* #35924 (zrtp): switch to libzrtpcpp
diff --git a/jni/libzrtp/sources/zrtp/crypto/sha2.c b/jni/libzrtp/sources/zrtp/crypto/sha2.c
new file mode 100644
index 0000000..22761f3
--- /dev/null
+++ b/jni/libzrtp/sources/zrtp/crypto/sha2.c
@@ -0,0 +1,773 @@
+/*
+ ---------------------------------------------------------------------------
+ Copyright (c) 2002, Dr Brian Gladman, Worcester, UK.   All rights reserved.
+
+ LICENSE TERMS
+
+ The free distribution and use of this software in both source and binary
+ form is allowed (with or without changes) provided that:
+
+   1. distributions of this source code include the above copyright
+      notice, this list of conditions and the following disclaimer;
+
+   2. distributions in binary form include the above copyright
+      notice, this list of conditions and the following disclaimer
+      in the documentation and/or other associated materials;
+
+   3. the copyright holder's name is not used to endorse products
+      built using this software without specific written permission.
+
+ ALTERNATIVELY, provided that this notice is retained in full, this product
+ may be distributed under the terms of the GNU General Public License (GPL),
+ in which case the provisions of the GPL apply INSTEAD OF those given above.
+
+ DISCLAIMER
+
+ This software is provided 'as is' with no explicit or implied warranties
+ in respect of its properties, including, but not limited to, correctness
+ and/or fitness for purpose.
+ ---------------------------------------------------------------------------
+ Issue Date: 01/08/2005
+
+ This is a byte oriented version of SHA2 that operates on arrays of bytes
+ stored in memory. This code implements sha256, sha384 and sha512 but the
+ latter two functions rely on efficient 64-bit integer operations that
+ may not be very efficient on 32-bit machines
+
+ The sha256 functions use a type 'sha256_ctx' to hold details of the
+ current hash state and uses the following three calls:
+
+       void sha256_begin(sha256_ctx ctx[1])
+       void sha256_hash(const unsigned char data[],
+                            unsigned long len, sha256_ctx ctx[1])
+       void sha_end1(unsigned char hval[], sha256_ctx ctx[1])
+
+ The first subroutine initialises a hash computation by setting up the
+ context in the sha256_ctx context. The second subroutine hashes 8-bit
+ bytes from array data[] into the hash state withinh sha256_ctx context,
+ the number of bytes to be hashed being given by the the unsigned long
+ integer len.  The third subroutine completes the hash calculation and
+ places the resulting digest value in the array of 8-bit bytes hval[].
+
+ The sha384 and sha512 functions are similar and use the interfaces:
+
+       void sha384_begin(sha384_ctx ctx[1]);
+       void sha384_hash(const unsigned char data[],
+                            unsigned long len, sha384_ctx ctx[1]);
+       void sha384_end(unsigned char hval[], sha384_ctx ctx[1]);
+
+       void sha512_begin(sha512_ctx ctx[1]);
+       void sha512_hash(const unsigned char data[],
+                            unsigned long len, sha512_ctx ctx[1]);
+       void sha512_end(unsigned char hval[], sha512_ctx ctx[1]);
+
+ In addition there is a function sha2 that can be used to call all these
+ functions using a call with a hash length parameter as follows:
+
+       int sha2_begin(unsigned long len, sha2_ctx ctx[1]);
+       void sha2_hash(const unsigned char data[],
+                            unsigned long len, sha2_ctx ctx[1]);
+       void sha2_end(unsigned char hval[], sha2_ctx ctx[1]);
+
+ My thanks to Erik Andersen <andersen@codepoet.org> for testing this code
+ on big-endian systems and for his assistance with corrections
+*/
+
+#if 0
+#define UNROLL_SHA2     /* for SHA2 loop unroll     */
+#endif
+
+#include <string.h>     /* for memcpy() etc.        */
+
+#include "sha2.h"
+
+#include <cryptcommon/brg_endian.h>
+
+#if defined(__cplusplus)
+extern "C"
+{
+#endif
+
+#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
+#pragma intrinsic(memcpy)
+#endif
+
+#if 0 && defined(_MSC_VER)
+#define rotl32 _lrotl
+#define rotr32 _lrotr
+#else
+#define rotl32(x,n)   (((x) << n) | ((x) >> (32 - n)))
+#define rotr32(x,n)   (((x) >> n) | ((x) << (32 - n)))
+#endif
+
+#if !defined(bswap_32)
+#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
+#endif
+
+#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
+#define SWAP_BYTES
+#else
+#undef  SWAP_BYTES
+#endif
+
+#if 0
+
+#define ch(x,y,z)       (((x) & (y)) ^ (~(x) & (z)))
+#define maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
+
+#else   /* Thanks to Rich Schroeppel and Colin Plumb for the following      */
+
+#define ch(x,y,z)       ((z) ^ ((x) & ((y) ^ (z))))
+#define maj(x,y,z)      (((x) & (y)) | ((z) & ((x) ^ (y))))
+
+#endif
+
+/* round transforms for SHA256 and SHA512 compression functions */
+
+#define vf(n,i) v[(n - i) & 7]
+
+#define hf(i) (p[i & 15] += \
+    g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15]))
+
+#define v_cycle(i,j)                                \
+    vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j]        \
+    + s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i));   \
+    vf(3,i) += vf(7,i);                             \
+    vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
+
+#if defined(SHA_224) || defined(SHA_256)
+
+#define SHA256_MASK (SHA256_BLOCK_SIZE - 1)
+
+#if defined(SWAP_BYTES)
+#define bsw_32(p,n) \
+    { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
+#else
+#define bsw_32(p,n)
+#endif
+
+#define s_0(x)  (rotr32((x),  2) ^ rotr32((x), 13) ^ rotr32((x), 22))
+#define s_1(x)  (rotr32((x),  6) ^ rotr32((x), 11) ^ rotr32((x), 25))
+#define g_0(x)  (rotr32((x),  7) ^ rotr32((x), 18) ^ ((x) >>  3))
+#define g_1(x)  (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
+#define k_0     k256
+
+/* rotated SHA256 round definition. Rather than swapping variables as in    */
+/* FIPS-180, different variables are 'rotated' on each round, returning     */
+/* to their starting positions every eight rounds                           */
+
+#define q(n)  v##n
+
+#define one_cycle(a,b,c,d,e,f,g,h,k,w)  \
+    q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \
+    q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c))
+
+/* SHA256 mixing data   */
+
+const uint_32t k256[64] =
+{   0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul,
+    0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul,
+    0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul,
+    0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul,
+    0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul,
+    0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul,
+    0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul,
+    0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul,
+    0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul,
+    0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul,
+    0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul,
+    0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul,
+    0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul,
+    0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul,
+    0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul,
+    0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul,
+};
+
+/* Compile 64 bytes of hash data into SHA256 digest value   */
+/* NOTE: this routine assumes that the byte order in the    */
+/* ctx->wbuf[] at this point is such that low address bytes */
+/* in the ORIGINAL byte stream will go into the high end of */
+/* words on BOTH big and little endian systems              */
+
+VOID_RETURN sha256_compile(sha256_ctx ctx[1])
+{
+#if !defined(UNROLL_SHA2)
+
+    uint_32t j, *p = ctx->wbuf, v[8];
+
+    memcpy(v, ctx->hash, 8 * sizeof(uint_32t));
+
+    for(j = 0; j < 64; j += 16)
+    {
+        v_cycle( 0, j); v_cycle( 1, j);
+        v_cycle( 2, j); v_cycle( 3, j);
+        v_cycle( 4, j); v_cycle( 5, j);
+        v_cycle( 6, j); v_cycle( 7, j);
+        v_cycle( 8, j); v_cycle( 9, j);
+        v_cycle(10, j); v_cycle(11, j);
+        v_cycle(12, j); v_cycle(13, j);
+        v_cycle(14, j); v_cycle(15, j);
+    }
+
+    ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
+    ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
+    ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
+    ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
+
+#else
+
+    uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7;
+
+    v0 = ctx->hash[0]; v1 = ctx->hash[1];
+    v2 = ctx->hash[2]; v3 = ctx->hash[3];
+    v4 = ctx->hash[4]; v5 = ctx->hash[5];
+    v6 = ctx->hash[6]; v7 = ctx->hash[7];
+
+    one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]);
+    one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]);
+    one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]);
+    one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]);
+    one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]);
+    one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]);
+    one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]);
+    one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]);
+    one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]);
+    one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]);
+    one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]);
+    one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]);
+    one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]);
+    one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]);
+    one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]);
+    one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]);
+
+    one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0));
+    one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1));
+    one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2));
+    one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3));
+    one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4));
+    one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5));
+    one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6));
+    one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7));
+    one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8));
+    one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9));
+    one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10));
+    one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11));
+    one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12));
+    one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13));
+    one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14));
+    one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15));
+
+    one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0));
+    one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1));
+    one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2));
+    one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3));
+    one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4));
+    one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5));
+    one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6));
+    one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7));
+    one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8));
+    one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9));
+    one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10));
+    one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11));
+    one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12));
+    one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13));
+    one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14));
+    one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15));
+
+    one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0));
+    one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1));
+    one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2));
+    one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3));
+    one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4));
+    one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5));
+    one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6));
+    one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7));
+    one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8));
+    one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9));
+    one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10));
+    one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11));
+    one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12));
+    one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13));
+    one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14));
+    one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15));
+
+    ctx->hash[0] += v0; ctx->hash[1] += v1;
+    ctx->hash[2] += v2; ctx->hash[3] += v3;
+    ctx->hash[4] += v4; ctx->hash[5] += v5;
+    ctx->hash[6] += v6; ctx->hash[7] += v7;
+#endif
+}
+
+/* SHA256 hash data in an array of bytes into hash buffer   */
+/* and call the hash_compile function as required.          */
+
+VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1])
+{   uint_32t pos = (uint_32t)(ctx->count[0] & SHA256_MASK),
+             space = SHA256_BLOCK_SIZE - pos;
+    const unsigned char *sp = data;
+
+    if((ctx->count[0] += len) < len)
+        ++(ctx->count[1]);
+
+    while(len >= space)     /* tranfer whole blocks while possible  */
+    {
+        memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
+        sp += space; len -= space; space = SHA256_BLOCK_SIZE; pos = 0;
+        bsw_32(ctx->wbuf, SHA256_BLOCK_SIZE >> 2)
+        sha256_compile(ctx);
+    }
+
+    memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
+}
+
+/* SHA256 Final padding and digest calculation  */
+
+static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen)
+{   uint_32t    i = (uint_32t)(ctx->count[0] & SHA256_MASK);
+
+    /* put bytes in the buffer in an order in which references to   */
+    /* 32-bit words will put bytes with lower addresses into the    */
+    /* top of 32 bit words on BOTH big and little endian machines   */
+    bsw_32(ctx->wbuf, (i + 3) >> 2)
+
+    /* we now need to mask valid bytes and add the padding which is */
+    /* a single 1 bit and as many zero bits as necessary. Note that */
+    /* we can always add the first padding byte here because the    */
+    /* buffer always has at least one empty slot                    */
+    ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
+    ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);
+
+    /* we need 9 or more empty positions, one for the padding byte  */
+    /* (above) and eight for the length count.  If there is not     */
+    /* enough space pad and empty the buffer                        */
+    if(i > SHA256_BLOCK_SIZE - 9)
+    {
+        if(i < 60) ctx->wbuf[15] = 0;
+        sha256_compile(ctx);
+        i = 0;
+    }
+    else    /* compute a word index for the empty buffer positions  */
+        i = (i >> 2) + 1;
+
+    while(i < 14) /* and zero pad all but last two positions        */
+        ctx->wbuf[i++] = 0;
+
+    /* the following 32-bit length fields are assembled in the      */
+    /* wrong byte order on little endian machines but this is       */
+    /* corrected later since they are only ever used as 32-bit      */
+    /* word values.                                                 */
+    ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
+    ctx->wbuf[15] = ctx->count[0] << 3;
+    sha256_compile(ctx);
+
+    /* extract the hash value as bytes in case the hash buffer is   */
+    /* mislaigned for 32-bit words                                  */
+    for(i = 0; i < hlen; ++i)
+        hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
+}
+
+#endif
+
+#if defined(SHA_224)
+
+const uint_32t i224[8] =
+{
+    0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul,
+    0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul
+};
+
+VOID_RETURN sha224_begin(sha224_ctx ctx[1])
+{
+    ctx->count[0] = ctx->count[1] = 0;
+    memcpy(ctx->hash, i224, 8 * sizeof(uint_32t));
+}
+
+VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1])
+{
+    sha_end1(hval, ctx, SHA224_DIGEST_SIZE);
+}
+
+VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len)
+{   sha224_ctx  cx[1];
+
+    sha224_begin(cx);
+    sha224_hash(data, len, cx);
+    sha_end1(hval, cx, SHA224_DIGEST_SIZE);
+}
+
+#endif
+
+#if defined(SHA_256)
+
+const uint_32t i256[8] =
+{
+    0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul,
+    0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul
+};
+
+VOID_RETURN sha256_begin(sha256_ctx ctx[1])
+{
+    ctx->count[0] = ctx->count[1] = 0;
+    memcpy(ctx->hash, i256, 8 * sizeof(uint_32t));
+}
+
+VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1])
+{
+    sha_end1(hval, ctx, SHA256_DIGEST_SIZE);
+}
+
+VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len)
+{   sha256_ctx  cx[1];
+
+    sha256_begin(cx);
+    sha256_hash(data, len, cx);
+    sha_end1(hval, cx, SHA256_DIGEST_SIZE);
+}
+
+#endif
+
+#if defined(SHA_384) || defined(SHA_512)
+
+#define SHA512_MASK (SHA512_BLOCK_SIZE - 1)
+
+#define rotr64(x,n)   (((x) >> n) | ((x) << (64 - n)))
+
+#if !defined(bswap_64)
+#define bswap_64(x) (((uint_64t)(bswap_32((uint_32t)(x)))) << 32 | bswap_32((uint_32t)((x) >> 32)))
+#endif
+
+#if defined(SWAP_BYTES)
+#define bsw_64(p,n) \
+    { int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); }
+#else
+#define bsw_64(p,n)
+#endif
+
+/* SHA512 mixing function definitions   */
+
+#ifdef   s_0
+# undef  s_0
+# undef  s_1
+# undef  g_0
+# undef  g_1
+# undef  k_0
+#endif
+
+#define s_0(x)  (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
+#define s_1(x)  (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
+#define g_0(x)  (rotr64((x),  1) ^ rotr64((x),  8) ^ ((x) >>  7))
+#define g_1(x)  (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >>  6))
+#define k_0     k512
+
+/* SHA384/SHA512 mixing data    */
+
+const uint_64t  k512[80] =
+{
+    li_64(428a2f98d728ae22), li_64(7137449123ef65cd),
+    li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc),
+    li_64(3956c25bf348b538), li_64(59f111f1b605d019),
+    li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118),
+    li_64(d807aa98a3030242), li_64(12835b0145706fbe),
+    li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2),
+    li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1),
+    li_64(9bdc06a725c71235), li_64(c19bf174cf692694),
+    li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3),
+    li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65),
+    li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483),
+    li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5),
+    li_64(983e5152ee66dfab), li_64(a831c66d2db43210),
+    li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4),
+    li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725),
+    li_64(06ca6351e003826f), li_64(142929670a0e6e70),
+    li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926),
+    li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df),
+    li_64(650a73548baf63de), li_64(766a0abb3c77b2a8),
+    li_64(81c2c92e47edaee6), li_64(92722c851482353b),
+    li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001),
+    li_64(c24b8b70d0f89791), li_64(c76c51a30654be30),
+    li_64(d192e819d6ef5218), li_64(d69906245565a910),
+    li_64(f40e35855771202a), li_64(106aa07032bbd1b8),
+    li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53),
+    li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8),
+    li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb),
+    li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3),
+    li_64(748f82ee5defb2fc), li_64(78a5636f43172f60),
+    li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec),
+    li_64(90befffa23631e28), li_64(a4506cebde82bde9),
+    li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b),
+    li_64(ca273eceea26619c), li_64(d186b8c721c0c207),
+    li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178),
+    li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6),
+    li_64(113f9804bef90dae), li_64(1b710b35131c471b),
+    li_64(28db77f523047d84), li_64(32caab7b40c72493),
+    li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c),
+    li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a),
+    li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817)
+};
+
+/* Compile 128 bytes of hash data into SHA384/512 digest    */
+/* NOTE: this routine assumes that the byte order in the    */
+/* ctx->wbuf[] at this point is such that low address bytes */
+/* in the ORIGINAL byte stream will go into the high end of */
+/* words on BOTH big and little endian systems              */
+
+VOID_RETURN sha512_compile(sha512_ctx ctx[1])
+{   uint_64t    v[8], *p = ctx->wbuf;
+    uint_32t    j;
+
+    memcpy(v, ctx->hash, 8 * sizeof(uint_64t));
+
+    for(j = 0; j < 80; j += 16)
+    {
+        v_cycle( 0, j); v_cycle( 1, j);
+        v_cycle( 2, j); v_cycle( 3, j);
+        v_cycle( 4, j); v_cycle( 5, j);
+        v_cycle( 6, j); v_cycle( 7, j);
+        v_cycle( 8, j); v_cycle( 9, j);
+        v_cycle(10, j); v_cycle(11, j);
+        v_cycle(12, j); v_cycle(13, j);
+        v_cycle(14, j); v_cycle(15, j);
+    }
+
+    ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
+    ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
+    ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
+    ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
+}
+
+/* Compile 128 bytes of hash data into SHA256 digest value  */
+/* NOTE: this routine assumes that the byte order in the    */
+/* ctx->wbuf[] at this point is in such an order that low   */
+/* address bytes in the ORIGINAL byte stream placed in this */
+/* buffer will now go to the high end of words on BOTH big  */
+/* and little endian systems                                */
+
+VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1])
+{   uint_32t pos = (uint_32t)(ctx->count[0] & SHA512_MASK),
+             space = SHA512_BLOCK_SIZE - pos;
+    const unsigned char *sp = data;
+
+    if((ctx->count[0] += len) < len)
+        ++(ctx->count[1]);
+
+    while(len >= space)     /* tranfer whole blocks while possible  */
+    {
+        memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
+        sp += space; len -= space; space = SHA512_BLOCK_SIZE; pos = 0;
+        bsw_64(ctx->wbuf, SHA512_BLOCK_SIZE >> 3);
+        sha512_compile(ctx);
+    }
+
+    memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
+}
+
+/* SHA384/512 Final padding and digest calculation  */
+
+static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen)
+{   uint_32t    i = (uint_32t)(ctx->count[0] & SHA512_MASK);
+
+    /* put bytes in the buffer in an order in which references to   */
+    /* 32-bit words will put bytes with lower addresses into the    */
+    /* top of 32 bit words on BOTH big and little endian machines   */
+    bsw_64(ctx->wbuf, (i + 7) >> 3);
+
+    /* we now need to mask valid bytes and add the padding which is */
+    /* a single 1 bit and as many zero bits as necessary. Note that */
+    /* we can always add the first padding byte here because the    */
+    /* buffer always has at least one empty slot                    */
+    ctx->wbuf[i >> 3] &= li_64(ffffffffffffff00) << 8 * (~i & 7);
+    ctx->wbuf[i >> 3] |= li_64(0000000000000080) << 8 * (~i & 7);
+
+    /* we need 17 or more empty byte positions, one for the padding */
+    /* byte (above) and sixteen for the length count.  If there is  */
+    /* not enough space pad and empty the buffer                    */
+    if(i > SHA512_BLOCK_SIZE - 17)
+    {
+        if(i < 120) ctx->wbuf[15] = 0;
+        sha512_compile(ctx);
+        i = 0;
+    }
+    else
+        i = (i >> 3) + 1;
+
+    while(i < 14)
+        ctx->wbuf[i++] = 0;
+
+    /* the following 64-bit length fields are assembled in the      */
+    /* wrong byte order on little endian machines but this is       */
+    /* corrected later since they are only ever used as 64-bit      */
+    /* word values.                                                 */
+    ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 61);
+    ctx->wbuf[15] = ctx->count[0] << 3;
+    sha512_compile(ctx);
+
+    /* extract the hash value as bytes in case the hash buffer is   */
+    /* misaligned for 32-bit words                                  */
+    for(i = 0; i < hlen; ++i)
+        hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7)));
+}
+
+#endif
+
+#if defined(SHA_384)
+
+/* SHA384 initialisation data   */
+
+const uint_64t  i384[80] =
+{
+    li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507),
+    li_64(9159015a3070dd17), li_64(152fecd8f70e5939),
+    li_64(67332667ffc00b31), li_64(8eb44a8768581511),
+    li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4)
+};
+
+VOID_RETURN sha384_begin(sha384_ctx ctx[1])
+{
+    ctx->count[0] = ctx->count[1] = 0;
+    memcpy(ctx->hash, i384, 8 * sizeof(uint_64t));
+}
+
+VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1])
+{
+    sha_end2(hval, ctx, SHA384_DIGEST_SIZE);
+}
+
+VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len)
+{   sha384_ctx  cx[1];
+
+    sha384_begin(cx);
+    sha384_hash(data, len, cx);
+    sha_end2(hval, cx, SHA384_DIGEST_SIZE);
+}
+
+#endif
+
+#if defined(SHA_512)
+
+/* SHA512 initialisation data   */
+
+const uint_64t  i512[80] =
+{
+    li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b),
+    li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1),
+    li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f),
+    li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179)
+};
+
+VOID_RETURN sha512_begin(sha512_ctx ctx[1])
+{
+    ctx->count[0] = ctx->count[1] = 0;
+    memcpy(ctx->hash, i512, 8 * sizeof(uint_64t));
+}
+
+VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1])
+{
+    sha_end2(hval, ctx, SHA512_DIGEST_SIZE);
+}
+
+VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len)
+{   sha512_ctx  cx[1];
+
+    sha512_begin(cx);
+    sha512_hash(data, len, cx);
+    sha_end2(hval, cx, SHA512_DIGEST_SIZE);
+}
+
+#endif
+
+#if defined(SHA_2)
+
+#define CTX_224(x)  ((x)->uu->ctx256)
+#define CTX_256(x)  ((x)->uu->ctx256)
+#define CTX_384(x)  ((x)->uu->ctx512)
+#define CTX_512(x)  ((x)->uu->ctx512)
+
+/* SHA2 initialisation */
+
+INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1])
+{
+    switch(len)
+    {
+#if defined(SHA_224)
+        case 224:
+        case  28:   CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
+                    memcpy(CTX_256(ctx)->hash, i224, 32);
+                    ctx->sha2_len = 28; return EXIT_SUCCESS;
+#endif
+#if defined(SHA_256)
+        case 256:
+        case  32:   CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
+                    memcpy(CTX_256(ctx)->hash, i256, 32);
+                    ctx->sha2_len = 32; return EXIT_SUCCESS;
+#endif
+#if defined(SHA_384)
+        case 384:
+        case  48:   CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0;
+                    memcpy(CTX_384(ctx)->hash, i384, 64);
+                    ctx->sha2_len = 48; return EXIT_SUCCESS;
+#endif
+#if defined(SHA_512)
+        case 512:
+        case  64:   CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0;
+                    memcpy(CTX_512(ctx)->hash, i512, 64);
+                    ctx->sha2_len = 64; return EXIT_SUCCESS;
+#endif
+        default:    return EXIT_FAILURE;
+    }
+}
+
+VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1])
+{
+    switch(ctx->sha2_len)
+    {
+#if defined(SHA_224)
+        case 28: sha224_hash(data, len, CTX_224(ctx)); return;
+#endif
+#if defined(SHA_256)
+        case 32: sha256_hash(data, len, CTX_256(ctx)); return;
+#endif
+#if defined(SHA_384)
+        case 48: sha384_hash(data, len, CTX_384(ctx)); return;
+#endif
+#if defined(SHA_512)
+        case 64: sha512_hash(data, len, CTX_512(ctx)); return;
+#endif
+    }
+}
+
+VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1])
+{
+    switch(ctx->sha2_len)
+    {
+#if defined(SHA_224)
+        case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return;
+#endif
+#if defined(SHA_256)
+        case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return;
+#endif
+#if defined(SHA_384)
+        case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return;
+#endif
+#if defined(SHA_512)
+        case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return;
+#endif
+    }
+}
+
+INT_RETURN sha2_all(unsigned char hval[], unsigned long size,
+                                const unsigned char data[], unsigned long len)
+{   sha2_ctx    cx[1];
+
+    if(sha2_begin(size, cx) == EXIT_SUCCESS)
+    {
+        sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS;
+    }
+    else
+        return EXIT_FAILURE;
+}
+
+#endif
+
+#if defined(__cplusplus)
+}
+#endif