* #36737: switch back to svn repo, remove assert in sip_transaction.c
diff --git a/jni/pjproject-android/.svn/pristine/31/31d930f87cfe6af17e695de9519b7691824bf5bc.svn-base b/jni/pjproject-android/.svn/pristine/31/31d930f87cfe6af17e695de9519b7691824bf5bc.svn-base
new file mode 100644
index 0000000..566672d
--- /dev/null
+++ b/jni/pjproject-android/.svn/pristine/31/31d930f87cfe6af17e695de9519b7691824bf5bc.svn-base
@@ -0,0 +1,404 @@
+/*
+ * sha1.c
+ *
+ * an implementation of the Secure Hash Algorithm v.1 (SHA-1),
+ * specified in FIPS 180-1
+ *
+ * David A. McGrew
+ * Cisco Systems, Inc.
+ */
+
+/*
+ *	
+ * Copyright (c) 2001-2006, Cisco Systems, Inc.
+ * All rights reserved.
+ * 
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 
+ *   Redistributions of source code must retain the above copyright
+ *   notice, this list of conditions and the following disclaimer.
+ * 
+ *   Redistributions in binary form must reproduce the above
+ *   copyright notice, this list of conditions and the following
+ *   disclaimer in the documentation and/or other materials provided
+ *   with the distribution.
+ * 
+ *   Neither the name of the Cisco Systems, Inc. nor the names of its
+ *   contributors may be used to endorse or promote products derived
+ *   from this software without specific prior written permission.
+ * 
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+ * OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+
+
+#include "sha1.h"
+
+debug_module_t mod_sha1 = {
+  0,                 /* debugging is off by default */
+  "sha-1"            /* printable module name       */
+};
+
+/* SN == Rotate left N bits */
+#define S1(X)  ((X << 1)  | (X >> 31))
+#define S5(X)  ((X << 5)  | (X >> 27))
+#define S30(X) ((X << 30) | (X >> 2))
+
+#define f0(B,C,D) ((B & C) | (~B & D))              
+#define f1(B,C,D) (B ^ C ^ D)
+#define f2(B,C,D) ((B & C) | (B & D) | (C & D))
+#define f3(B,C,D) (B ^ C ^ D)
+
+/* 
+ * nota bene: the variable K0 appears in the curses library, so we 
+ * give longer names to these variables to avoid spurious warnings 
+ * on systems that uses curses
+ */
+
+uint32_t SHA_K0 = 0x5A827999;   /* Kt for 0  <= t <= 19 */
+uint32_t SHA_K1 = 0x6ED9EBA1;   /* Kt for 20 <= t <= 39 */
+uint32_t SHA_K2 = 0x8F1BBCDC;   /* Kt for 40 <= t <= 59 */
+uint32_t SHA_K3 = 0xCA62C1D6;   /* Kt for 60 <= t <= 79 */
+
+void
+sha1(const uint8_t *msg,  int octets_in_msg, uint32_t hash_value[5]) {
+  sha1_ctx_t ctx;
+
+  sha1_init(&ctx);
+  sha1_update(&ctx, msg, octets_in_msg);
+  sha1_final(&ctx, hash_value);
+
+}
+
+/*
+ *  sha1_core(M, H) computes the core compression function, where M is
+ *  the next part of the message (in network byte order) and H is the
+ *  intermediate state { H0, H1, ...} (in host byte order)
+ *
+ *  this function does not do any of the padding required in the
+ *  complete SHA1 function
+ *
+ *  this function is used in the SEAL 3.0 key setup routines
+ *  (crypto/cipher/seal.c)
+ */
+
+void
+sha1_core(const uint32_t M[16], uint32_t hash_value[5]) {
+  uint32_t H0;
+  uint32_t H1;
+  uint32_t H2;
+  uint32_t H3;
+  uint32_t H4;
+  uint32_t W[80];
+  uint32_t A, B, C, D, E, TEMP;
+  int t;
+
+  /* copy hash_value into H0, H1, H2, H3, H4 */
+  H0 = hash_value[0];
+  H1 = hash_value[1];
+  H2 = hash_value[2];
+  H3 = hash_value[3];
+  H4 = hash_value[4];
+
+  /* copy/xor message into array */
+    
+  W[0]  = be32_to_cpu(M[0]);
+  W[1]  = be32_to_cpu(M[1]);
+  W[2]  = be32_to_cpu(M[2]);
+  W[3]  = be32_to_cpu(M[3]);
+  W[4]  = be32_to_cpu(M[4]);
+  W[5]  = be32_to_cpu(M[5]);
+  W[6]  = be32_to_cpu(M[6]);
+  W[7]  = be32_to_cpu(M[7]);
+  W[8]  = be32_to_cpu(M[8]);
+  W[9]  = be32_to_cpu(M[9]);
+  W[10] = be32_to_cpu(M[10]);
+  W[11] = be32_to_cpu(M[11]);
+  W[12] = be32_to_cpu(M[12]);
+  W[13] = be32_to_cpu(M[13]);
+  W[14] = be32_to_cpu(M[14]);
+  W[15] = be32_to_cpu(M[15]);
+  TEMP = W[13] ^ W[8]  ^ W[2]  ^ W[0];  W[16] = S1(TEMP);
+  TEMP = W[14] ^ W[9]  ^ W[3]  ^ W[1];  W[17] = S1(TEMP);
+  TEMP = W[15] ^ W[10] ^ W[4]  ^ W[2];  W[18] = S1(TEMP);
+  TEMP = W[16] ^ W[11] ^ W[5]  ^ W[3];  W[19] = S1(TEMP);
+  TEMP = W[17] ^ W[12] ^ W[6]  ^ W[4];  W[20] = S1(TEMP);
+  TEMP = W[18] ^ W[13] ^ W[7]  ^ W[5];  W[21] = S1(TEMP);
+  TEMP = W[19] ^ W[14] ^ W[8]  ^ W[6];  W[22] = S1(TEMP);
+  TEMP = W[20] ^ W[15] ^ W[9]  ^ W[7];  W[23] = S1(TEMP);
+  TEMP = W[21] ^ W[16] ^ W[10] ^ W[8];  W[24] = S1(TEMP);
+  TEMP = W[22] ^ W[17] ^ W[11] ^ W[9];  W[25] = S1(TEMP);
+  TEMP = W[23] ^ W[18] ^ W[12] ^ W[10]; W[26] = S1(TEMP);
+  TEMP = W[24] ^ W[19] ^ W[13] ^ W[11]; W[27] = S1(TEMP);
+  TEMP = W[25] ^ W[20] ^ W[14] ^ W[12]; W[28] = S1(TEMP);
+  TEMP = W[26] ^ W[21] ^ W[15] ^ W[13]; W[29] = S1(TEMP);
+  TEMP = W[27] ^ W[22] ^ W[16] ^ W[14]; W[30] = S1(TEMP);
+  TEMP = W[28] ^ W[23] ^ W[17] ^ W[15]; W[31] = S1(TEMP);
+
+  /* process the remainder of the array */
+  for (t=32; t < 80; t++) {
+    TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
+    W[t] = S1(TEMP);      
+  }
+
+  A = H0; B = H1; C = H2; D = H3; E = H4;
+
+  for (t=0; t < 20; t++) {
+    TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
+    E = D; D = C; C = S30(B); B = A; A = TEMP;
+  }
+  for (   ; t < 40; t++) {
+    TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
+    E = D; D = C; C = S30(B); B = A; A = TEMP;
+  }
+  for (   ; t < 60; t++) {
+    TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
+    E = D; D = C; C = S30(B); B = A; A = TEMP;
+  }
+  for (   ; t < 80; t++) {
+    TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
+    E = D; D = C; C = S30(B); B = A; A = TEMP;
+  }
+
+  hash_value[0] = H0 + A;
+  hash_value[1] = H1 + B;
+  hash_value[2] = H2 + C;
+  hash_value[3] = H3 + D;
+  hash_value[4] = H4 + E;
+
+  return;
+}
+
+void
+sha1_init(sha1_ctx_t *ctx) {
+ 
+  /* initialize state vector */
+  ctx->H[0] = 0x67452301;
+  ctx->H[1] = 0xefcdab89;
+  ctx->H[2] = 0x98badcfe;
+  ctx->H[3] = 0x10325476;
+  ctx->H[4] = 0xc3d2e1f0;
+
+  /* indicate that message buffer is empty */
+  ctx->octets_in_buffer = 0;
+
+  /* reset message bit-count to zero */
+  ctx->num_bits_in_msg = 0;
+
+}
+
+void
+sha1_update(sha1_ctx_t *ctx, const uint8_t *msg, int octets_in_msg) {
+  int i;
+  uint8_t *buf = (uint8_t *)ctx->M;
+
+  /* update message bit-count */
+  ctx->num_bits_in_msg += octets_in_msg * 8;
+
+  /* loop over 16-word blocks of M */
+  while (octets_in_msg > 0) {
+    
+    if (octets_in_msg + ctx->octets_in_buffer >= 64) {
+
+      /* 
+       * copy words of M into msg buffer until that buffer is full,
+       * converting them into host byte order as needed
+       */
+      octets_in_msg -= (64 - ctx->octets_in_buffer);
+      for (i=ctx->octets_in_buffer; i < 64; i++) 
+	buf[i] = *msg++;
+      ctx->octets_in_buffer = 0;
+
+      /* process a whole block */
+
+      debug_print(mod_sha1, "(update) running sha1_core()", NULL);
+
+      sha1_core(ctx->M, ctx->H);
+
+    } else {
+
+      debug_print(mod_sha1, "(update) not running sha1_core()", NULL);
+
+      for (i=ctx->octets_in_buffer; 
+	   i < (ctx->octets_in_buffer + octets_in_msg); i++)
+	buf[i] = *msg++;
+      ctx->octets_in_buffer += octets_in_msg;
+      octets_in_msg = 0;
+    }
+
+  }
+
+}
+
+/*
+ * sha1_final(ctx, output) computes the result for ctx and copies it
+ * into the twenty octets located at *output
+ */
+
+void
+sha1_final(sha1_ctx_t *ctx, uint32_t *output) {
+  uint32_t A, B, C, D, E, TEMP;
+  uint32_t W[80];  
+  int i, t;
+
+  /*
+   * process the remaining octets_in_buffer, padding and terminating as
+   * necessary
+   */
+  {
+    int tail = ctx->octets_in_buffer % 4;
+    
+    /* copy/xor message into array */
+    for (i=0; i < (ctx->octets_in_buffer+3)/4; i++) 
+      W[i]  = be32_to_cpu(ctx->M[i]);
+
+    /* set the high bit of the octet immediately following the message */
+    switch (tail) {
+    case (3):
+      W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffffff00) | 0x80;
+      W[i] = 0x0;
+      break;
+    case (2):      
+      W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffff0000) | 0x8000;
+      W[i] = 0x0;
+      break;
+    case (1):
+      W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xff000000) | 0x800000;
+      W[i] = 0x0;
+      break;
+    case (0):
+      W[i] = 0x80000000;
+      break;
+    }
+    
+    /* zeroize remaining words */
+    for (i++   ; i < 15; i++)
+      W[i] = 0x0;
+
+    /* 
+     * if there is room at the end of the word array, then set the
+     * last word to the bit-length of the message; otherwise, set that
+     * word to zero and then we need to do one more run of the
+     * compression algo.
+     */
+    if (ctx->octets_in_buffer < 56) 
+      W[15] = ctx->num_bits_in_msg;
+    else if (ctx->octets_in_buffer < 60)
+      W[15] = 0x0;
+
+    /* process the word array */    for (t=16; t < 80; t++) {
+      TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
+      W[t] = S1(TEMP);
+    }
+
+    A = ctx->H[0]; 
+    B = ctx->H[1]; 
+    C = ctx->H[2]; 
+    D = ctx->H[3]; 
+    E = ctx->H[4];
+
+    for (t=0; t < 20; t++) {
+      TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
+      E = D; D = C; C = S30(B); B = A; A = TEMP;
+    }
+    for (   ; t < 40; t++) {
+      TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
+      E = D; D = C; C = S30(B); B = A; A = TEMP;
+    }
+    for (   ; t < 60; t++) {
+      TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
+      E = D; D = C; C = S30(B); B = A; A = TEMP;
+    }
+    for (   ; t < 80; t++) {
+      TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
+      E = D; D = C; C = S30(B); B = A; A = TEMP;
+    }
+
+    ctx->H[0] += A;
+    ctx->H[1] += B;
+    ctx->H[2] += C;
+    ctx->H[3] += D;
+    ctx->H[4] += E;
+
+  }
+
+  debug_print(mod_sha1, "(final) running sha1_core()", NULL);
+
+  if (ctx->octets_in_buffer >= 56) {
+
+    debug_print(mod_sha1, "(final) running sha1_core() again", NULL);
+
+    /* we need to do one final run of the compression algo */
+
+    /* 
+     * set initial part of word array to zeros, and set the 
+     * final part to the number of bits in the message
+     */
+    for (i=0; i < 15; i++)
+      W[i] = 0x0;
+    W[15] = ctx->num_bits_in_msg;
+
+    /* process the word array */
+    for (t=16; t < 80; t++) {
+      TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
+      W[t] = S1(TEMP);
+    }
+
+    A = ctx->H[0]; 
+    B = ctx->H[1]; 
+    C = ctx->H[2]; 
+    D = ctx->H[3]; 
+    E = ctx->H[4];
+
+    for (t=0; t < 20; t++) {
+      TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
+      E = D; D = C; C = S30(B); B = A; A = TEMP;
+    }
+    for (   ; t < 40; t++) {
+      TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
+      E = D; D = C; C = S30(B); B = A; A = TEMP;
+    }
+    for (   ; t < 60; t++) {
+      TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
+      E = D; D = C; C = S30(B); B = A; A = TEMP;
+    }
+    for (   ; t < 80; t++) {
+      TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
+      E = D; D = C; C = S30(B); B = A; A = TEMP;
+    }
+
+    ctx->H[0] += A;
+    ctx->H[1] += B;
+    ctx->H[2] += C;
+    ctx->H[3] += D;
+    ctx->H[4] += E;
+  }
+
+  /* copy result into output buffer */
+  output[0] = be32_to_cpu(ctx->H[0]);
+  output[1] = be32_to_cpu(ctx->H[1]);
+  output[2] = be32_to_cpu(ctx->H[2]);
+  output[3] = be32_to_cpu(ctx->H[3]);
+  output[4] = be32_to_cpu(ctx->H[4]);
+
+  /* indicate that message buffer in context is empty */
+  ctx->octets_in_buffer = 0;
+
+  return;
+}
+
+
+