ctx->X[4];

+        ks[5] = ctx->X[5];

+        ks[6] = ctx->X[6];

+        ks[7] = ctx->X[7];

+        ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ 

+                ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;

+

+        ts[2] = ts[0] ^ ts[1];

+

+        Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */

+        DebugSaveTweak(ctx);

+        Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);

+

+        X0   = w[0] + ks[0];                    /* do the first full key injection */

+        X1   = w[1] + ks[1];

+        X2   = w[2] + ks[2];

+        X3   = w[3] + ks[3];

+        X4   = w[4] + ks[4];

+        X5   = w[5] + ks[5] + ts[0];

+        X6   = w[6] + ks[6] + ts[1];

+        X7   = w[7] + ks[7];

+

+        blkPtr += SKEIN_512_BLOCK_BYTES;

+

+        Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);

+        /* run the rounds */

+#define Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum)                  \

+    X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \

+    X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \

+    X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4; \

+    X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6; \

+

+#if SKEIN_UNROLL_512 == 0                       

+#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum)      /* unrolled */  \

+    Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum)                      \

+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);

+

+#define I512(R)                                                     \

+    X0   += ks[((R)+1) % 9];   /* inject the key schedule value */  \

+    X1   += ks[((R)+2) % 9];                                        \

+    X2   += ks[((R)+3) % 9];                                        \

+    X3   += ks[((R)+4) % 9];                                        \

+    X4   += ks[((R)+5) % 9];                                        \

+    X5   += ks[((R)+6) % 9] + ts[((R)+1) % 3];                      \

+    X6   += ks[((R)+7) % 9] + ts[((R)+2) % 3];                      \

+    X7   += ks[((R)+8) % 9] +     (R)+1;                            \

+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);

+#else                                       /* looping version */

+#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum)                      \

+    Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum)                      \

+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);

+

+#define I512(R)                                                     \

+    X0   += ks[r+(R)+0];        /* inject the key schedule value */ \

+    X1   += ks[r+(R)+1];                                            \

+    X2   += ks[r+(R)+2];                                            \

+    X3   += ks[r+(R)+3];                                            \

+    X4   += ks[r+(R)+4];                                            \

+    X5   += ks[r+(R)+5] + ts[r+(R)+0];                              \

+    X6   += ks[r+(R)+6] + ts[r+(R)+1];                              \

+    X7   += ks[r+(R)+7] +    r+(R)   ;                              \

+    ks[r +       (R)+8] = ks[r+(R)-1];  /* rotate key schedule */   \

+    ts[r +       (R)+2] = ts[r+(R)-1];                              \

+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);

+

+    for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_512)   /* loop thru it */

+#endif                         /* end of looped code definitions */

+        {

+#define R512_8_rounds(R)  /* do 8 full rounds */  \

+        R512(0,1,2,3,4,5,6,7,R_512_0,8*(R)+ 1);   \

+        R512(2,1,4,7,6,5,0,3,R_512_1,8*(R)+ 2);   \

+        R512(4,1,6,3,0,5,2,7,R_512_2,8*(R)+ 3);   \

+        R512(6,1,0,7,2,5,4,3,R_512_3,8*(R)+ 4);   \

+        I512(2*(R));                              \

+        R512(0,1,2,3,4,5,6,7,R_512_4,8*(R)+ 5);   \

+        R512(2,1,4,7,6,5,0,3,R_512_5,8*(R)+ 6);   \

+        R512(4,1,6,3,0,5,2,7,R_512_6,8*(R)+ 7);   \

+        R512(6,1,0,7,2,5,4,3,R_512_7,8*(R)+ 8);   \

+        I512(2*(R)+1);        /* and key injection */

+

+        R512_8_rounds( 0);

+

+#define R512_Unroll_R(NN) ((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_512 > (NN)))

+

+  #if   R512_Unroll_R( 1)

+        R512_8_rounds( 1);

+  #endif

+  #if   R512_Unroll_R( 2)

+        R512_8_rounds( 2);

+  #endif

+  #if   R512_Unroll_R( 3)

+        R512_8_rounds( 3);

+  #endif

+  #if   R512_Unroll_R( 4)

+        R512_8_rounds( 4);

+  #endif

+  #if   R512_Unroll_R( 5)

+        R512_8_rounds( 5);

+  #endif

+  #if   R512_Unroll_R( 6)

+        R512_8_rounds( 6);

+  #endif

+  #if   R512_Unroll_R( 7)

+        R512_8_rounds( 7);

+  #endif

+  #if   R512_Unroll_R( 8)

+        R512_8_rounds( 8);

+  #endif

+  #if   R512_Unroll_R( 9)

+        R512_8_rounds( 9);

+  #endif

+  #if   R512_Unroll_R(10)

+        R512_8_rounds(10);

+  #endif

+  #if   R512_Unroll_R(11)

+        R512_8_rounds(11);

+  #endif

+  #if   R512_Unroll_R(12)

+        R512_8_rounds(12);

+  #endif

+  #if   R512_Unroll_R(13)

+        R512_8_rounds(13);

+  #endif

+  #if   R512_Unroll_R(14)

+        R512_8_rounds(14);

+  #endif

+  #if  (SKEIN_UNROLL_512 > 14)

+#error  "need more unrolling in Skein_512_Process_Block"

+  #endif

+        }

+

+        /* do the final "feedforward" xor, update context chaining vars */

+        ctx->X[0] = X0 ^ w[0];

+        ctx->X[1] = X1 ^ w[1];

+        ctx->X[2] = X2 ^ w[2];

+        ctx->X[3] = X3 ^ w[3];

+        ctx->X[4] = X4 ^ w[4];

+        ctx->X[5] = X5 ^ w[5];

+        ctx->X[6] = X6 ^ w[6];

+        ctx->X[7] = X7 ^ w[7];

+        Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);

+

+        ts[1] &= ~SKEIN_T1_FLAG_FIRST;

+        }

+    while (--blkCnt);

+    ctx->h.T[0] = ts[0];

+    ctx->h.T[1] = ts[1];

+    }

+

+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)

+size_t Skein_512_Process_Block_CodeSize(void)

+    {

+    return ((u08b_t *) Skein_512_Process_Block_CodeSize) -

+           ((u08b_t *) Skein_512_Process_Block);

+    }

+uint_t Skein_512_Unroll_Cnt(void)

+    {

+    return SKEIN_UNROLL_512;

+    }

+#endif

+#endif

+

+/*****************************  Skein1024 ******************************/

+#if !(SKEIN_USE_ASM & 1024)

+void Skein1024_Process_Block(Skein1024_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)

+    { /* do it in C, always looping (unrolled is bigger AND slower!) */

+    enum

+        {

+        WCNT = SKEIN1024_STATE_WORDS

+        };

+#undef  RCNT

+#define RCNT  (SKEIN1024_ROUNDS_TOTAL/8)

+

+#ifdef  SKEIN_LOOP                              /* configure how much to unroll the loop */

+#define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)

+#else

+#define SKEIN_UNROLL_1024 (0)

+#endif

+

+#if (SKEIN_UNROLL_1024 != 0)

+#if (RCNT % SKEIN_UNROLL_1024)

+#error "Invalid SKEIN_UNROLL_1024"              /* sanity check on unroll count */

+#endif

+    size_t  r;

+    u64b_t  kw[WCNT+4+RCNT*2];                  /* key schedule words : chaining vars + tweak + "rotation"*/

+#else

+    u64b_t  kw[WCNT+4];                         /* key schedule words : chaining vars + tweak */

+#endif

+

+    u64b_t  X00,X01,X02,X03,X04,X05,X06,X07,    /* local copy of vars, for speed */

+            X08,X09,X10,X11,X12,X13,X14,X15;

+    u64b_t  w [WCNT];                           /* local copy of input block */

+#ifdef SKEIN_DEBUG

+    const u64b_t *Xptr[16];                     /* use for debugging (help compiler put Xn in registers) */

+    Xptr[ 0] = &X00;  Xptr[ 1] = &X01;  Xptr[ 2] = &X02;  Xptr[ 3] = &X03;

+    Xptr[ 4] = &X04;  Xptr[ 5] = &X05;  Xptr[ 6] = &X06;  Xptr[ 7] = &X07;

+    Xptr[ 8] = &X08;  Xptr[ 9] = &X09;  Xptr[10] = &X10;  Xptr[11] = &X11;

+    Xptr[12] = &X12;  Xptr[13] = &X13;  Xptr[14] = &X14;  Xptr[15] = &X15;

+#endif

+

+    Skein_assert(blkCnt != 0);                  /* never call with blkCnt == 0! */

+    ts[0] = ctx->h.T[0];

+    ts[1] = ctx->h.T[1];

+    do  {

+        /* this implementation only supports 2**64 input bytes (no carry out here) */

+        ts[0] += byteCntAdd;                    /* update processed length */

+

+        /* precompute the key schedule for this block */

+        ks[ 0] = ctx->X[ 0];

+        ks[ 1] = ctx->X[ 1];

+        ks[ 2] = ctx->X[ 2];

+        ks[ 3] = ctx->X[ 3];

+        ks[ 4] = ctx->X[ 4];

+        ks[ 5] = ctx->X[ 5];

+        ks[ 6] = ctx->X[ 6];

+        ks[ 7] = ctx->X[ 7];

+        ks[ 8] = ctx->X[ 8];

+        ks[ 9] = ctx->X[ 9];

+        ks[10] = ctx->X[10];

+        ks[11] = ctx->X[11];

+        ks[12] = ctx->X[12];

+        ks[13] = ctx->X[13];

+        ks[14] = ctx->X[14];

+        ks[15] = ctx->X[15];

+        ks[16] = ks[ 0] ^ ks[ 1] ^ ks[ 2] ^ ks[ 3] ^

+                 ks[ 4] ^ ks[ 5] ^ ks[ 6] ^ ks[ 7] ^

+                 ks[ 8] ^ ks[ 9] ^ ks[10] ^ ks[11] ^

+                 ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;

+

+        ts[2]  = ts[0] ^ ts[1];

+

+        Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */

+        DebugSaveTweak(ctx);

+        Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);

+

+        X00    = w[ 0] + ks[ 0];                 /* do the first full key injection */

+        X01    = w[ 1] + ks[ 1];

+        X02    = w[ 2] + ks[ 2];

+        X03    = w[ 3] + ks[ 3];

+        X04    = w[ 4] + ks[ 4];

+        X05    = w[ 5] + ks[ 5];

+        X06    = w[ 6] + ks[ 6];

+        X07    = w[ 7] + ks[ 7];

+        X08    = w[ 8] + ks[ 8];

+        X09    = w[ 9] + ks[ 9];

+        X10    = w[10] + ks[10];

+        X11    = w[11] + ks[11];

+        X12    = w[12] + ks[12];

+        X13    = w[13] + ks[13] + ts[0];

+        X14    = w[14] + ks[14] + ts[1];

+        X15    = w[15] + ks[15];

+

+        Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);

+

+#define Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rNum) \

+    X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0;   \

+    X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2;   \

+    X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4;   \

+    X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6;   \

+    X##p8 += X##p9; X##p9 = RotL_64(X##p9,ROT##_4); X##p9 ^= X##p8;   \

+    X##pA += X##pB; X##pB = RotL_64(X##pB,ROT##_5); X##pB ^= X##pA;   \

+    X##pC += X##pD; X##pD = RotL_64(X##pD,ROT##_6); X##pD ^= X##pC;   \

+    X##pE += X##pF; X##pF = RotL_64(X##pF,ROT##_7); X##pF ^= X##pE;   \

+

+#if SKEIN_UNROLL_1024 == 0                      

+#define R1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \

+    Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \

+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rn,Xptr);

+

+#define I1024(R)                                                      \

+    X00   += ks[((R)+ 1) % 17]; /* inject the key schedule value */   \

+    X01   += ks[((R)+ 2) % 17];                                       \

+    X02   += ks[((R)+ 3) % 17];                                       \

+    X03   += ks[((R)+ 4) % 17];                                       \

+    X04   += ks[((R)+ 5) % 17];                                       \

+    X05   += ks[((R)+ 6) % 17];                                       \

+    X06   += ks[((R)+ 7) % 17];                                       \

+    X07   += ks[((R)+ 8) % 17];                                       \

+    X08   += ks[((R)+ 9) % 17];                                       \

+    X09   += ks[((R)+10) % 17];                                       \

+    X10   += ks[((R)+11) % 17];                                       \

+    X11   += ks[((R)+12) % 17];                                       \

+    X12   += ks[((R)+13) % 17];                                       \

+    X13   += ks[((R)+14) % 17] + ts[((R)+1) % 3];                     \

+    X14   += ks[((R)+15) % 17] + ts[((R)+2) % 3];                     \

+    X15   += ks[((R)+16) % 17] +     (R)+1;                           \

+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr); 

+#else                                       /* looping version */

+#define R1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \

+    Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \

+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rn,Xptr);

+

+#define I1024(R)                                                      \

+    X00   += ks[r+(R)+ 0];    /* inject the key schedule value */     \

+    X01   += ks[r+(R)+ 1];                                            \

+    X02   += ks[r+(R)+ 2];                                            \

+    X03   += ks[r+(R)+ 3];                                            \

+    X04   += ks[r+(R)+ 4];                                            \

+    X05   += ks[r+(R)+ 5];                                            \

+    X06   += ks[r+(R)+ 6];                                            \

+    X07   += ks[r+(R)+ 7];                                            \

+    X08   += ks[r+(R)+ 8];                                            \

+    X09   += ks[r+(R)+ 9];                                            \

+    X10   += ks[r+(R)+10];                                            \

+    X11   += ks[r+(R)+11];                                            \

+    X12   += ks[r+(R)+12];                                            \

+    X13   += ks[r+(R)+13] + ts[r+(R)+0];                              \

+    X14   += ks[r+(R)+14] + ts[r+(R)+1];                              \

+    X15   += ks[r+(R)+15] +    r+(R)   ;                              \

+    ks[r  +       (R)+16] = ks[r+(R)-1];  /* rotate key schedule */   \

+    ts[r  +       (R)+ 2] = ts[r+(R)-1];                              \

+    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);

+

+    for (r=1;r <= 2*RCNT;r+=2*SKEIN_UNROLL_1024)    /* loop thru it */

+#endif  

+        {

+#define R1024_8_rounds(R)    /* do 8 full rounds */                               \

+        R1024(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,R1024_0,8*(R) + 1); \

+        R1024(00,09,02,13,06,11,04,15,10,07,12,03,14,05,08,01,R1024_1,8*(R) + 2); \

+        R1024(00,07,02,05,04,03,06,01,12,15,14,13,08,11,10,09,R1024_2,8*(R) + 3); \

+        R1024(00,15,02,11,06,13,04,09,14,01,08,05,10,03,12,07,R1024_3,8*(R) + 4); \

+        I1024(2*(R));                                                             \

+        R1024(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,R1024_4,8*(R) + 5); \

+        R1024(00,09,02,13,06,11,04,15,10,07,12,03,14,05,08,01,R1024_5,8*(R) + 6); \

+        R1024(00,07,02,05,04,03,06,01,12,15,14,13,08,11,10,09,R1024_6,8*(R) + 7); \

+        R1024(00,15,02,11,06,13,04,09,14,01,08,05,10,03,12,07,R1024_7,8*(R) + 8); \

+        I1024(2*(R)+1);

+

+        R1024_8_rounds( 0);

+

+#define R1024_Unroll_R(NN) ((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_1024 > (NN)))

+

+  #if   R1024_Unroll_R( 1)

+        R1024_8_rounds( 1);

+  #endif

+  #if   R1024_Unroll_R( 2)

+        R1024_8_rounds( 2);

+  #endif

+  #if   R1024_Unroll_R( 3)

+        R1024_8_rounds( 3);

+  #endif

+  #if   R1024_Unroll_R( 4)

+        R1024_8_rounds( 4);

+  #endif

+  #if   R1024_Unroll_R( 5)

+        R1024_8_rounds( 5);

+  #endif

+  #if   R1024_Unroll_R( 6)

+        R1024_8_rounds( 6);

+  #endif

+  #if   R1024_Unroll_R( 7)

+        R1024_8_rounds( 7);

+  #endif

+  #if   R1024_Unroll_R( 8)

+        R1024_8_rounds( 8);

+  #endif

+  #if   R1024_Unroll_R( 9)

+        R1024_8_rounds( 9);

+  #endif

+  #if   R1024_Unroll_R(10)

+        R1024_8_rounds(10);

+  #endif

+  #if   R1024_Unroll_R(11)

+        R1024_8_rounds(11);

+  #endif

+  #if   R1024_Unroll_R(12)

+        R1024_8_rounds(12);

+  #endif

+  #if   R1024_Unroll_R(13)

+        R1024_8_rounds(13);

+  #endif

+  #if   R1024_Unroll_R(14)

+        R1024_8_rounds(14);

+  #endif

+  #if  (SKEIN_UNROLL_1024 > 14)

+#error  "need more unrolling in Skein_1024_Process_Block"

+  #endif

+        }

+        /* do the final "feedforward" xor, update context chaining vars */

+

+        ctx->X[ 0] = X00 ^ w[ 0];

+        ctx->X[ 1] = X01 ^ w[ 1];

+        ctx->X[ 2] = X02 ^ w[ 2];

+        ctx->X[ 3] = X03 ^ w[ 3];

+        ctx->X[ 4] = X04 ^ w[ 4];

+        ctx->X[ 5] = X05 ^ w[ 5];

+        ctx->X[ 6] = X06 ^ w[ 6];

+        ctx->X[ 7] = X07 ^ w[ 7];

+        ctx->X[ 8] = X08 ^ w[ 8];

+        ctx->X[ 9] = X09 ^ w[ 9];

+        ctx->X[10] = X10 ^ w[10];

+        ctx->X[11] = X11 ^ w[11];

+        ctx->X[12] = X12 ^ w[12];

+        ctx->X[13] = X13 ^ w[13];

+        ctx->X[14] = X14 ^ w[14];

+        ctx->X[15] = X15 ^ w[15];

+

+        Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);

+        

+        ts[1] &= ~SKEIN_T1_FLAG_FIRST;

+        blkPtr += SKEIN1024_BLOCK_BYTES;

+        }

+    while (--blkCnt);

+    ctx->h.T[0] = ts[0];

+    ctx->h.T[1] = ts[1];

+    }

+

+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)

+size_t Skein1024_Process_Block_CodeSize(void)

+    {

+    return ((u08b_t *) Skein1024_Process_Block_CodeSize) -

+           ((u08b_t *) Skein1024_Process_Block);

+    }

+uint_t Skein1024_Unroll_Cnt(void)

+    {

+    return SKEIN_UNROLL_1024;

+    }

+#endif

+#endif

diff --git a/jni/libzrtp/sources/srtp/crypto/skein_iv.h b/jni/libzrtp/sources/srtp/crypto/skein_iv.h
new file mode 100644
index 0000000..0c62fac
--- /dev/null
+++ b/jni/libzrtp/sources/srtp/crypto/skein_iv.h
@@ -0,0 +1,199 @@
+#ifndef _SKEIN_IV_H_

+#define _SKEIN_IV_H_

+

+#include <crypto/skein.h>    /* get Skein macros and types */

+

+/*

+***************** Pre-computed Skein IVs *******************

+**

+** NOTE: these values are not "magic" constants, but

+** are generated using the Threefish block function.

+** They are pre-computed here only for speed; i.e., to

+** avoid the need for a Threefish call during Init().

+**

+** The IV for any fixed hash length may be pre-computed.

+** Only the most common values are included here.

+**

+************************************************************

+**/

+

+#define MK_64 SKEIN_MK_64

+

+/* blkSize =  256 bits. hashSize =  128 bits */

+const u64b_t SKEIN_256_IV_128[] =

+    {

+    MK_64(0xE1111906,0x964D7260),

+    MK_64(0x883DAAA7,0x7C8D811C),

+    MK_64(0x10080DF4,0x91960F7A),

+    MK_64(0xCCF7DDE5,0xB45BC1C2)

+    };

+

+/* blkSize =  256 bits. hashSize =  160 bits */

+const u64b_t SKEIN_256_IV_160[] =

+    {

+    MK_64(0x14202314,0x72825E98),

+    MK_64(0x2AC4E9A2,0x5A77E590),

+    MK_64(0xD47A5856,0x8838D63E),

+    MK_64(0x2DD2E496,0x8586AB7D)

+    };

+

+/* blkSize =  256 bits. hashSize =  224 bits */

+const u64b_t SKEIN_256_IV_224[] =

+    {

+    MK_64(0xC6098A8C,0x9AE5EA0B),

+    MK_64(0x876D5686,0x08C5191C),

+    MK_64(0x99CB88D7,0xD7F53884),

+    MK_64(0x384BDDB1,0xAEDDB5DE)

+    };

+

+/* blkSize =  256 bits. hashSize =  256 bits */

+const u64b_t SKEIN_256_IV_256[] =

+    {

+    MK_64(0xFC9DA860,0xD048B449),

+    MK_64(0x2FCA6647,0x9FA7D833),

+    MK_64(0xB33BC389,0x6656840F),

+    MK_64(0x6A54E920,0xFDE8DA69)

+    };

+

+/* blkSize =  512 bits. hashSize =  128 bits */

+const u64b_t SKEIN_512_IV_128[] =

+    {

+    MK_64(0xA8BC7BF3,0x6FBF9F52),

+    MK_64(0x1E9872CE,0xBD1AF0AA),

+    MK_64(0x309B1790,0xB32190D3),

+    MK_64(0xBCFBB854,0x3F94805C),

+    MK_64(0x0DA61BCD,0x6E31B11B),

+    MK_64(0x1A18EBEA,0xD46A32E3),

+    MK_64(0xA2CC5B18,0xCE84AA82),

+    MK_64(0x6982AB28,0x9D46982D)

+    };

+

+/* blkSize =  512 bits. hashSize =  160 bits */

+const u64b_t SKEIN_512_IV_160[] =

+    {

+    MK_64(0x28B81A2A,0xE013BD91),

+    MK_64(0xC2F11668,0xB5BDF78F),

+    MK_64(0x1760D8F3,0xF6A56F12),

+    MK_64(0x4FB74758,0x8239904F),

+    MK_64(0x21EDE07F,0x7EAF5056),

+    MK_64(0xD908922E,0x63ED70B8),

+    MK_64(0xB8EC76FF,0xECCB52FA),

+    MK_64(0x01A47BB8,0xA3F27A6E)

+    };

+

+/* blkSize =  512 bits. hashSize =  224 bits */

+const u64b_t SKEIN_512_IV_224[] =

+    {

+    MK_64(0xCCD06162,0x48677224),

+    MK_64(0xCBA65CF3,0xA92339EF),

+    MK_64(0x8CCD69D6,0x52FF4B64),

+    MK_64(0x398AED7B,0x3AB890B4),

+    MK_64(0x0F59D1B1,0x457D2BD0),

+    MK_64(0x6776FE65,0x75D4EB3D),

+    MK_64(0x99FBC70E,0x997413E9),

+    MK_64(0x9E2CFCCF,0xE1C41EF7)

+    };

+

+/* blkSize =  512 bits. hashSize =  256 bits */

+const u64b_t SKEIN_512_IV_256[] =

+    {

+    MK_64(0xCCD044A1,0x2FDB3E13),

+    MK_64(0xE8359030,0x1A79A9EB),

+    MK_64(0x55AEA061,0x4F816E6F),

+    MK_64(0x2A2767A4,0xAE9B94DB),

+    MK_64(0xEC06025E,0x74DD7683),

+    MK_64(0xE7A436CD,0xC4746251),

+    MK_64(0xC36FBAF9,0x393AD185),

+    MK_64(0x3EEDBA18,0x33EDFC13)

+    };

+

+/* blkSize =  512 bits. hashSize =  384 bits */

+const u64b_t SKEIN_512_IV_384[] =

+    {

+    MK_64(0xA3F6C6BF,0x3A75EF5F),

+    MK_64(0xB0FEF9CC,0xFD84FAA4),

+    MK_64(0x9D77DD66,0x3D770CFE),

+    MK_64(0xD798CBF3,0xB468FDDA),

+    MK_64(0x1BC4A666,0x8A0E4465),

+    MK_64(0x7ED7D434,0xE5807407),

+    MK_64(0x548FC1AC,0xD4EC44D6),

+    MK_64(0x266E1754,0x6AA18FF8)

+    };

+

+/* blkSize =  512 bits. hashSize =  512 bits */

+const u64b_t SKEIN_512_IV_512[] =

+    {

+    MK_64(0x4903ADFF,0x749C51CE),

+    MK_64(0x0D95DE39,0x9746DF03),

+    MK_64(0x8FD19341,0x27C79BCE),

+    MK_64(0x9A255629,0xFF352CB1),

+    MK_64(0x5DB62599,0xDF6CA7B0),

+    MK_64(0xEABE394C,0xA9D5C3F4),

+    MK_64(0x991112C7,0x1A75B523),

+    MK_64(0xAE18A40B,0x660FCC33)

+    };

+

+/* blkSize = 1024 bits. hashSize =  384 bits */

+const u64b_t SKEIN1024_IV_384[] =

+    {

+    MK_64(0x5102B6B8,0xC1894A35),

+    MK_64(0xFEEBC9E3,0xFE8AF11A),

+    MK_64(0x0C807F06,0xE32BED71),

+    MK_64(0x60C13A52,0xB41A91F6),

+    MK_64(0x9716D35D,0xD4917C38),

+    MK_64(0xE780DF12,0x6FD31D3A),

+    MK_64(0x797846B6,0xC898303A),

+    MK_64(0xB172C2A8,0xB3572A3B),

+    MK_64(0xC9BC8203,0xA6104A6C),

+    MK_64(0x65909338,0xD75624F4),

+    MK_64(0x94BCC568,0x4B3F81A0),

+    MK_64(0x3EBBF51E,0x10ECFD46),

+    MK_64(0x2DF50F0B,0xEEB08542),

+    MK_64(0x3B5A6530,0x0DBC6516),

+    MK_64(0x484B9CD2,0x167BBCE1),

+    MK_64(0x2D136947,0xD4CBAFEA)

+    };

+

+/* blkSize = 1024 bits. hashSize =  512 bits */

+const u64b_t SKEIN1024_IV_512[] =

+    {

+    MK_64(0xCAEC0E5D,0x7C1B1B18),

+    MK_64(0xA01B0E04,0x5F03E802),

+    MK_64(0x33840451,0xED912885),

+    MK_64(0x374AFB04,0xEAEC2E1C),

+    MK_64(0xDF25A0E2,0x813581F7),

+    MK_64(0xE4004093,0x8B12F9D2),

+    MK_64(0xA662D539,0xC2ED39B6),

+    MK_64(0xFA8B85CF,0x45D8C75A),

+    MK_64(0x8316ED8E,0x29EDE796),

+    MK_64(0x053289C0,0x2E9F91B8),

+    MK_64(0xC3F8EF1D,0x6D518B73),

+    MK_64(0xBDCEC3C4,0xD5EF332E),

+    MK_64(0x549A7E52,0x22974487),

+    MK_64(0x67070872,0x5B749816),

+    MK_64(0xB9CD28FB,0xF0581BD1),

+    MK_64(0x0E2940B8,0x15804974)

+    };

+

+/* blkSize = 1024 bits. hashSize = 1024 bits */

+const u64b_t SKEIN1024_IV_1024[] =

+    {

+    MK_64(0xD593DA07,0x41E72355),

+    MK_64(0x15B5E511,0xAC73E00C),

+    MK_64(0x5180E5AE,0xBAF2C4F0),

+    MK_64(0x03BD41D3,0xFCBCAFAF),

+    MK_64(0x1CAEC6FD,0x1983A898),

+    MK_64(0x6E510B8B,0xCDD0589F),

+    MK_64(0x77E2BDFD,0xC6394ADA),

+    MK_64(0xC11E1DB5,0x24DCB0A3),

+    MK_64(0xD6D14AF9,0xC6329AB5),

+    MK_64(0x6A9B0BFC,0x6EB67E0D),

+    MK_64(0x9243C60D,0xCCFF1332),

+    MK_64(0x1A1F1DDE,0x743F02D4),

+    MK_64(0x0996753C,0x10ED0BB8),

+    MK_64(0x6572DD22,0xF2B4969A),

+    MK_64(0x61FD3062,0xD00A579A),

+    MK_64(0x1DE0536E,0x8682E539)

+    };

+

+#endif /* _SKEIN_IV_H_ */

diff --git a/jni/libzrtp/sources/srtp/crypto/skein_port.h b/jni/libzrtp/sources/srtp/crypto/skein_port.h
new file mode 100644
index 0000000..256e9d5
--- /dev/null
+++ b/jni/libzrtp/sources/srtp/crypto/skein_port.h
@@ -0,0 +1,127 @@
+#ifndef _SKEIN_PORT_H_

+#define _SKEIN_PORT_H_

+/*******************************************************************

+**

+** Platform-specific definitions for Skein hash function.

+**

+** Source code author: Doug Whiting, 2008.

+**

+** This algorithm and source code is released to the public domain.

+**

+** Many thanks to Brian Gladman for his portable header files.

+**

+** To port Skein to an "unsupported" platform, change the definitions

+** in this file appropriately.

+** 

+********************************************************************/

+

+#include <crypto/brg_types.h>                      /* get integer type definitions */

+

+/*r3gis3r : android already has that defined in types */

+#ifndef ANDROID

+typedef unsigned int    uint_t;             /* native unsigned integer */

+#endif

+typedef uint_8t         u08b_t;             /*  8-bit unsigned integer */

+typedef uint_64t        u64b_t;             /* 64-bit unsigned integer */

+

+#ifndef RotL_64

+#define RotL_64(x,N)    (((x) << (N)) | ((x) >> (64-(N))))

+#endif

+

+/*

+ * Skein is "natively" little-endian (unlike SHA-xxx), for optimal

+ * performance on x86 CPUs.  The Skein code requires the following

+ * definitions for dealing with endianness:

+ *

+ *    SKEIN_NEED_SWAP:  0 for little-endian, 1 for big-endian

+ *    Skein_Put64_LSB_First

+ *    Skein_Get64_LSB_First

+ *    Skein_Swap64

+ *

+ * If SKEIN_NEED_SWAP is defined at compile time, it is used here

+ * along with the portable versions of Put64/Get64/Swap64, which 

+ * are slow in general.

+ *

+ * Otherwise, an "auto-detect" of endianness is attempted below.

+ * If the default handling doesn't work well, the user may insert

+ * platform-specific code instead (e.g., for big-endian CPUs).

+ *

+ */

+#ifndef SKEIN_NEED_SWAP /* compile-time "override" for endianness? */

+

+#include <crypto/brg_endian.h>              /* get endianness selection */

+#if   PLATFORM_BYTE_ORDER == IS_BIG_ENDIAN

+    /* here for big-endian CPUs */

+#define SKEIN_NEED_SWAP   (1)

+#elif PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN

+    /* here for x86 and x86-64 CPUs (and other detected little-endian CPUs) */

+#define SKEIN_NEED_SWAP   (0)

+#if   PLATFORM_MUST_ALIGN == 0              /* ok to use "fast" versions? */

+#define Skein_Put64_LSB_First(dst08,src64,bCnt) memcpy(dst08,src64,bCnt)

+#define Skein_Get64_LSB_First(dst64,src08,wCnt) memcpy(dst64,src08,8*(wCnt))

+#endif

+#else

+#error "Skein needs endianness setting!"

+#endif

+

+#endif /* ifndef SKEIN_NEED_SWAP */

+

+/*

+ ******************************************************************

+ *      Provide any definitions still needed.

+ ******************************************************************

+ */

+#ifndef Skein_Swap64  /* swap for big-endian, nop for little-endian */

+#if     SKEIN_NEED_SWAP

+#define Skein_Swap64(w64)                       \

+  ( (( ((u64b_t)(w64))       & 0xFF) << 56) |   \

+    (((((u64b_t)(w64)) >> 8) & 0xFF) << 48) |   \

+    (((((u64b_t)(w64)) >>16) & 0xFF) << 40) |   \

+    (((((u64b_t)(w64)) >>24) & 0xFF) << 32) |   \

+    (((((u64b_t)(w64)) >>32) & 0xFF) << 24) |   \

+    (((((u64b_t)(w64)) >>40) & 0xFF) << 16) |   \

+    (((((u64b_t)(w64)) >>48) & 0xFF) <<  8) |   \

+    (((((u64b_t)(w64)) >>56) & 0xFF)      ) )

+#else

+#define Skein_Swap64(w64)  (w64)

+#endif

+#endif  /* ifndef Skein_Swap64 */

+

+

+#ifndef Skein_Put64_LSB_First

+void    Skein_Put64_LSB_First(u08b_t *dst,const u64b_t *src,size_t bCnt)

+#ifdef  SKEIN_PORT_CODE /* instantiate the function code here? */

+    { /* this version is fully portable (big-endian or little-endian), but slow */

+    size_t n;

+

+    for (n=0;n<bCnt;n++)

+        dst[n] = (u08b_t) (src[n>>3] >> (8*(n&7)));

+    }

+#else

+    ;    /* output only the function prototype */

+#endif

+#endif   /* ifndef Skein_Put64_LSB_First */

+

+

+#ifndef Skein_Get64_LSB_First

+void    Skein_Get64_LSB_First(u64b_t *dst,const u08b_t *src,size_t wCnt)

+#ifdef  SKEIN_PORT_CODE /* instantiate the function code here? */

+    { /* this version is fully portable (big-endian or little-endian), but slow */

+    size_t n;

+

+    for (n=0;n<8*wCnt;n+=8)

+        dst[n/8] = (((u64b_t) src[n  ])      ) +

+                   (((u64b_t) src[n+1]) <<  8) +

+                   (((u64b_t) src[n+2]) << 16) +

+                   (((u64b_t) src[n+3]) << 24) +

+                   (((u64b_t) src[n+4]) << 32) +

+                   (((u64b_t) src[n+5]) << 40) +

+                   (((u64b_t) src[n+6]) << 48) +

+                   (((u64b_t) src[n+7]) << 56) ;

+    }

+#else

+    ;    /* output only the function prototype */

+#endif

+#endif   /* ifndef Skein_Get64_LSB_First */

+

+#endif   /* ifndef _SKEIN_PORT_H_ */