* #35924 (zrtp): switch to libzrtpcpp
diff --git a/jni/libzrtp/sources/srtp/crypto/SrtpSymCrypto.cpp b/jni/libzrtp/sources/srtp/crypto/SrtpSymCrypto.cpp
new file mode 100644
index 0000000..f92514d
--- /dev/null
+++ b/jni/libzrtp/sources/srtp/crypto/SrtpSymCrypto.cpp
@@ -0,0 +1,328 @@
+/*
+  Copyright (C) 2012 Werner Dittmann
+
+  This library is free software; you can redistribute it and/or
+  modify it under the terms of the GNU Lesser General Public
+  License as published by the Free Software Foundation; either
+  version 2.1 of the License, or (at your option) any later version.
+
+  This library is distributed in the hope that it will be useful,
+  but WITHOUT ANY WARRANTY; without even the implied warranty of
+  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+  Lesser General Public License for more details.
+
+  You should have received a copy of the GNU Lesser General Public
+  License along with this library; if not, write to the Free Software
+  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+
+  * In addition, as a special exception, the copyright holders give
+  * permission to link the code of portions of this program with the
+  * OpenSSL library under certain conditions as described in each
+  * individual source file, and distribute linked combinations
+  * including the two.
+  * You must obey the GNU General Public License in all respects
+  * for all of the code used other than OpenSSL.  If you modify
+  * file(s) with this exception, you may extend this exception to your
+  * version of the file(s), but you are not obligated to do so.  If you
+  * do not wish to do so, delete this exception statement from your
+  * version.  If you delete this exception statement from all source
+  * files in the program, then also delete it here.
+  */
+
+/**
+ * @author Werner Dittmann <Werner.Dittmann@t-online.de>
+ */
+
+#define MAKE_F8_TEST
+
+#include <stdlib.h>
+#include <crypto/SrtpSymCrypto.h>
+#include <cryptcommon/twofish.h>
+#include <cryptcommon/aesopt.h>
+#include <string.h>
+#include <stdio.h>
+#include <common/osSpecifics.h>
+
+SrtpSymCrypto::SrtpSymCrypto(int algo):key(NULL), algorithm(algo) {
+}
+
+SrtpSymCrypto::SrtpSymCrypto( uint8_t* k, int32_t keyLength, int algo):
+    key(NULL), algorithm(algo) {
+
+    setNewKey(k, keyLength);
+}
+
+SrtpSymCrypto::~SrtpSymCrypto() {
+    if (key != NULL) {
+        if (algorithm == SrtpEncryptionAESCM || algorithm == SrtpEncryptionAESF8) {
+            AESencrypt *saAes = reinterpret_cast<AESencrypt*>(key);
+            memset(saAes->cx, 0, sizeof(aes_encrypt_ctx));
+            delete saAes;
+        }
+        else if (algorithm == SrtpEncryptionTWOCM || algorithm == SrtpEncryptionTWOF8) {
+            memset(key, 0, sizeof(Twofish_key));
+            delete[] (uint8_t*)key;
+        }
+        key = NULL;
+    }
+}
+
+static int twoFishInit = 0;
+
+bool SrtpSymCrypto::setNewKey(const uint8_t* k, int32_t keyLength) {
+    // release an existing key before setting a new one
+    if (key != NULL) {
+        if (algorithm == SrtpEncryptionAESCM || algorithm == SrtpEncryptionAESF8) {
+            AESencrypt *saAes = reinterpret_cast<AESencrypt*>(key);
+            memset(saAes->cx, 0, sizeof(aes_encrypt_ctx));
+            delete saAes;
+        }
+        else if (algorithm == SrtpEncryptionTWOCM || algorithm == SrtpEncryptionTWOF8) {
+            memset(key, 0, sizeof(Twofish_key));
+            delete[] (uint8_t*)key;
+        }
+        key = NULL;
+    }
+
+    if (!(keyLength == 16 || keyLength == 32)) {
+        return false;
+    }
+    if (algorithm == SrtpEncryptionAESCM || algorithm == SrtpEncryptionAESF8) {
+        AESencrypt *saAes = new AESencrypt();
+        if (keyLength == 16)
+            saAes->key128(k);
+        else
+            saAes->key256(k);
+        key = saAes;
+    }
+    else if (algorithm == SrtpEncryptionTWOCM || algorithm == SrtpEncryptionTWOF8) {
+        if (!twoFishInit) {
+            Twofish_initialise();
+            twoFishInit = 1;
+        }
+        key = new uint8_t[sizeof(Twofish_key)];
+        memset(key, 0, sizeof(Twofish_key));
+        Twofish_prepare_key((Twofish_Byte*)k, keyLength,  (Twofish_key*)key);
+    }
+    else
+        return false;
+
+    return true;
+}
+
+void SrtpSymCrypto::encrypt(const uint8_t* input, uint8_t* output) {
+    if (algorithm == SrtpEncryptionAESCM || algorithm == SrtpEncryptionAESF8) {
+        AESencrypt *saAes = reinterpret_cast<AESencrypt*>(key);
+        saAes->encrypt(input, output);
+    }
+    else if (algorithm == SrtpEncryptionTWOCM || algorithm == SrtpEncryptionTWOF8) {
+        Twofish_encrypt((Twofish_key*)key, (Twofish_Byte*)input,
+                        (Twofish_Byte*)output); 
+    }
+}
+
+void SrtpSymCrypto::get_ctr_cipher_stream(uint8_t* output, uint32_t length, uint8_t* iv) {
+    uint16_t ctr = 0;
+    unsigned char temp[SRTP_BLOCK_SIZE];
+
+    for(ctr = 0; ctr < length/SRTP_BLOCK_SIZE; ctr++) {
+        //compute the cipher stream
+        iv[14] = (uint8_t)((ctr & 0xFF00) >>  8);
+        iv[15] = (uint8_t)((ctr & 0x00FF));
+
+        encrypt(iv, &output[ctr*SRTP_BLOCK_SIZE]);
+    }
+    if ((length % SRTP_BLOCK_SIZE) > 0) {
+        // Treat the last bytes:
+        iv[14] = (uint8_t)((ctr & 0xFF00) >>  8);
+        iv[15] = (uint8_t)((ctr & 0x00FF));
+
+        encrypt(iv, temp);
+        memcpy(&output[ctr*SRTP_BLOCK_SIZE], temp, length % SRTP_BLOCK_SIZE );
+    }
+}
+
+void SrtpSymCrypto::ctr_encrypt(const uint8_t* input, uint32_t input_length, uint8_t* output, uint8_t* iv) {
+
+    if (key == NULL)
+        return;
+
+    uint16_t ctr = 0;
+    unsigned char temp[SRTP_BLOCK_SIZE];
+
+    int l = input_length/SRTP_BLOCK_SIZE;
+    for (ctr = 0; ctr < l; ctr++ ) {
+        iv[14] = (uint8_t)((ctr & 0xFF00) >>  8);
+        iv[15] = (uint8_t)((ctr & 0x00FF));
+
+        encrypt(iv, temp);
+        for (int i = 0; i < SRTP_BLOCK_SIZE; i++ ) {
+            *output++ = temp[i] ^ *input++;
+        }
+
+    }
+    l = input_length % SRTP_BLOCK_SIZE;
+    if (l > 0) {
+        // Treat the last bytes:
+        iv[14] = (uint8_t)((ctr & 0xFF00) >>  8);
+        iv[15] = (uint8_t)((ctr & 0x00FF));
+
+        encrypt(iv, temp);
+        for (int i = 0; i < l; i++ ) {
+            *output++ = temp[i] ^ *input++;
+        }
+    }
+}
+
+void SrtpSymCrypto::ctr_encrypt( uint8_t* data, uint32_t data_length, uint8_t* iv ) {
+
+    if (key == NULL)
+        return;
+
+    uint16_t ctr = 0;
+    unsigned char temp[SRTP_BLOCK_SIZE];
+
+    int l = data_length/SRTP_BLOCK_SIZE;
+    for (ctr = 0; ctr < l; ctr++ ) {
+        iv[14] = (uint8_t)((ctr & 0xFF00) >>  8);
+        iv[15] = (uint8_t)((ctr & 0x00FF));
+
+        encrypt(iv, temp);
+        for (int i = 0; i < SRTP_BLOCK_SIZE; i++ ) {
+            *data++ ^= temp[i];
+        }
+
+    }
+    l = data_length % SRTP_BLOCK_SIZE;
+    if (l > 0) {
+        // Treat the last bytes:
+        iv[14] = (uint8_t)((ctr & 0xFF00) >>  8);
+        iv[15] = (uint8_t)((ctr & 0x00FF));
+
+        encrypt(iv, temp);
+        for (int i = 0; i < l; i++ ) {
+            *data++ ^= temp[i];
+        }
+    }
+}
+
+void SrtpSymCrypto::f8_encrypt(const uint8_t* data, uint32_t data_length,
+                         uint8_t* iv, SrtpSymCrypto* f8Cipher ) {
+
+    f8_encrypt(data, data_length, const_cast<uint8_t*>(data), iv, f8Cipher);
+}
+
+#define MAX_KEYLEN 32
+
+void SrtpSymCrypto::f8_deriveForIV(SrtpSymCrypto* f8Cipher, uint8_t* key, int32_t keyLen,
+             uint8_t* salt, int32_t saltLen) {
+
+    unsigned char *cp_in, *cp_in1, *cp_out;
+
+    unsigned char maskedKey[MAX_KEYLEN];
+    unsigned char saltMask[MAX_KEYLEN];
+
+    if (keyLen > MAX_KEYLEN)
+        return;
+
+    if (saltLen > keyLen)
+        return;
+    /*
+     * First copy the salt into the mask field, then fill with 0x55 to
+     * get a full key.
+     */
+    memcpy(saltMask, salt, saltLen);
+    memset(saltMask+saltLen, 0x55, keyLen-saltLen);
+
+    /*
+     * XOR the original key with the above created mask to
+     * get the special key.
+     */
+    cp_out = maskedKey;
+    cp_in = key;
+    cp_in1 = saltMask;
+    for (int i = 0; i < keyLen; i++) {
+        *cp_out++ = *cp_in++ ^ *cp_in1++;
+    }
+    /*
+     * Prepare the a new AES cipher with the special key to compute IV'
+     */
+    f8Cipher->setNewKey(maskedKey, keyLen);
+}
+
+void SrtpSymCrypto::f8_encrypt(const uint8_t* in, uint32_t in_length, uint8_t* out,
+                         uint8_t* iv, SrtpSymCrypto* f8Cipher ) {
+
+
+    int offset = 0;
+
+    unsigned char ivAccent[SRTP_BLOCK_SIZE];
+    unsigned char S[SRTP_BLOCK_SIZE];
+
+    F8_CIPHER_CTX f8ctx;
+
+    if (key == NULL)
+        return;
+    /*
+     * Get memory for the derived IV (IV')
+     */
+    f8ctx.ivAccent = ivAccent;
+    /*
+     * Use the derived IV encryption setup to encrypt the original IV to produce IV'.
+     */
+    f8Cipher->encrypt(iv, f8ctx.ivAccent);
+
+    f8ctx.J = 0;                       // initialize the counter
+    f8ctx.S = S;               // get the key stream buffer
+
+    memset(f8ctx.S, 0, SRTP_BLOCK_SIZE); // initial value for key stream
+
+    while (in_length >= SRTP_BLOCK_SIZE) {
+        processBlock(&f8ctx, in+offset, SRTP_BLOCK_SIZE, out+offset);
+        in_length -= SRTP_BLOCK_SIZE;
+        offset += SRTP_BLOCK_SIZE;
+    }
+    if (in_length > 0) {
+        processBlock(&f8ctx, in+offset, in_length, out+offset);
+    }
+}
+
+int SrtpSymCrypto::processBlock(F8_CIPHER_CTX *f8ctx, const uint8_t* in, int32_t length, uint8_t* out) {
+
+    int i;
+    const uint8_t *cp_in;
+    uint8_t* cp_in1, *cp_out;
+    uint32_t *ui32p;
+
+    /*
+     * XOR the previous key stream with IV'
+     * ( S(-1) xor IV' )
+     */
+    cp_in = f8ctx->ivAccent;
+    cp_out = f8ctx->S;
+    for (i = 0; i < SRTP_BLOCK_SIZE; i++) {
+        *cp_out++ ^= *cp_in++;
+    }
+    /*
+     * Now XOR (S(n-1) xor IV') with the current counter, then increment the counter
+     */
+    ui32p = (uint32_t *)f8ctx->S;
+    ui32p[3] ^= zrtpHtonl(f8ctx->J);
+    f8ctx->J++;
+    /*
+     * Now compute the new key stream using AES encrypt
+     */
+    encrypt(f8ctx->S, f8ctx->S);
+    /*
+     * as the last step XOR the plain text with the key stream to produce
+     * the ciphertext.
+     */
+    cp_out = out;
+    cp_in = in;
+    cp_in1 = f8ctx->S;
+    for (i = 0; i < length; i++) {
+        *cp_out++ = *cp_in++ ^ *cp_in1++;
+    }
+    return length;
+}
+
diff --git a/jni/libzrtp/sources/srtp/crypto/SrtpSymCrypto.h b/jni/libzrtp/sources/srtp/crypto/SrtpSymCrypto.h
index 1b596c8..09bdcab 100644
--- a/jni/libzrtp/sources/srtp/crypto/SrtpSymCrypto.h
+++ b/jni/libzrtp/sources/srtp/crypto/SrtpSymCrypto.h
@@ -1,5 +1,5 @@
 /*

-  Copyright (C) 2005, 2004, 2010, 2012 Erik Eliasson, Johan Bilien, Werner Dittmann

+  Copyright (C) 2008-2012 Werner Dittmann

 

   This library is free software; you can redistribute it and/or

   modify it under the terms of the GNU Lesser General Public

@@ -36,7 +36,7 @@
 

 /**

  * @file SrtpSymCrypto.h

- * @brief Class which implements SRTP AES cryptographic functions

+ * @brief Class which implements SRTP cryptographic functions

  * 

  * @ingroup GNU_ZRTP

  * @{

@@ -56,7 +56,7 @@
 } F8_CIPHER_CTX;

 

 /**

- * Implments the SRTP encryption modes as defined in RFC3711

+ * @brief Implments the SRTP encryption modes as defined in RFC3711

  *

  * The SRTP specification defines two encryption modes, AES-CTR

  * (AES Counter mode) and AES-F8 mode. The AES-CTR is required,

@@ -70,31 +70,43 @@
  * The implementation uses the openSSL library as its cryptographic

  * backend.

  *

- * @author Erik Eliasson <eliasson@it.kth.se>

- * @author Johan Bilien <jobi@via.ecp.fr>

  * @author Werner Dittmann <Werner.Dittmann@t-online.de>

  */

 class SrtpSymCrypto {

 public:

+    /**

+     * @brief Constructor that does not initialize key data

+     *

+     * @param algo

+     *    The Encryption algorithm to use.Possible values are <code>

+     *    SrtpEncryptionNull, SrtpEncryptionAESCM, SrtpEncryptionAESF8

+     *    SrtpEncryptionTWOCM, SrtpEncryptionTWOF8</code>. See chapter 4.1.1

+     *    for CM (Counter mode) and 4.1.2 for F8 mode.

+     */

     SrtpSymCrypto(int algo = SrtpEncryptionAESCM);

 

     /**

-     * Constructor that initializes key data

+     * @brief Constructor that initializes key data

      * 

      * @param key

      *     Pointer to key bytes.

      * @param key_length

      *     Number of key bytes.

+     * @param algo

+     *    The Encryption algorithm to use.Possible values are <code>

+     *    SrtpEncryptionNull, SrtpEncryptionAESCM, SrtpEncryptionAESF8

+     *    SrtpEncryptionTWOCM, SrtpEncryptionTWOF8</code>. See chapter 4.1.1

+     *    for CM (Counter mode) and 4.1.2 for F8 mode.

      */

     SrtpSymCrypto(uint8_t* key, int32_t key_length, int algo = SrtpEncryptionAESCM);

 

     ~SrtpSymCrypto();

 

     /**

-     * Encrypts the inpout to the output.

+     * @brief Encrypts the input to the output.

      *

      * Encrypts one input block to one output block. Each block

-     * is 16 bytes according to the AES encryption algorithm used.

+     * is 16 bytes according to the encryption algorithms used.

      *

      * @param input

      *    Pointer to input block, must be 16 bytes

@@ -105,7 +117,7 @@
     void encrypt( const uint8_t* input, uint8_t* output );

 

     /**

-     * Set new key

+     * @brief Set new key

      *

      * @param key

      *   Pointer to key data, must have at least a size of keyLength 

@@ -119,7 +131,7 @@
     bool setNewKey(const uint8_t* key, int32_t keyLength);

 

     /**

-     * Computes the cipher stream for AES CM mode.

+     * @brief Computes the cipher stream for AES CM mode.

      *

      * @param output

      *    Pointer to a buffer that receives the cipher stream. Must be

@@ -136,9 +148,9 @@
     void get_ctr_cipher_stream(uint8_t* output, uint32_t length, uint8_t* iv);

 

     /**

-     * Counter-mode encryption.

+     * @brief Counter-mode encryption.

      *

-     * This method performs the AES CM encryption.

+     * This method performs the CM encryption.

      *

      * @param input

      *    Pointer to input buffer, must be <code>inputLen</code> bytes.

@@ -156,9 +168,9 @@
     void ctr_encrypt(const uint8_t* input, uint32_t inputLen, uint8_t* output, uint8_t* iv );

 

     /**

-     * Counter-mode encryption, in place.

+     * @brief Counter-mode encryption, in place.

      *

-     * This method performs the AES CM encryption.

+     * This method performs the CM encryption.

      *

      * @param data

      *    Pointer to input and output block, must be <code>dataLen</code>

@@ -174,12 +186,12 @@
     void ctr_encrypt(uint8_t* data, uint32_t data_length, uint8_t* iv );

 

     /**

-     * Derive a AES context to compute the IV'.

+     * @brief Derive a cipher context to compute the IV'.

      *

      * See chapter 4.1.2.1 in RFC 3711.

      *

      * @param f8Cipher

-     *    Pointer to the AES context that will be used to encrypt IV to IV'

+     *    Pointer to the cipher context that will be used to encrypt IV to IV'

      *

      * @param key

      *    The master key

@@ -196,10 +208,9 @@
     void f8_deriveForIV(SrtpSymCrypto* f8Cipher, uint8_t* key, int32_t keyLen, uint8_t* salt, int32_t saltLen);

 

     /**

-     * AES F8 mode encryption, in place.

+     * @brief F8 mode encryption, in place.

      *

-     * This method performs the AES F8 encryption, see chapter 4.1.2

-     * in RFC 3711.

+     * This method performs the F8 encryption, see chapter 4.1.2 in RFC 3711.

      *

      * @param data

      *    Pointer to input and output block, must be <code>dataLen</code>

@@ -218,10 +229,9 @@
     void f8_encrypt(const uint8_t* data, uint32_t dataLen, uint8_t* iv, SrtpSymCrypto* f8Cipher);

 

     /**

-     * AES F8 mode encryption.

+     * @brief F8 mode encryption.

      *

-     * This method performs the AES F8 encryption, see chapter 4.1.2

-     * in RFC 3711.

+     * This method performs the F8 encryption, see chapter 4.1.2 in RFC 3711.

      *

      * @param data

      *    Pointer to input and output block, must be <code>dataLen</code>

@@ -252,13 +262,13 @@
 int testF8();

 #pragma GCC visibility pop

 

-/* Only SrtpSymCrypto functions define the MAKE_F8_TEST */

+/* Only SrtpSymCrypto functions defines the MAKE_F8_TEST */

 #ifdef MAKE_F8_TEST

 

 #include <cstring>

 #include <iostream>

 #include <cstdio>

-#include <arpa/inet.h>

+#include <common/osSpecifics.h>

 

 using namespace std;

 

@@ -338,7 +348,7 @@
     derivedIv[0] = 0;

 

     // set ROC in network order into IV

-    ui32p[3] = htonl(ROC);

+    ui32p[3] = zrtpHtonl(ROC);

 

     int32_t pad = 0;

 

@@ -383,11 +393,3 @@
 

 #endif

 

-/** EMACS **

- * Local variables:

- * mode: c++

- * c-default-style: ellemtel

- * c-basic-offset: 4

- * End:

- */

-

diff --git a/jni/libzrtp/sources/srtp/crypto/brg_endian.h b/jni/libzrtp/sources/srtp/crypto/brg_endian.h
deleted file mode 100644
index c03c7c5..0000000
--- a/jni/libzrtp/sources/srtp/crypto/brg_endian.h
+++ /dev/null
@@ -1,148 +0,0 @@
-/*

- ---------------------------------------------------------------------------

- Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.

-

- LICENSE TERMS

-

- The free distribution and use of this software in both source and binary

- form is allowed (with or without changes) provided that:

-

-   1. distributions of this source code include the above copyright

-      notice, this list of conditions and the following disclaimer;

-

-   2. distributions in binary form include the above copyright

-      notice, this list of conditions and the following disclaimer

-      in the documentation and/or other associated materials;

-

-   3. the copyright holder's name is not used to endorse products

-      built using this software without specific written permission.

-

- ALTERNATIVELY, provided that this notice is retained in full, this product

- may be distributed under the terms of the GNU General Public License (GPL),

- in which case the provisions of the GPL apply INSTEAD OF those given above.

-

- DISCLAIMER

-

- This software is provided 'as is' with no explicit or implied warranties

- in respect of its properties, including, but not limited to, correctness

- and/or fitness for purpose.

- ---------------------------------------------------------------------------

- Issue 20/10/2006

-*/

-

-#ifndef BRG_ENDIAN_H

-#define BRG_ENDIAN_H

-

-#define IS_BIG_ENDIAN      4321 /* byte 0 is most significant (mc68k) */

-#define IS_LITTLE_ENDIAN   1234 /* byte 0 is least significant (i386) */

-

-/* Include files where endian defines and byteswap functions may reside */

-#if defined( __FreeBSD__ ) || defined( __OpenBSD__ ) || defined( __NetBSD__ )

-#  include <sys/endian.h>

-#elif defined( BSD ) && ( BSD >= 199103 ) || defined( __APPLE__ ) || \

-      defined( __CYGWIN32__ ) || defined( __DJGPP__ ) || defined( __osf__ )

-#  include <machine/endian.h>

-#elif defined( __linux__ ) || defined( __GNUC__ ) || defined( __GNU_LIBRARY__ )

-#  if !defined( __MINGW32__ ) && !defined(AVR)

-#    include <endian.h>

-#    if !defined( __BEOS__ )

-#      include <byteswap.h>

-#    endif

-#  endif

-#endif

-

-/* Now attempt to set the define for platform byte order using any  */

-/* of the four forms SYMBOL, _SYMBOL, __SYMBOL & __SYMBOL__, which  */

-/* seem to encompass most endian symbol definitions                 */

-

-#if defined( BIG_ENDIAN ) && defined( LITTLE_ENDIAN )

-#  if defined( BYTE_ORDER ) && BYTE_ORDER == BIG_ENDIAN

-#    define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

-#  elif defined( BYTE_ORDER ) && BYTE_ORDER == LITTLE_ENDIAN

-#    define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

-#  endif

-#elif defined( BIG_ENDIAN )

-#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

-#elif defined( LITTLE_ENDIAN )

-#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

-#endif

-

-#if defined( _BIG_ENDIAN ) && defined( _LITTLE_ENDIAN )

-#  if defined( _BYTE_ORDER ) && _BYTE_ORDER == _BIG_ENDIAN

-#    define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

-#  elif defined( _BYTE_ORDER ) && _BYTE_ORDER == _LITTLE_ENDIAN

-#    define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

-#  endif

-#elif defined( _BIG_ENDIAN )

-#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

-#elif defined( _LITTLE_ENDIAN )

-#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

-#endif

-

-#if defined( __BIG_ENDIAN ) && defined( __LITTLE_ENDIAN )

-#  if defined( __BYTE_ORDER ) && __BYTE_ORDER == __BIG_ENDIAN

-#    define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

-#  elif defined( __BYTE_ORDER ) && __BYTE_ORDER == __LITTLE_ENDIAN

-#    define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

-#  endif

-#elif defined( __BIG_ENDIAN )

-#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

-#elif defined( __LITTLE_ENDIAN )

-#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

-#endif

-

-#if defined( __BIG_ENDIAN__ ) && defined( __LITTLE_ENDIAN__ )

-#  if defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __BIG_ENDIAN__

-#    define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

-#  elif defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __LITTLE_ENDIAN__

-#    define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

-#  endif

-#elif defined( __BIG_ENDIAN__ )

-#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

-#elif defined( __LITTLE_ENDIAN__ )

-#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

-#endif

-

-/*  if the platform byte order could not be determined, then try to */

-/*  set this define using common machine defines                    */

-#if !defined(PLATFORM_BYTE_ORDER)

-

-#if   defined( __alpha__ ) || defined( __alpha ) || defined( i386 )       || \

-      defined( __i386__ )  || defined( _M_I86 )  || defined( _M_IX86 )    || \

-      defined( __OS2__ )   || defined( sun386 )  || defined( __TURBOC__ ) || \

-      defined( vax )       || defined( vms )     || defined( VMS )        || \

-      defined( __VMS )     || defined( _M_X64 )  || defined( AVR )

-#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

-

-#elif defined( AMIGA )   || defined( applec )    || defined( __AS400__ )  || \

-      defined( _CRAY )   || defined( __hppa )    || defined( __hp9000 )   || \

-      defined( ibm370 )  || defined( mc68000 )   || defined( m68k )       || \

-      defined( __MRC__ ) || defined( __MVS__ )   || defined( __MWERKS__ ) || \

-      defined( sparc )   || defined( __sparc)    || defined( SYMANTEC_C ) || \

-      defined( __VOS__ ) || defined( __TIGCC__ ) || defined( __TANDEM )   || \

-      defined( THINK_C ) || defined( __VMCMS__ )

-#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

-

-#elif 0     /* **** EDIT HERE IF NECESSARY **** */

-#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

-#elif 0     /* **** EDIT HERE IF NECESSARY **** */

-#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN

-#else

-#  error Please edit lines 126 or 128 in brg_endian.h to set the platform byte order

-#endif

-#endif

-

-/* special handler for IA64, which may be either endianness (?)  */

-/* here we assume little-endian, but this may need to be changed */

-#if defined(__ia64) || defined(__ia64__) || defined(_M_IA64)

-#  define PLATFORM_MUST_ALIGN (1)

-#ifndef PLATFORM_BYTE_ORDER

-#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN

-#endif

-#endif

-

-#ifndef   PLATFORM_MUST_ALIGN

-#  define PLATFORM_MUST_ALIGN (0)

-#endif

-

-#endif  /* ifndef BRG_ENDIAN_H */

diff --git a/jni/libzrtp/sources/srtp/crypto/brg_types.h b/jni/libzrtp/sources/srtp/crypto/brg_types.h
deleted file mode 100644
index 6db737d..0000000
--- a/jni/libzrtp/sources/srtp/crypto/brg_types.h
+++ /dev/null
@@ -1,188 +0,0 @@
-/*

- ---------------------------------------------------------------------------

- Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved.

-

- LICENSE TERMS

-

- The free distribution and use of this software in both source and binary

- form is allowed (with or without changes) provided that:

-

-   1. distributions of this source code include the above copyright

-      notice, this list of conditions and the following disclaimer;

-

-   2. distributions in binary form include the above copyright

-      notice, this list of conditions and the following disclaimer

-      in the documentation and/or other associated materials;

-

-   3. the copyright holder's name is not used to endorse products

-      built using this software without specific written permission.

-

- ALTERNATIVELY, provided that this notice is retained in full, this product

- may be distributed under the terms of the GNU General Public License (GPL),

- in which case the provisions of the GPL apply INSTEAD OF those given above.

-

- DISCLAIMER

-

- This software is provided 'as is' with no explicit or implied warranties

- in respect of its properties, including, but not limited to, correctness

- and/or fitness for purpose.

- ---------------------------------------------------------------------------

- Issue 09/09/2006

-

- The unsigned integer types defined here are of the form uint_<nn>t where

- <nn> is the length of the type; for example, the unsigned 32-bit type is

- 'uint_32t'.  These are NOT the same as the 'C99 integer types' that are

- defined in the inttypes.h and stdint.h headers since attempts to use these

- types have shown that support for them is still highly variable.  However,

- since the latter are of the form uint<nn>_t, a regular expression search

- and replace (in VC++ search on 'uint_{:z}t' and replace with 'uint\1_t')

- can be used to convert the types used here to the C99 standard types.

-*/

-

-#ifndef BRG_TYPES_H

-#define BRG_TYPES_H

-

-#if defined(__cplusplus)

-extern "C" {

-#endif

-

-#include <limits.h>

-

-#ifndef BRG_UI8

-#  define BRG_UI8

-#  if UCHAR_MAX == 255u

-     typedef unsigned char uint_8t;

-#  else

-#    error Please define uint_8t as an 8-bit unsigned integer type in brg_types.h

-#  endif

-#endif

-

-#ifndef BRG_UI16

-#  define BRG_UI16

-#  if USHRT_MAX == 65535u

-     typedef unsigned short uint_16t;

-#  else

-#    error Please define uint_16t as a 16-bit unsigned short type in brg_types.h

-#  endif

-#endif

-

-#ifndef BRG_UI32

-#  define BRG_UI32

-#  if UINT_MAX == 4294967295u

-#    define li_32(h) 0x##h##u

-     typedef unsigned int uint_32t;

-#  elif ULONG_MAX == 4294967295u

-#    define li_32(h) 0x##h##ul

-     typedef unsigned long uint_32t;

-#  elif defined( _CRAY )

-#    error This code needs 32-bit data types, which Cray machines do not provide

-#  else

-#    error Please define uint_32t as a 32-bit unsigned integer type in brg_types.h

-#  endif

-#endif

-

-#ifndef BRG_UI64

-#  if defined( __BORLANDC__ ) && !defined( __MSDOS__ )

-#    define BRG_UI64

-#    define li_64(h) 0x##h##ui64

-     typedef unsigned __int64 uint_64t;

-#  elif defined( _MSC_VER ) && ( _MSC_VER < 1300 )    /* 1300 == VC++ 7.0 */

-#    define BRG_UI64

-#    define li_64(h) 0x##h##ui64

-     typedef unsigned __int64 uint_64t;

-#  elif defined( __sun ) && defined(ULONG_MAX) && ULONG_MAX == 0xfffffffful

-#    define BRG_UI64

-#    define li_64(h) 0x##h##ull

-     typedef unsigned long long uint_64t;

-#  elif defined( UINT_MAX ) && UINT_MAX > 4294967295u

-#    if UINT_MAX == 18446744073709551615u

-#      define BRG_UI64

-#      define li_64(h) 0x##h##u

-       typedef unsigned int uint_64t;

-#    endif

-#  elif defined( ULONG_MAX ) && ULONG_MAX > 4294967295u

-#    if ULONG_MAX == 18446744073709551615ul

-#      define BRG_UI64

-#      define li_64(h) 0x##h##ul

-       typedef unsigned long uint_64t;

-#    endif

-#  elif defined( ULLONG_MAX ) && ULLONG_MAX > 4294967295u

-#    if ULLONG_MAX == 18446744073709551615ull

-#      define BRG_UI64

-#      define li_64(h) 0x##h##ull

-       typedef unsigned long long uint_64t;

-#    endif

-#  elif defined( ULONG_LONG_MAX ) && ULONG_LONG_MAX > 4294967295u

-#    if ULONG_LONG_MAX == 18446744073709551615ull

-#      define BRG_UI64

-#      define li_64(h) 0x##h##ull

-       typedef unsigned long long uint_64t;

-#    endif

-#  elif defined(__GNUC__)  /* DLW: avoid mingw problem with -ansi */

-#      define BRG_UI64

-#      define li_64(h) 0x##h##ull

-       typedef unsigned long long uint_64t;

-#  endif

-#endif

-

-#if defined( NEED_UINT_64T ) && !defined( BRG_UI64 )

-#  error Please define uint_64t as an unsigned 64 bit type in brg_types.h

-#endif

-

-#ifndef RETURN_VALUES

-#  define RETURN_VALUES

-#  if defined( DLL_EXPORT )

-#    if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )

-#      define VOID_RETURN    __declspec( dllexport ) void __stdcall

-#      define INT_RETURN     __declspec( dllexport ) int  __stdcall

-#    elif defined( __GNUC__ )

-#      define VOID_RETURN    __declspec( __dllexport__ ) void

-#      define INT_RETURN     __declspec( __dllexport__ ) int

-#    else

-#      error Use of the DLL is only available on the Microsoft, Intel and GCC compilers

-#    endif

-#  elif defined( DLL_IMPORT )

-#    if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )

-#      define VOID_RETURN    __declspec( dllimport ) void __stdcall

-#      define INT_RETURN     __declspec( dllimport ) int  __stdcall

-#    elif defined( __GNUC__ )

-#      define VOID_RETURN    __declspec( __dllimport__ ) void

-#      define INT_RETURN     __declspec( __dllimport__ ) int

-#    else

-#      error Use of the DLL is only available on the Microsoft, Intel and GCC compilers

-#    endif

-#  elif defined( __WATCOMC__ )

-#    define VOID_RETURN  void __cdecl

-#    define INT_RETURN   int  __cdecl

-#  else

-#    define VOID_RETURN  void

-#    define INT_RETURN   int

-#  endif

-#endif

-

-/*  These defines are used to declare buffers in a way that allows

-    faster operations on longer variables to be used.  In all these

-    defines 'size' must be a power of 2 and >= 8

-

-    dec_unit_type(size,x)       declares a variable 'x' of length 

-                                'size' bits

-

-    dec_bufr_type(size,bsize,x) declares a buffer 'x' of length 'bsize' 

-                                bytes defined as an array of variables

-                                each of 'size' bits (bsize must be a 

-                                multiple of size / 8)

-

-    ptr_cast(x,size)            casts a pointer to a pointer to a 

-                                varaiable of length 'size' bits

-*/

-

-#define ui_type(size)               uint_##size##t

-#define dec_unit_type(size,x)       typedef ui_type(size) x

-#define dec_bufr_type(size,bsize,x) typedef ui_type(size) x[bsize / (size >> 3)]

-#define ptr_cast(x,size)            ((ui_type(size)*)(x))

-

-#if defined(__cplusplus)

-}

-#endif

-

-#endif

diff --git a/jni/libzrtp/sources/srtp/crypto/gcrypt/InitializeGcrypt.cpp b/jni/libzrtp/sources/srtp/crypto/gcrypt/InitializeGcrypt.cpp
index 78fad51..1c743d2 100644
--- a/jni/libzrtp/sources/srtp/crypto/gcrypt/InitializeGcrypt.cpp
+++ b/jni/libzrtp/sources/srtp/crypto/gcrypt/InitializeGcrypt.cpp
@@ -1,8 +1,8 @@
 /*
-  Copyright (C) 2006-2007 Werner Dittmann
+  Copyright (C) 2006-2013 Werner Dittmann
 
   This program is free software: you can redistribute it and/or modify
-  it under the terms of the GNU General Public License as published by
+  it under the terms of the GNU Lesser General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.
 
@@ -17,7 +17,7 @@
 
 #include <stdio.h>
 
-#include <malloc.h>
+#include <string.h>
 #include <pthread.h>
 #include <errno.h>
 #include <gcrypt.h>
diff --git a/jni/libzrtp/sources/srtp/crypto/hmac.cpp b/jni/libzrtp/sources/srtp/crypto/hmac.cpp
new file mode 100644
index 0000000..38028a3
--- /dev/null
+++ b/jni/libzrtp/sources/srtp/crypto/hmac.cpp
@@ -0,0 +1,186 @@
+/*
+  Copyright (C) 2012 Werner Dittmann
+
+  This library is free software; you can redistribute it and/or
+  modify it under the terms of the GNU Lesser General Public
+  License as published by the Free Software Foundation; either
+  version 2.1 of the License, or (at your option) any later version.
+
+  This library is distributed in the hope that it will be useful,
+  but WITHOUT ANY WARRANTY; without even the implied warranty of
+  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+  Lesser General Public License for more details.
+
+  You should have received a copy of the GNU Lesser General Public
+  License along with this library; if not, write to the Free Software
+  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+
+ * In addition, as a special exception, the copyright holders give
+ * permission to link the code of portions of this program with the
+ * OpenSSL library under certain conditions as described in each
+ * individual source file, and distribute linked combinations
+ * including the two.
+ * You must obey the GNU General Public License in all respects
+ * for all of the code used other than OpenSSL.  If you modify
+ * file(s) with this exception, you may extend this exception to your
+ * version of the file(s), but you are not obligated to do so.  If you
+ * do not wish to do so, delete this exception statement from your
+ * version.  If you delete this exception statement from all source
+ * files in the program, then also delete it here.
+ */
+
+/*
+ * Authors: Werner Dittmann
+ */
+
+#include <stdint.h>
+#include <string.h>
+#include <stdio.h>
+#include "crypto/sha1.h"
+#include "crypto/hmac.h"
+
+typedef struct _hmacSha1Context {
+    sha1_ctx ctx;
+    sha1_ctx innerCtx;
+    sha1_ctx outerCtx;
+} hmacSha1Context;
+
+static int32_t hmacSha1Init(hmacSha1Context *ctx, const uint8_t *key, uint32_t kLength)
+{
+    int32_t i;
+    uint8_t localPad[SHA1_BLOCK_SIZE] = {0};
+    uint8_t localKey[SHA1_BLOCK_SIZE] = {0};
+
+    if (key == NULL)
+        return 0;
+
+    memset(ctx, 0, sizeof(hmacSha1Context));
+
+    /* check key length and reduce it if necessary */
+    if (kLength > SHA1_BLOCK_SIZE) {
+        sha1_begin(&ctx->ctx);
+        sha1_hash(key, kLength, &ctx->ctx);
+        sha1_end(localKey, &ctx->ctx);
+    }
+    else {
+        memcpy(localKey, key, kLength);
+    }
+    /* prepare inner hash and hold the context */
+    for (i = 0; i < SHA1_BLOCK_SIZE; i++)
+        localPad[i] = localKey[i] ^ 0x36;
+
+    sha1_begin(&ctx->innerCtx);
+    sha1_hash(localPad, SHA1_BLOCK_SIZE, &ctx->innerCtx);
+
+    /* prepare outer hash and hold the context */
+    for (i = 0; i < SHA1_BLOCK_SIZE; i++)
+        localPad[i] = localKey[i] ^ 0x5c;
+
+    sha1_begin(&ctx->outerCtx);
+    sha1_hash(localPad, SHA1_BLOCK_SIZE, &ctx->outerCtx);
+
+    /* copy prepared inner hash to work hash - ready to process data */
+    memcpy(&ctx->ctx, &ctx->innerCtx, sizeof(sha1_ctx));
+
+    memset(localKey, 0, sizeof(localKey));
+
+    return 1;
+}
+
+static void hmacSha1Reset(hmacSha1Context *ctx)
+{
+    /* copy prepared inner hash to work hash context */
+    memcpy(&ctx->ctx, &ctx->innerCtx, sizeof(sha1_ctx));
+}
+
+static void hmacSha1Update(hmacSha1Context *ctx, const uint8_t *data, uint32_t dLength)
+{
+    /* hash new data to work hash context */
+    sha1_hash(data, dLength, &ctx->ctx);
+}
+
+static void hmacSha1Final(hmacSha1Context *ctx, uint8_t *mac)
+{
+    uint8_t tmpDigest[SHA1_DIGEST_SIZE];
+
+    /* finalize work hash context */
+    sha1_end(tmpDigest, &ctx->ctx);
+
+    /* copy prepared outer hash to work hash */
+    memcpy(&ctx->ctx, &ctx->outerCtx, sizeof(sha1_ctx));
+
+    /* hash inner digest to work (outer) hash context */
+    sha1_hash(tmpDigest, SHA1_DIGEST_SIZE, &ctx->ctx);
+
+    /* finalize work hash context to get the hmac*/
+    sha1_end(mac, &ctx->ctx);
+}
+
+
+void hmac_sha1(uint8_t *key, int32_t keyLength, const uint8_t* data, uint32_t dataLength, uint8_t* mac, int32_t* macLength)
+{
+    hmacSha1Context ctx;
+
+    hmacSha1Init(&ctx, key, keyLength);
+    hmacSha1Update(&ctx, data, dataLength);
+    hmacSha1Final(&ctx, mac);
+    *macLength = SHA1_BLOCK_SIZE;
+}
+
+void hmac_sha1( uint8_t* key, int32_t keyLength, const uint8_t* dataChunks[], uint32_t dataChunckLength[],
+                uint8_t* mac, int32_t* macLength )
+{
+    hmacSha1Context ctx;
+
+    hmacSha1Init(&ctx, key, keyLength);
+
+    while (*dataChunks) {
+        hmacSha1Update(&ctx, *dataChunks, *dataChunckLength);
+        dataChunks ++;
+        dataChunckLength ++;
+    }
+    hmacSha1Final(&ctx, mac);
+    *macLength = SHA1_BLOCK_SIZE;
+}
+
+void* createSha1HmacContext(uint8_t* key, int32_t keyLength)
+{
+    hmacSha1Context *ctx = reinterpret_cast<hmacSha1Context*>(malloc(sizeof(hmacSha1Context)));
+
+    hmacSha1Init(ctx, key, keyLength);
+    return ctx;
+}
+
+void hmacSha1Ctx(void* ctx, const uint8_t* data, uint32_t dataLength,
+                uint8_t* mac, int32_t* macLength)
+{
+    hmacSha1Context *pctx = (hmacSha1Context*)ctx;
+
+    hmacSha1Reset(pctx);
+    hmacSha1Update(pctx, data, dataLength);
+    hmacSha1Final(pctx, mac);
+    *macLength = SHA1_BLOCK_SIZE;
+}
+
+void hmacSha1Ctx(void* ctx, const uint8_t* data[], uint32_t dataLength[],
+                uint8_t* mac, int32_t* macLength )
+{
+    hmacSha1Context *pctx = (hmacSha1Context*)ctx;
+
+    hmacSha1Reset(pctx);
+    while (*data) {
+        hmacSha1Update(pctx, *data, *dataLength);
+        data++;
+        dataLength++;
+    }
+    hmacSha1Final(pctx, mac);
+    *macLength = SHA1_BLOCK_SIZE;
+}
+
+void freeSha1HmacContext(void* ctx)
+{
+    if (ctx) {
+        memset(ctx, 0, sizeof(hmacSha1Context));
+        free(ctx);
+    }
+}
\ No newline at end of file
diff --git a/jni/libzrtp/sources/srtp/crypto/hmac.h b/jni/libzrtp/sources/srtp/crypto/hmac.h
index 4abfa8f..6d99f92 100644
--- a/jni/libzrtp/sources/srtp/crypto/hmac.h
+++ b/jni/libzrtp/sources/srtp/crypto/hmac.h
@@ -1,5 +1,5 @@
 /*
-  Copyright (C) 2005, 2004, 2010 Erik Eliasson, Johan Bilien, Werner Dittmann
+  Copyright (C) 2010 Werner Dittmann
 
   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
@@ -32,8 +32,6 @@
 /**
  * Functions to compute SHA1 HAMAC.
  *
- * @author Erik Eliasson <eliasson@it.kth.se>
- * @author Johan Bilien <jobi@via.ecp.fr>
  * @author Werner Dittmann
  */
 
diff --git a/jni/libzrtp/sources/srtp/crypto/macSkein.cpp b/jni/libzrtp/sources/srtp/crypto/macSkein.cpp
deleted file mode 100644
index ba4c260..0000000
--- a/jni/libzrtp/sources/srtp/crypto/macSkein.cpp
+++ /dev/null
@@ -1,89 +0,0 @@
-/*
-  Copyright (C) 2010 Werner Dittmann
-
-  This program is free software: you can redistribute it and/or modify
-  it under the terms of the GNU General Public License as published by
-  the Free Software Foundation, either version 3 of the License, or
-  (at your option) any later version.
-
-  This program is distributed in the hope that it will be useful,
-  but WITHOUT ANY WARRANTY; without even the implied warranty of
-  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-  GNU General Public License for more details.
-
-  You should have received a copy of the GNU General Public License
-  along with this program.  If not, see <http://www.gnu.org/licenses/>.
-*/
-
-#include <crypto/macSkein.h>
-#include <stdlib.h>
-
-void macSkein(uint8_t* key, int32_t key_length,
-               const uint8_t* data, uint32_t data_length,
-               uint8_t* mac, int32_t mac_length, SkeinSize_t skeinSize)
-{
-    SkeinCtx_t ctx;
-
-    skeinCtxPrepare(&ctx, skeinSize);
-
-    skeinMacInit(&ctx, key, key_length, mac_length);
-    skeinUpdate(&ctx, data, data_length);
-    skeinFinal(&ctx, mac);
-}
-
-void macSkein(uint8_t* key, int32_t key_length,
-               const uint8_t* data[], uint32_t data_length[],
-               uint8_t* mac, int32_t mac_length, SkeinSize_t skeinSize)
-{
-    SkeinCtx_t ctx;
-
-    skeinCtxPrepare(&ctx, skeinSize);
-
-    skeinMacInit(&ctx, key, key_length, mac_length);
-    while (*data) {
-        skeinUpdate(&ctx, *data, *data_length);
-        data++;
-        data_length ++;
-    }
-    skeinFinal(&ctx, mac);
-}
-
-void* createSkeinMacContext(uint8_t* key, int32_t key_length, 
-                            int32_t mac_length, SkeinSize_t skeinSize)
-{
-    SkeinCtx_t* ctx = (SkeinCtx_t*)malloc(sizeof(SkeinCtx_t));
-
-    skeinCtxPrepare(ctx, skeinSize);
-    skeinMacInit(ctx, key, key_length, mac_length);
-    return ctx;
-}
-
-void macSkeinCtx(void* ctx, const uint8_t* data, uint32_t data_length,
-                uint8_t* mac)
-{
-    SkeinCtx_t* pctx = (SkeinCtx_t*)ctx;
-
-    skeinUpdate(pctx, data, data_length);
-    skeinFinal(pctx, mac);
-    skeinReset(pctx);
-}
-
-void macSkeinCtx(void* ctx, const uint8_t* data[], uint32_t data_length[],
-                uint8_t* mac)
-{
-    SkeinCtx_t* pctx = (SkeinCtx_t*)ctx;
-
-    while (*data) {
-        skeinUpdate(pctx, *data, *data_length);
-        data++;
-        data_length++;
-    }
-    skeinFinal(pctx, mac);
-    skeinReset(pctx);
-}
-
-void freeSkeinMacContext(void* ctx)
-{
-    if (ctx)
-        free(ctx);
-}
diff --git a/jni/libzrtp/sources/srtp/crypto/macSkein.h b/jni/libzrtp/sources/srtp/crypto/macSkein.h
deleted file mode 100644
index 71c2ad9..0000000
--- a/jni/libzrtp/sources/srtp/crypto/macSkein.h
+++ /dev/null
@@ -1,148 +0,0 @@
-/*
-  Copyright (C) 2010 Werner Dittmann
-
-  This program is free software: you can redistribute it and/or modify
-  it under the terms of the GNU General Public License as published by
-  the Free Software Foundation, either version 3 of the License, or
-  (at your option) any later version.
-
-  This program is distributed in the hope that it will be useful,
-  but WITHOUT ANY WARRANTY; without even the implied warranty of
-  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-  GNU General Public License for more details.
-
-  You should have received a copy of the GNU General Public License
-  along with this program.  If not, see <http://www.gnu.org/licenses/>.
-*/
-
-
-#ifndef MAC_SKEIN_H
-#define MAC_SKEIN_H
-
-#include <crypto/skeinApi.h>
-/**
- * @file macSkein.h
- * @brief Function that provide Skein MAC support
- * 
- *
- * Functions to compute Skein MAC.
- *
- * @ingroup GNU_ZRTP
- * @{
- */
-
-/**
- * Compute Skein MAC.
- *
- * This functions takes one data chunk and computes its Skein MAC.
- *
- * @param key
- *    The MAC key.
- * @param key_length
- *    Lneght of the MAC key in bytes
- * @param data
- *    Points to the data chunk.
- * @param data_length
- *    Length of the data in bytes
- * @param mac
- *    Points to a buffer that receives the computed digest.
- * @param mac_length
- *    Integer that contains the length of the MAC in bits (not bytes).
- * @param skeinSize
- *    The Skein size to use.
- */
-void macSkein( uint8_t* key, int32_t key_length,
-                const uint8_t* data, uint32_t data_length,
-                uint8_t* mac, int32_t mac_length, SkeinSize_t skeinSize );
-
-/**
- * Compute Skein MAC over several data cunks.
- *
- * This functions takes several data chunk and computes the Skein MAC.
- *
- * @param key
- *    The MAC key.
- * @param key_length
- *    Lneght of the MAC key in bytes
- * @param data
- *    Points to an array of pointers that point to the data chunks. A NULL
- *    pointer in an array element terminates the data chunks.
- * @param data_length
- *    Points to an array of integers that hold the length of each data chunk.
- * @param mac
- *    Points to a buffer that receives the computed digest.
- * @param mac_length
- *    Integer that contains the length of the MAC in bits (not bytes).
- * @param skeinSize
- *    The Skein size to use.
- */
-void macSkein( uint8_t* key, int32_t key_length,
-                const uint8_t* data[], uint32_t data_length[],
-                uint8_t* mac, int32_t mac_length, SkeinSize_t skeinSize);
-
-/**
- * Create and initialize a Skein MAC context.
- *
- * An application uses this context to hash several data with on Skein MAC
- * Context with the same key, key length and mac length
- *
- * @param key
- *    The MAC key.
- * @param key_length
- *    Lenght of the MAC key in bytes
- * @param mac_length
- *    Integer that contains the length of the MAC in bits (not bytes).
- * @param skeinSize
- *    The Skein size to use.
- * @return Returns a pointer to the initialized context
- */
-void* createSkeinMacContext(uint8_t* key, int32_t key_length, 
-                            int32_t mac_length, SkeinSize_t skeinSize);
-
-/**
- * Compute Skein MAC.
- *
- * This functions takes one data chunk and computes its Skein MAC.
- *
- * @param ctx
- *     Pointer to initialized Skein MAC context
- * @param data
- *    Points to the data chunk.
- * @param data_length
- *    Length of the data in bytes
- * @param mac
- *    Points to a buffer that receives the computed digest.
- */
-
-void macSkeinCtx(void* ctx, const uint8_t* data, uint32_t data_length,
-                uint8_t* mac);
-
-/**
- * Compute Skein MAC over several data cunks.
- *
- * This functions takes several data chunk and computes the SHA1 HAMAC.
- *
- * @param ctx 
- *     Pointer to initialized Skein MAC context
- * @param data
- *    Points to an array of pointers that point to the data chunks. A NULL
- *    pointer in an array element terminates the data chunks.
- * @param data_length
- *    Points to an array of integers that hold the length of each data chunk.
- * @param mac
- *    Points to a buffer that receives the computed digest.
- */
-void macSkeinCtx(void* ctx, const uint8_t* data[], uint32_t data_length[],
-                uint8_t* mac);
-
-/**
- * Free Skein MAC context.
- *
- * @param ctx a pointer to Skein MAC context
- */
-void freeSkeinMacContext(void* ctx);
-
-/**
- * @}
- */
-#endif
\ No newline at end of file
diff --git a/jni/libzrtp/sources/srtp/crypto/openssl/SrtpSymCrypto.cpp b/jni/libzrtp/sources/srtp/crypto/openssl/SrtpSymCrypto.cpp
index 3d6747d..00d4476 100644
--- a/jni/libzrtp/sources/srtp/crypto/openssl/SrtpSymCrypto.cpp
+++ b/jni/libzrtp/sources/srtp/crypto/openssl/SrtpSymCrypto.cpp
@@ -1,5 +1,5 @@
 /*
-  Copyright (C) 2005, 2004, 2012 Erik Eliasson, Johan Bilien, Werner Dittmann
+  Copyright (C) 2012 Werner Dittmann
 
   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
@@ -30,8 +30,6 @@
   */
 
 /**
- * @author Erik Eliasson <eliasson@it.kth.se>
- * @author Johan Bilien <jobi@via.ecp.fr>
  * @author Werner Dittmann <Werner.Dittmann@t-online.de>
  */
 
@@ -40,10 +38,10 @@
 #include <stdlib.h>
 #include <openssl/aes.h>                // the include of openSSL
 #include <crypto/SrtpSymCrypto.h>
-#include <crypto/twofish.h>
+#include <cryptcommon/twofish.h>
 #include <string.h>
 #include <stdio.h>
-#include <arpa/inet.h>
+#include <common/osSpecifics.h>
 
 SrtpSymCrypto::SrtpSymCrypto(int algo):key(NULL), algorithm(algo) {
 }
@@ -296,7 +294,7 @@
      * Now XOR (S(n-1) xor IV') with the current counter, then increment the counter
      */
     ui32p = (uint32_t *)f8ctx->S;
-    ui32p[3] ^= htonl(f8ctx->J);
+    ui32p[3] ^= zrtpHtonl(f8ctx->J);
     f8ctx->J++;
     /*
      * Now compute the new key stream using AES encrypt
@@ -315,12 +313,3 @@
     return length;
 }
 
-
-/** EMACS **
- * Local variables:
- * mode: c++
- * c-default-style: ellemtel
- * c-basic-offset: 4
- * End:
- */
-
diff --git a/jni/libzrtp/sources/srtp/crypto/openssl/hmac.cpp b/jni/libzrtp/sources/srtp/crypto/openssl/hmac.cpp
index 88d33a1..cfe73c3 100644
--- a/jni/libzrtp/sources/srtp/crypto/openssl/hmac.cpp
+++ b/jni/libzrtp/sources/srtp/crypto/openssl/hmac.cpp
@@ -1,5 +1,5 @@
 /*
-  Copyright (C) 2005, 2004, 2010, Erik Eliasson, Johan Bilien, Werner Dittmann
+  Copyright (C) 2010 Werner Dittmann
 
   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
@@ -30,9 +30,7 @@
  */
 
 /*
- * Authors: Erik Eliasson <eliasson@it.kth.se>
- *          Johan Bilien <jobi@via.ecp.fr>
- *          Werner Dittmann
+ * Authors: Werner Dittmann
  */
 
 #include <stdint.h>
@@ -67,7 +65,7 @@
 void* createSha1HmacContext(uint8_t* key, int32_t key_length)
 {
     HMAC_CTX* ctx = (HMAC_CTX*)malloc(sizeof(HMAC_CTX));
-    
+
     HMAC_CTX_init(ctx);
     HMAC_Init_ex(ctx, key, key_length, EVP_sha1(), NULL);
     return ctx;
diff --git a/jni/libzrtp/sources/srtp/crypto/sha1.c b/jni/libzrtp/sources/srtp/crypto/sha1.c
new file mode 100644
index 0000000..31cee60
--- /dev/null
+++ b/jni/libzrtp/sources/srtp/crypto/sha1.c
@@ -0,0 +1,258 @@
+/*
+ ---------------------------------------------------------------------------
+ Copyright (c) 2002, Dr Brian Gladman, Worcester, UK.   All rights reserved.
+
+ LICENSE TERMS
+
+ The free distribution and use of this software in both source and binary
+ form is allowed (with or without changes) provided that:
+
+   1. distributions of this source code include the above copyright
+      notice, this list of conditions and the following disclaimer;
+
+   2. distributions in binary form include the above copyright
+      notice, this list of conditions and the following disclaimer
+      in the documentation and/or other associated materials;
+
+   3. the copyright holder's name is not used to endorse products
+      built using this software without specific written permission.
+
+ ALTERNATIVELY, provided that this notice is retained in full, this product
+ may be distributed under the terms of the GNU General Public License (GPL),
+ in which case the provisions of the GPL apply INSTEAD OF those given above.
+
+ DISCLAIMER
+
+ This software is provided 'as is' with no explicit or implied warranties
+ in respect of its properties, including, but not limited to, correctness
+ and/or fitness for purpose.
+ ---------------------------------------------------------------------------
+ Issue Date: 01/08/2005
+
+ This is a byte oriented version of SHA1 that operates on arrays of bytes
+ stored in memory.
+*/
+
+#include <string.h>     /* for memcpy() etc.        */
+
+#include "sha1.h"
+
+#if defined(__cplusplus)
+extern "C"
+{
+#endif
+
+#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
+#pragma intrinsic(memcpy)
+#endif
+
+#if 0 && defined(_MSC_VER)
+#define rotl32  _lrotl
+#define rotr32  _lrotr
+#else
+#define rotl32(x,n)   (((x) << n) | ((x) >> (32 - n)))
+#define rotr32(x,n)   (((x) >> n) | ((x) << (32 - n)))
+#endif
+
+#if !defined(bswap_32)
+#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
+#endif
+
+#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
+#define SWAP_BYTES
+#else
+#undef  SWAP_BYTES
+#endif
+
+#if defined(SWAP_BYTES)
+#define bsw_32(p,n) \
+    { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
+#else
+#define bsw_32(p,n)
+#endif
+
+#define SHA1_MASK   (SHA1_BLOCK_SIZE - 1)
+
+#if 0
+
+#define ch(x,y,z)       (((x) & (y)) ^ (~(x) & (z)))
+#define parity(x,y,z)   ((x) ^ (y) ^ (z))
+#define maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
+
+#else   /* Discovered by Rich Schroeppel and Colin Plumb   */
+
+#define ch(x,y,z)       ((z) ^ ((x) & ((y) ^ (z))))
+#define parity(x,y,z)   ((x) ^ (y) ^ (z))
+#define maj(x,y,z)      (((x) & (y)) | ((z) & ((x) ^ (y))))
+
+#endif
+
+/* Compile 64 bytes of hash data into SHA1 context. Note    */
+/* that this routine assumes that the byte order in the     */
+/* ctx->wbuf[] at this point is in such an order that low   */
+/* address bytes in the ORIGINAL byte stream will go in     */
+/* this buffer to the high end of 32-bit words on BOTH big  */
+/* and little endian systems                                */
+
+#ifdef ARRAY
+#define q(v,n)  v[n]
+#else
+#define q(v,n)  v##n
+#endif
+
+#define one_cycle(v,a,b,c,d,e,f,k,h)            \
+    q(v,e) += rotr32(q(v,a),27) +               \
+              f(q(v,b),q(v,c),q(v,d)) + k + h;  \
+    q(v,b)  = rotr32(q(v,b), 2)
+
+#define five_cycle(v,f,k,i)                 \
+    one_cycle(v, 0,1,2,3,4, f,k,hf(i  ));   \
+    one_cycle(v, 4,0,1,2,3, f,k,hf(i+1));   \
+    one_cycle(v, 3,4,0,1,2, f,k,hf(i+2));   \
+    one_cycle(v, 2,3,4,0,1, f,k,hf(i+3));   \
+    one_cycle(v, 1,2,3,4,0, f,k,hf(i+4))
+
+VOID_RETURN sha1_compile(sha1_ctx ctx[1])
+{   uint_32t    *w = ctx->wbuf;
+
+#ifdef ARRAY
+    uint_32t    v[5];
+    memcpy(v, ctx->hash, 5 * sizeof(uint_32t));
+#else
+    uint_32t    v0, v1, v2, v3, v4;
+    v0 = ctx->hash[0]; v1 = ctx->hash[1];
+    v2 = ctx->hash[2]; v3 = ctx->hash[3];
+    v4 = ctx->hash[4];
+#endif
+
+#define hf(i)   w[i]
+
+    five_cycle(v, ch, 0x5a827999,  0);
+    five_cycle(v, ch, 0x5a827999,  5);
+    five_cycle(v, ch, 0x5a827999, 10);
+    one_cycle(v,0,1,2,3,4, ch, 0x5a827999, hf(15)); \
+
+#undef  hf
+#define hf(i) (w[(i) & 15] = rotl32(                    \
+                 w[((i) + 13) & 15] ^ w[((i) + 8) & 15] \
+               ^ w[((i) +  2) & 15] ^ w[(i) & 15], 1))
+
+    one_cycle(v,4,0,1,2,3, ch, 0x5a827999, hf(16));
+    one_cycle(v,3,4,0,1,2, ch, 0x5a827999, hf(17));
+    one_cycle(v,2,3,4,0,1, ch, 0x5a827999, hf(18));
+    one_cycle(v,1,2,3,4,0, ch, 0x5a827999, hf(19));
+
+    five_cycle(v, parity, 0x6ed9eba1,  20);
+    five_cycle(v, parity, 0x6ed9eba1,  25);
+    five_cycle(v, parity, 0x6ed9eba1,  30);
+    five_cycle(v, parity, 0x6ed9eba1,  35);
+
+    five_cycle(v, maj, 0x8f1bbcdc,  40);
+    five_cycle(v, maj, 0x8f1bbcdc,  45);
+    five_cycle(v, maj, 0x8f1bbcdc,  50);
+    five_cycle(v, maj, 0x8f1bbcdc,  55);
+
+    five_cycle(v, parity, 0xca62c1d6,  60);
+    five_cycle(v, parity, 0xca62c1d6,  65);
+    five_cycle(v, parity, 0xca62c1d6,  70);
+    five_cycle(v, parity, 0xca62c1d6,  75);
+
+#ifdef ARRAY
+    ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
+    ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
+    ctx->hash[4] += v[4];
+#else
+    ctx->hash[0] += v0; ctx->hash[1] += v1;
+    ctx->hash[2] += v2; ctx->hash[3] += v3;
+    ctx->hash[4] += v4;
+#endif
+}
+
+VOID_RETURN sha1_begin(sha1_ctx ctx[1])
+{
+    ctx->count[0] = ctx->count[1] = 0;
+    ctx->hash[0] = 0x67452301;
+    ctx->hash[1] = 0xefcdab89;
+    ctx->hash[2] = 0x98badcfe;
+    ctx->hash[3] = 0x10325476;
+    ctx->hash[4] = 0xc3d2e1f0;
+}
+
+/* SHA1 hash data in an array of bytes into hash buffer and */
+/* call the hash_compile function as required.              */
+
+VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1])
+{   
+	uint_32t pos = (uint_32t)(ctx->count[0] & SHA1_MASK),
+            space = SHA1_BLOCK_SIZE - pos;
+    const unsigned char *sp = data;
+
+    if((ctx->count[0] += len) < len)
+        ++(ctx->count[1]);
+
+    while(len >= space)     /* tranfer whole blocks if possible  */
+    {
+        memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
+        sp += space; len -= space; space = SHA1_BLOCK_SIZE; pos = 0;
+        bsw_32(ctx->wbuf, SHA1_BLOCK_SIZE >> 2);
+        sha1_compile(ctx);
+    }
+
+    memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
+}
+
+/* SHA1 final padding and digest calculation  */
+
+VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1])
+{   uint_32t    i = (uint_32t)(ctx->count[0] & SHA1_MASK);
+
+    /* put bytes in the buffer in an order in which references to   */
+    /* 32-bit words will put bytes with lower addresses into the    */
+    /* top of 32 bit words on BOTH big and little endian machines   */
+    bsw_32(ctx->wbuf, (i + 3) >> 2);
+
+    /* we now need to mask valid bytes and add the padding which is */
+    /* a single 1 bit and as many zero bits as necessary. Note that */
+    /* we can always add the first padding byte here because the    */
+    /* buffer always has at least one empty slot                    */
+    ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
+    ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);
+
+    /* we need 9 or more empty positions, one for the padding byte  */
+    /* (above) and eight for the length count. If there is not      */
+    /* enough space, pad and empty the buffer                       */
+    if(i > SHA1_BLOCK_SIZE - 9)
+    {
+        if(i < 60) ctx->wbuf[15] = 0;
+        sha1_compile(ctx);
+        i = 0;
+    }
+    else    /* compute a word index for the empty buffer positions  */
+        i = (i >> 2) + 1;
+
+    while(i < 14) /* and zero pad all but last two positions        */
+        ctx->wbuf[i++] = 0;
+
+    /* the following 32-bit length fields are assembled in the      */
+    /* wrong byte order on little endian machines but this is       */
+    /* corrected later since they are only ever used as 32-bit      */
+    /* word values.                                                 */
+    ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
+    ctx->wbuf[15] = ctx->count[0] << 3;
+    sha1_compile(ctx);
+
+    /* extract the hash value as bytes in case the hash buffer is   */
+    /* misaligned for 32-bit words                                  */
+    for(i = 0; i < SHA1_DIGEST_SIZE; ++i)
+        hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
+}
+
+VOID_RETURN bg_sha1(unsigned char hval[], const unsigned char data[], unsigned long len)
+{   sha1_ctx    cx[1];
+
+    sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx);
+}
+
+#if defined(__cplusplus)
+}
+#endif
diff --git a/jni/libzrtp/sources/srtp/crypto/sha1.h b/jni/libzrtp/sources/srtp/crypto/sha1.h
new file mode 100644
index 0000000..79fb680
--- /dev/null
+++ b/jni/libzrtp/sources/srtp/crypto/sha1.h
@@ -0,0 +1,73 @@
+/*
+ ---------------------------------------------------------------------------
+ Copyright (c) 2002, Dr Brian Gladman, Worcester, UK.   All rights reserved.
+
+ LICENSE TERMS
+
+ The free distribution and use of this software in both source and binary
+ form is allowed (with or without changes) provided that:
+
+   1. distributions of this source code include the above copyright
+      notice, this list of conditions and the following disclaimer;
+
+   2. distributions in binary form include the above copyright
+      notice, this list of conditions and the following disclaimer
+      in the documentation and/or other associated materials;
+
+   3. the copyright holder's name is not used to endorse products
+      built using this software without specific written permission.
+
+ ALTERNATIVELY, provided that this notice is retained in full, this product
+ may be distributed under the terms of the GNU General Public License (GPL),
+ in which case the provisions of the GPL apply INSTEAD OF those given above.
+
+ DISCLAIMER
+
+ This software is provided 'as is' with no explicit or implied warranties
+ in respect of its properties, including, but not limited to, correctness
+ and/or fitness for purpose.
+ ---------------------------------------------------------------------------
+ Issue Date: 01/08/2005
+*/
+
+#ifndef _SHA1_H
+#define _SHA1_H
+
+#include <stdlib.h>
+#include <cryptcommon/brg_types.h>
+
+#define SHA1_BLOCK_SIZE  64
+#define SHA1_DIGEST_SIZE 20
+
+#if defined(__cplusplus)
+extern "C"
+{
+#endif
+
+/* type to hold the SHA256 context  */
+
+typedef struct
+{   uint_32t count[2];
+    uint_32t hash[5];
+    uint_32t wbuf[16];
+} sha1_ctx;
+
+/* Note that these prototypes are the same for both bit and */
+/* byte oriented implementations. However the length fields */
+/* are in bytes or bits as appropriate for the version used */
+/* and bit sequences are input as arrays of bytes in which  */
+/* bit sequences run from the most to the least significant */
+/* end of each byte                                         */
+
+VOID_RETURN sha1_compile(sha1_ctx ctx[1]);
+
+VOID_RETURN sha1_begin(sha1_ctx ctx[1]);
+VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1]);
+VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1]);
+VOID_RETURN sha1(unsigned char hval[], const unsigned char data[], unsigned long len);
+
+#if defined(__cplusplus)
+}
+#endif
+
+#endif
diff --git a/jni/libzrtp/sources/srtp/crypto/skein.c b/jni/libzrtp/sources/srtp/crypto/skein.c
deleted file mode 100644
index 5935a2a..0000000
--- a/jni/libzrtp/sources/srtp/crypto/skein.c
+++ /dev/null
@@ -1,742 +0,0 @@
-/***********************************************************************

-**

-** Implementation of the Skein hash function.

-**

-** Source code author: Doug Whiting, 2008.

-**

-** This algorithm and source code is released to the public domain.

-**

-************************************************************************/

-

-#define  SKEIN_PORT_CODE /* instantiate any code in skein_port.h */

-

-#include <string.h>       /* get the memcpy/memset functions */

-#include <crypto/skein.h> /* get the Skein API definitions   */

-#include <crypto/skein_iv.h>    /* get precomputed IVs */

-

-/*****************************************************************/

-/* External function to process blkCnt (nonzero) full block(s) of data. */

-void    Skein_256_Process_Block(Skein_256_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);

-void    Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);

-void    Skein1024_Process_Block(Skein1024_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd);

-

-/*****************************************************************/

-/*     256-bit Skein                                             */

-/*****************************************************************/

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* init the context for a straight hashing operation  */

-int Skein_256_Init(Skein_256_Ctxt_t *ctx, size_t hashBitLen)

-{

-    union

-    {

-        u08b_t  b[SKEIN_256_STATE_BYTES];

-        u64b_t  w[SKEIN_256_STATE_WORDS];

-    } cfg;                              /* config block */

-

-    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);

-    ctx->h.hashBitLen = hashBitLen;         /* output hash bit count */

-

-    switch (hashBitLen)

-    {             /* use pre-computed values, where available */

-    case  256:

-        memcpy(ctx->X,SKEIN_256_IV_256,sizeof(ctx->X));

-        break;

-    case  224:

-        memcpy(ctx->X,SKEIN_256_IV_224,sizeof(ctx->X));

-        break;

-    case  160:

-        memcpy(ctx->X,SKEIN_256_IV_160,sizeof(ctx->X));

-        break;

-    case  128:

-        memcpy(ctx->X,SKEIN_256_IV_128,sizeof(ctx->X));

-        break;

-    default:

-        /* here if there is no precomputed IV value available */

-        /* build/process the config block, type == CONFIG (could be precomputed) */

-        Skein_Start_New_Type(ctx,CFG_FINAL);        /* set tweaks: T0=0; T1=CFG | FINAL */

-

-        cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);  /* set the schema, version */

-        cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */

-        cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);

-        memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */

-

-        /* compute the initial chaining values from config block */

-        memset(ctx->X,0,sizeof(ctx->X));            /* zero the chaining variables */

-        Skein_256_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);

-        break;

-    }

-    /* The chaining vars ctx->X are now initialized for the given hashBitLen. */

-    /* Set up to process the data message portion of the hash (default) */

-    Skein_Start_New_Type(ctx,MSG);              /* T0=0, T1= MSG type */

-

-    return SKEIN_SUCCESS;

-}

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* init the context for a MAC and/or tree hash operation */

-/* [identical to Skein_256_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */

-int Skein_256_InitExt(Skein_256_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)

-{

-    union

-    {

-        u08b_t  b[SKEIN_256_STATE_BYTES];

-        u64b_t  w[SKEIN_256_STATE_WORDS];

-    } cfg;                              /* config block */

-

-    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);

-    Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);

-

-    /* compute the initial chaining values ctx->X[], based on key */

-    if (keyBytes == 0)                          /* is there a key? */

-    {

-        memset(ctx->X,0,sizeof(ctx->X));        /* no key: use all zeroes as key for config block */

-    }

-    else                                        /* here to pre-process a key */

-    {

-        Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));

-        /* do a mini-Init right here */

-        ctx->h.hashBitLen=8*sizeof(ctx->X);     /* set output hash bit count = state size */

-        Skein_Start_New_Type(ctx,KEY);          /* set tweaks: T0 = 0; T1 = KEY type */

-        memset(ctx->X,0,sizeof(ctx->X));        /* zero the initial chaining variables */

-        Skein_256_Update(ctx,key,keyBytes);     /* hash the key */

-        Skein_256_Final_Pad(ctx,cfg.b);         /* put result into cfg.b[] */

-        memcpy(ctx->X,cfg.b,sizeof(cfg.b));     /* copy over into ctx->X[] */

-#if SKEIN_NEED_SWAP

-        {

-            uint_t i;

-            for (i=0;i<SKEIN_256_STATE_WORDS;i++)   /* convert key bytes to context words */

-                ctx->X[i] = Skein_Swap64(ctx->X[i]);

-        }

-#endif

-    }

-    /* build/process the config block, type == CONFIG (could be precomputed for each key) */

-    ctx->h.hashBitLen = hashBitLen;             /* output hash bit count */

-    Skein_Start_New_Type(ctx,CFG_FINAL);

-

-    memset(&cfg.w,0,sizeof(cfg.w));             /* pre-pad cfg.w[] with zeroes */

-    cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);

-    cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */

-    cfg.w[2] = Skein_Swap64(treeInfo);          /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */

-

-    Skein_Show_Key(256,&ctx->h,key,keyBytes);

-

-    /* compute the initial chaining values from config block */

-    Skein_256_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);

-

-    /* The chaining vars ctx->X are now initialized */

-    /* Set up to process the data message portion of the hash (default) */

-    Skein_Start_New_Type(ctx,MSG);

-

-    return SKEIN_SUCCESS;

-}

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* process the input bytes */

-int Skein_256_Update(Skein_256_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)

-{

-    size_t n;

-

-    Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

-

-    /* process full blocks, if any */

-    if (msgByteCnt + ctx->h.bCnt > SKEIN_256_BLOCK_BYTES)

-    {

-        if (ctx->h.bCnt)                              /* finish up any buffered message data */

-        {

-            n = SKEIN_256_BLOCK_BYTES - ctx->h.bCnt;  /* # bytes free in buffer b[] */

-            if (n)

-            {

-                Skein_assert(n < msgByteCnt);         /* check on our logic here */

-                memcpy(&ctx->b[ctx->h.bCnt],msg,n);

-                msgByteCnt  -= n;

-                msg         += n;

-                ctx->h.bCnt += n;

-            }

-            Skein_assert(ctx->h.bCnt == SKEIN_256_BLOCK_BYTES);

-            Skein_256_Process_Block(ctx,ctx->b,1,SKEIN_256_BLOCK_BYTES);

-            ctx->h.bCnt = 0;

-        }

-        /* now process any remaining full blocks, directly from input message data */

-        if (msgByteCnt > SKEIN_256_BLOCK_BYTES)

-        {

-            n = (msgByteCnt-1) / SKEIN_256_BLOCK_BYTES;   /* number of full blocks to process */

-            Skein_256_Process_Block(ctx,msg,n,SKEIN_256_BLOCK_BYTES);

-            msgByteCnt -= n * SKEIN_256_BLOCK_BYTES;

-            msg        += n * SKEIN_256_BLOCK_BYTES;

-        }

-        Skein_assert(ctx->h.bCnt == 0);

-    }

-

-    /* copy any remaining source message data bytes into b[] */

-    if (msgByteCnt)

-    {

-        Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES);

-        memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);

-        ctx->h.bCnt += msgByteCnt;

-    }

-

-    return SKEIN_SUCCESS;

-}

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* finalize the hash computation and output the result */

-int Skein_256_Final(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)

-{

-    size_t i,n,byteCnt;

-    u64b_t X[SKEIN_256_STATE_WORDS];

-    Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

-

-    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;                 /* tag as the final block */

-    if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES)            /* zero pad b[] if necessary */

-        memset(&ctx->b[ctx->h.bCnt],0,SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);

-

-    Skein_256_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);  /* process the final block */

-

-    /* now output the result */

-    byteCnt = (ctx->h.hashBitLen + 7) >> 3;             /* total number of output bytes */

-

-    /* run Threefish in "counter mode" to generate output */

-    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */

-    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */

-    for (i=0;i*SKEIN_256_BLOCK_BYTES < byteCnt;i++)

-    {

-        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */

-        Skein_Start_New_Type(ctx,OUT_FINAL);

-        Skein_256_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */

-        n = byteCnt - i*SKEIN_256_BLOCK_BYTES;   /* number of output bytes left to go */

-        if (n >= SKEIN_256_BLOCK_BYTES)

-            n  = SKEIN_256_BLOCK_BYTES;

-        Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */

-        Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_256_BLOCK_BYTES);

-        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */

-    }

-    return SKEIN_SUCCESS;

-}

-

-/*****************************************************************/

-/*     512-bit Skein                                             */

-/*****************************************************************/

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* init the context for a straight hashing operation  */

-int Skein_512_Init(Skein_512_Ctxt_t *ctx, size_t hashBitLen)

-{

-    union

-    {

-        u08b_t  b[SKEIN_512_STATE_BYTES];

-        u64b_t  w[SKEIN_512_STATE_WORDS];

-    } cfg;                              /* config block */

-

-    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);

-    ctx->h.hashBitLen = hashBitLen;         /* output hash bit count */

-

-    switch (hashBitLen)

-    {             /* use pre-computed values, where available */

-    case  512:

-        memcpy(ctx->X,SKEIN_512_IV_512,sizeof(ctx->X));

-        break;

-    case  384:

-        memcpy(ctx->X,SKEIN_512_IV_384,sizeof(ctx->X));

-        break;

-    case  256:

-        memcpy(ctx->X,SKEIN_512_IV_256,sizeof(ctx->X));

-        break;

-    case  224:

-        memcpy(ctx->X,SKEIN_512_IV_224,sizeof(ctx->X));

-        break;

-    default:

-        /* here if there is no precomputed IV value available */

-        /* build/process the config block, type == CONFIG (could be precomputed) */

-        Skein_Start_New_Type(ctx,CFG_FINAL);        /* set tweaks: T0=0; T1=CFG | FINAL */

-

-        cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);  /* set the schema, version */

-        cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */

-        cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);

-        memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */

-

-        /* compute the initial chaining values from config block */

-        memset(ctx->X,0,sizeof(ctx->X));            /* zero the chaining variables */

-        Skein_512_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);

-        break;

-    }

-

-    /* The chaining vars ctx->X are now initialized for the given hashBitLen. */

-    /* Set up to process the data message portion of the hash (default) */

-    Skein_Start_New_Type(ctx,MSG);              /* T0=0, T1= MSG type */

-

-    return SKEIN_SUCCESS;

-}

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* init the context for a MAC and/or tree hash operation */

-/* [identical to Skein_512_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */

-int Skein_512_InitExt(Skein_512_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)

-{

-    union

-    {

-        u08b_t  b[SKEIN_512_STATE_BYTES];

-        u64b_t  w[SKEIN_512_STATE_WORDS];

-    } cfg;                              /* config block */

-

-    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);

-    Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);

-

-    /* compute the initial chaining values ctx->X[], based on key */

-    if (keyBytes == 0)                          /* is there a key? */

-    {

-        memset(ctx->X,0,sizeof(ctx->X));        /* no key: use all zeroes as key for config block */

-    }

-    else                                        /* here to pre-process a key */

-    {

-        Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));

-        /* do a mini-Init right here */

-        ctx->h.hashBitLen=8*sizeof(ctx->X);     /* set output hash bit count = state size */

-        Skein_Start_New_Type(ctx,KEY);          /* set tweaks: T0 = 0; T1 = KEY type */

-        memset(ctx->X,0,sizeof(ctx->X));        /* zero the initial chaining variables */

-        Skein_512_Update(ctx,key,keyBytes);     /* hash the key */

-        Skein_512_Final_Pad(ctx,cfg.b);         /* put result into cfg.b[] */

-        memcpy(ctx->X,cfg.b,sizeof(cfg.b));     /* copy over into ctx->X[] */

-#if SKEIN_NEED_SWAP

-        {

-            uint_t i;

-            for (i=0;i<SKEIN_512_STATE_WORDS;i++)   /* convert key bytes to context words */

-                ctx->X[i] = Skein_Swap64(ctx->X[i]);

-        }

-#endif

-    }

-    /* build/process the config block, type == CONFIG (could be precomputed for each key) */

-    ctx->h.hashBitLen = hashBitLen;             /* output hash bit count */

-    Skein_Start_New_Type(ctx,CFG_FINAL);

-

-    memset(&cfg.w,0,sizeof(cfg.w));             /* pre-pad cfg.w[] with zeroes */

-    cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);

-    cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */

-    cfg.w[2] = Skein_Swap64(treeInfo);          /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */

-

-    Skein_Show_Key(512,&ctx->h,key,keyBytes);

-

-    /* compute the initial chaining values from config block */

-    Skein_512_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);

-

-    /* The chaining vars ctx->X are now initialized */

-    /* Set up to process the data message portion of the hash (default) */

-    Skein_Start_New_Type(ctx,MSG);

-

-    return SKEIN_SUCCESS;

-}

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* process the input bytes */

-int Skein_512_Update(Skein_512_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)

-{

-    size_t n;

-

-    Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

-

-    /* process full blocks, if any */

-    if (msgByteCnt + ctx->h.bCnt > SKEIN_512_BLOCK_BYTES)

-    {

-        if (ctx->h.bCnt)                              /* finish up any buffered message data */

-        {

-            n = SKEIN_512_BLOCK_BYTES - ctx->h.bCnt;  /* # bytes free in buffer b[] */

-            if (n)

-            {

-                Skein_assert(n < msgByteCnt);         /* check on our logic here */

-                memcpy(&ctx->b[ctx->h.bCnt],msg,n);

-                msgByteCnt  -= n;

-                msg         += n;

-                ctx->h.bCnt += n;

-            }

-            Skein_assert(ctx->h.bCnt == SKEIN_512_BLOCK_BYTES);

-            Skein_512_Process_Block(ctx,ctx->b,1,SKEIN_512_BLOCK_BYTES);

-            ctx->h.bCnt = 0;

-        }

-        /* now process any remaining full blocks, directly from input message data */

-        if (msgByteCnt > SKEIN_512_BLOCK_BYTES)

-        {

-            n = (msgByteCnt-1) / SKEIN_512_BLOCK_BYTES;   /* number of full blocks to process */

-            Skein_512_Process_Block(ctx,msg,n,SKEIN_512_BLOCK_BYTES);

-            msgByteCnt -= n * SKEIN_512_BLOCK_BYTES;

-            msg        += n * SKEIN_512_BLOCK_BYTES;

-        }

-        Skein_assert(ctx->h.bCnt == 0);

-    }

-

-    /* copy any remaining source message data bytes into b[] */

-    if (msgByteCnt)

-    {

-        Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES);

-        memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);

-        ctx->h.bCnt += msgByteCnt;

-    }

-

-    return SKEIN_SUCCESS;

-}

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* finalize the hash computation and output the result */

-int Skein_512_Final(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)

-{

-    size_t i,n,byteCnt;

-    u64b_t X[SKEIN_512_STATE_WORDS];

-    Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

-

-    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;                 /* tag as the final block */

-    if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES)            /* zero pad b[] if necessary */

-        memset(&ctx->b[ctx->h.bCnt],0,SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);

-

-    Skein_512_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);  /* process the final block */

-

-    /* now output the result */

-    byteCnt = (ctx->h.hashBitLen + 7) >> 3;             /* total number of output bytes */

-

-    /* run Threefish in "counter mode" to generate output */

-    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */

-    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */

-    for (i=0;i*SKEIN_512_BLOCK_BYTES < byteCnt;i++)

-    {

-        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */

-        Skein_Start_New_Type(ctx,OUT_FINAL);

-        Skein_512_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */

-        n = byteCnt - i*SKEIN_512_BLOCK_BYTES;   /* number of output bytes left to go */

-        if (n >= SKEIN_512_BLOCK_BYTES)

-            n  = SKEIN_512_BLOCK_BYTES;

-        Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */

-        Skein_Show_Final(512,&ctx->h,n,hashVal+i*SKEIN_512_BLOCK_BYTES);

-        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */

-    }

-    return SKEIN_SUCCESS;

-}

-

-/*****************************************************************/

-/*    1024-bit Skein                                             */

-/*****************************************************************/

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* init the context for a straight hashing operation  */

-int Skein1024_Init(Skein1024_Ctxt_t *ctx, size_t hashBitLen)

-{

-    union

-    {

-        u08b_t  b[SKEIN1024_STATE_BYTES];

-        u64b_t  w[SKEIN1024_STATE_WORDS];

-    } cfg;                              /* config block */

-

-    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);

-    ctx->h.hashBitLen = hashBitLen;         /* output hash bit count */

-

-    switch (hashBitLen)

-    {              /* use pre-computed values, where available */

-    case  512:

-        memcpy(ctx->X,SKEIN1024_IV_512 ,sizeof(ctx->X));

-        break;

-    case  384:

-        memcpy(ctx->X,SKEIN1024_IV_384 ,sizeof(ctx->X));

-        break;

-    case 1024:

-        memcpy(ctx->X,SKEIN1024_IV_1024,sizeof(ctx->X));

-        break;

-    default:

-        /* here if there is no precomputed IV value available */

-        /* build/process the config block, type == CONFIG (could be precomputed) */

-        Skein_Start_New_Type(ctx,CFG_FINAL);        /* set tweaks: T0=0; T1=CFG | FINAL */

-

-        cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);  /* set the schema, version */

-        cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */

-        cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);

-        memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */

-

-        /* compute the initial chaining values from config block */

-        memset(ctx->X,0,sizeof(ctx->X));            /* zero the chaining variables */

-        Skein1024_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);

-        break;

-    }

-

-    /* The chaining vars ctx->X are now initialized for the given hashBitLen. */

-    /* Set up to process the data message portion of the hash (default) */

-    Skein_Start_New_Type(ctx,MSG);              /* T0=0, T1= MSG type */

-

-    return SKEIN_SUCCESS;

-}

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* init the context for a MAC and/or tree hash operation */

-/* [identical to Skein1024_Init() when keyBytes == 0 && treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL] */

-int Skein1024_InitExt(Skein1024_Ctxt_t *ctx,size_t hashBitLen,u64b_t treeInfo, const u08b_t *key, size_t keyBytes)

-{

-    union

-    {

-        u08b_t  b[SKEIN1024_STATE_BYTES];

-        u64b_t  w[SKEIN1024_STATE_WORDS];

-    } cfg;                              /* config block */

-

-    Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);

-    Skein_Assert(keyBytes == 0 || key != NULL,SKEIN_FAIL);

-

-    /* compute the initial chaining values ctx->X[], based on key */

-    if (keyBytes == 0)                          /* is there a key? */

-    {

-        memset(ctx->X,0,sizeof(ctx->X));        /* no key: use all zeroes as key for config block */

-    }

-    else                                        /* here to pre-process a key */

-    {

-        Skein_assert(sizeof(cfg.b) >= sizeof(ctx->X));

-        /* do a mini-Init right here */

-        ctx->h.hashBitLen=8*sizeof(ctx->X);     /* set output hash bit count = state size */

-        Skein_Start_New_Type(ctx,KEY);          /* set tweaks: T0 = 0; T1 = KEY type */

-        memset(ctx->X,0,sizeof(ctx->X));        /* zero the initial chaining variables */

-        Skein1024_Update(ctx,key,keyBytes);     /* hash the key */

-        Skein1024_Final_Pad(ctx,cfg.b);         /* put result into cfg.b[] */

-        memcpy(ctx->X,cfg.b,sizeof(cfg.b));     /* copy over into ctx->X[] */

-#if SKEIN_NEED_SWAP

-        {

-            uint_t i;

-            for (i=0;i<SKEIN1024_STATE_WORDS;i++)   /* convert key bytes to context words */

-                ctx->X[i] = Skein_Swap64(ctx->X[i]);

-        }

-#endif

-    }

-    /* build/process the config block, type == CONFIG (could be precomputed for each key) */

-    ctx->h.hashBitLen = hashBitLen;             /* output hash bit count */

-    Skein_Start_New_Type(ctx,CFG_FINAL);

-

-    memset(&cfg.w,0,sizeof(cfg.w));             /* pre-pad cfg.w[] with zeroes */

-    cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);

-    cfg.w[1] = Skein_Swap64(hashBitLen);        /* hash result length in bits */

-    cfg.w[2] = Skein_Swap64(treeInfo);          /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */

-

-    Skein_Show_Key(1024,&ctx->h,key,keyBytes);

-

-    /* compute the initial chaining values from config block */

-    Skein1024_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);

-

-    /* The chaining vars ctx->X are now initialized */

-    /* Set up to process the data message portion of the hash (default) */

-    Skein_Start_New_Type(ctx,MSG);

-

-    return SKEIN_SUCCESS;

-}

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* process the input bytes */

-int Skein1024_Update(Skein1024_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)

-{

-    size_t n;

-

-    Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

-

-    /* process full blocks, if any */

-    if (msgByteCnt + ctx->h.bCnt > SKEIN1024_BLOCK_BYTES)

-    {

-        if (ctx->h.bCnt)                              /* finish up any buffered message data */

-        {

-            n = SKEIN1024_BLOCK_BYTES - ctx->h.bCnt;  /* # bytes free in buffer b[] */

-            if (n)

-            {

-                Skein_assert(n < msgByteCnt);         /* check on our logic here */

-                memcpy(&ctx->b[ctx->h.bCnt],msg,n);

-                msgByteCnt  -= n;

-                msg         += n;

-                ctx->h.bCnt += n;

-            }

-            Skein_assert(ctx->h.bCnt == SKEIN1024_BLOCK_BYTES);

-            Skein1024_Process_Block(ctx,ctx->b,1,SKEIN1024_BLOCK_BYTES);

-            ctx->h.bCnt = 0;

-        }

-        /* now process any remaining full blocks, directly from input message data */

-        if (msgByteCnt > SKEIN1024_BLOCK_BYTES)

-        {

-            n = (msgByteCnt-1) / SKEIN1024_BLOCK_BYTES;   /* number of full blocks to process */

-            Skein1024_Process_Block(ctx,msg,n,SKEIN1024_BLOCK_BYTES);

-            msgByteCnt -= n * SKEIN1024_BLOCK_BYTES;

-            msg        += n * SKEIN1024_BLOCK_BYTES;

-        }

-        Skein_assert(ctx->h.bCnt == 0);

-    }

-

-    /* copy any remaining source message data bytes into b[] */

-    if (msgByteCnt)

-    {

-        Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES);

-        memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);

-        ctx->h.bCnt += msgByteCnt;

-    }

-

-    return SKEIN_SUCCESS;

-}

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* finalize the hash computation and output the result */

-int Skein1024_Final(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)

-{

-    size_t i,n,byteCnt;

-    u64b_t X[SKEIN1024_STATE_WORDS];

-    Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

-

-    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;                 /* tag as the final block */

-    if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES)            /* zero pad b[] if necessary */

-        memset(&ctx->b[ctx->h.bCnt],0,SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);

-

-    Skein1024_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);  /* process the final block */

-

-    /* now output the result */

-    byteCnt = (ctx->h.hashBitLen + 7) >> 3;             /* total number of output bytes */

-

-    /* run Threefish in "counter mode" to generate output */

-    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */

-    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */

-    for (i=0;i*SKEIN1024_BLOCK_BYTES < byteCnt;i++)

-    {

-        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */

-        Skein_Start_New_Type(ctx,OUT_FINAL);

-        Skein1024_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */

-        n = byteCnt - i*SKEIN1024_BLOCK_BYTES;   /* number of output bytes left to go */

-        if (n >= SKEIN1024_BLOCK_BYTES)

-            n  = SKEIN1024_BLOCK_BYTES;

-        Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */

-        Skein_Show_Final(1024,&ctx->h,n,hashVal+i*SKEIN1024_BLOCK_BYTES);

-        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */

-    }

-    return SKEIN_SUCCESS;

-}

-

-/**************** Functions to support MAC/tree hashing ***************/

-/*   (this code is identical for Optimized and Reference versions)    */

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* finalize the hash computation and output the block, no OUTPUT stage */

-int Skein_256_Final_Pad(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)

-{

-    Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

-

-    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;        /* tag as the final block */

-    if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES)   /* zero pad b[] if necessary */

-        memset(&ctx->b[ctx->h.bCnt],0,SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);

-    Skein_256_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);    /* process the final block */

-

-    Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN_256_BLOCK_BYTES);   /* "output" the state bytes */

-

-    return SKEIN_SUCCESS;

-}

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* finalize the hash computation and output the block, no OUTPUT stage */

-int Skein_512_Final_Pad(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)

-{

-    Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

-

-    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;        /* tag as the final block */

-    if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES)   /* zero pad b[] if necessary */

-        memset(&ctx->b[ctx->h.bCnt],0,SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);

-    Skein_512_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);    /* process the final block */

-

-    Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN_512_BLOCK_BYTES);   /* "output" the state bytes */

-

-    return SKEIN_SUCCESS;

-}

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* finalize the hash computation and output the block, no OUTPUT stage */

-int Skein1024_Final_Pad(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)

-{

-    Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

-

-    ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;        /* tag as the final block */

-    if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES)   /* zero pad b[] if necessary */

-        memset(&ctx->b[ctx->h.bCnt],0,SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);

-    Skein1024_Process_Block(ctx,ctx->b,1,ctx->h.bCnt);    /* process the final block */

-

-    Skein_Put64_LSB_First(hashVal,ctx->X,SKEIN1024_BLOCK_BYTES);   /* "output" the state bytes */

-

-    return SKEIN_SUCCESS;

-}

-

-#if SKEIN_TREE_HASH

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* just do the OUTPUT stage                                       */

-int Skein_256_Output(Skein_256_Ctxt_t *ctx, u08b_t *hashVal)

-{

-    size_t i,n,byteCnt;

-    u64b_t X[SKEIN_256_STATE_WORDS];

-    Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

-

-    /* now output the result */

-    byteCnt = (ctx->h.hashBitLen + 7) >> 3;    /* total number of output bytes */

-

-    /* run Threefish in "counter mode" to generate output */

-    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */

-    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */

-    for (i=0;i*SKEIN_256_BLOCK_BYTES < byteCnt;i++)

-    {

-        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */

-        Skein_Start_New_Type(ctx,OUT_FINAL);

-        Skein_256_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */

-        n = byteCnt - i*SKEIN_256_BLOCK_BYTES;   /* number of output bytes left to go */

-        if (n >= SKEIN_256_BLOCK_BYTES)

-            n  = SKEIN_256_BLOCK_BYTES;

-        Skein_Put64_LSB_First(hashVal+i*SKEIN_256_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */

-        Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_256_BLOCK_BYTES);

-        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */

-    }

-    return SKEIN_SUCCESS;

-}

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* just do the OUTPUT stage                                       */

-int Skein_512_Output(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)

-{

-    size_t i,n,byteCnt;

-    u64b_t X[SKEIN_512_STATE_WORDS];

-    Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

-

-    /* now output the result */

-    byteCnt = (ctx->h.hashBitLen + 7) >> 3;    /* total number of output bytes */

-

-    /* run Threefish in "counter mode" to generate output */

-    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */

-    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */

-    for (i=0;i*SKEIN_512_BLOCK_BYTES < byteCnt;i++)

-    {

-        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */

-        Skein_Start_New_Type(ctx,OUT_FINAL);

-        Skein_512_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */

-        n = byteCnt - i*SKEIN_512_BLOCK_BYTES;   /* number of output bytes left to go */

-        if (n >= SKEIN_512_BLOCK_BYTES)

-            n  = SKEIN_512_BLOCK_BYTES;

-        Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */

-        Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN_512_BLOCK_BYTES);

-        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */

-    }

-    return SKEIN_SUCCESS;

-}

-

-/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

-/* just do the OUTPUT stage                                       */

-int Skein1024_Output(Skein1024_Ctxt_t *ctx, u08b_t *hashVal)

-{

-    size_t i,n,byteCnt;

-    u64b_t X[SKEIN1024_STATE_WORDS];

-    Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES,SKEIN_FAIL);    /* catch uninitialized context */

-

-    /* now output the result */

-    byteCnt = (ctx->h.hashBitLen + 7) >> 3;    /* total number of output bytes */

-

-    /* run Threefish in "counter mode" to generate output */

-    memset(ctx->b,0,sizeof(ctx->b));  /* zero out b[], so it can hold the counter */

-    memcpy(X,ctx->X,sizeof(X));       /* keep a local copy of counter mode "key" */

-    for (i=0;i*SKEIN1024_BLOCK_BYTES < byteCnt;i++)

-    {

-        ((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */

-        Skein_Start_New_Type(ctx,OUT_FINAL);

-        Skein1024_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */

-        n = byteCnt - i*SKEIN1024_BLOCK_BYTES;   /* number of output bytes left to go */

-        if (n >= SKEIN1024_BLOCK_BYTES)

-            n  = SKEIN1024_BLOCK_BYTES;

-        Skein_Put64_LSB_First(hashVal+i*SKEIN1024_BLOCK_BYTES,ctx->X,n);   /* "output" the ctr mode bytes */

-        Skein_Show_Final(256,&ctx->h,n,hashVal+i*SKEIN1024_BLOCK_BYTES);

-        memcpy(ctx->X,X,sizeof(X));   /* restore the counter mode key for next time */

-    }

-    return SKEIN_SUCCESS;

-}

-#endif

diff --git a/jni/libzrtp/sources/srtp/crypto/skein.h b/jni/libzrtp/sources/srtp/crypto/skein.h
deleted file mode 100644
index 345a112..0000000
--- a/jni/libzrtp/sources/srtp/crypto/skein.h
+++ /dev/null
@@ -1,327 +0,0 @@
-#ifndef _SKEIN_H_

-#define _SKEIN_H_     1

-/**************************************************************************

-**

-** Interface declarations and internal definitions for Skein hashing.

-**

-** Source code author: Doug Whiting, 2008.

-**

-** This algorithm and source code is released to the public domain.

-**

-***************************************************************************

-** 

-** The following compile-time switches may be defined to control some

-** tradeoffs between speed, code size, error checking, and security.

-**

-** The "default" note explains what happens when the switch is not defined.

-**

-**  SKEIN_DEBUG            -- make callouts from inside Skein code

-**                            to examine/display intermediate values.

-**                            [default: no callouts (no overhead)]

-**

-**  SKEIN_ERR_CHECK        -- how error checking is handled inside Skein

-**                            code. If not defined, most error checking 

-**                            is disabled (for performance). Otherwise, 

-**                            the switch value is interpreted as:

-**                                0: use assert()      to flag errors

-**                                1: return SKEIN_FAIL to flag errors

-**

-***************************************************************************/

-#ifdef __cplusplus

-extern "C"

-{

-#endif

-

-#include <stddef.h>                          /* get size_t definition */

-#include <crypto/skein_port.h>               /* get platform-specific definitions */

-

-enum

-    {

-    SKEIN_SUCCESS         =      0,          /* return codes from Skein calls */

-    SKEIN_FAIL            =      1,

-    SKEIN_BAD_HASHLEN     =      2

-    };

-

-#define  SKEIN_MODIFIER_WORDS  ( 2)          /* number of modifier (tweak) words */

-

-#define  SKEIN_256_STATE_WORDS ( 4)

-#define  SKEIN_512_STATE_WORDS ( 8)

-#define  SKEIN1024_STATE_WORDS (16)

-#define  SKEIN_MAX_STATE_WORDS (16)

-

-#define  SKEIN_256_STATE_BYTES ( 8*SKEIN_256_STATE_WORDS)

-#define  SKEIN_512_STATE_BYTES ( 8*SKEIN_512_STATE_WORDS)

-#define  SKEIN1024_STATE_BYTES ( 8*SKEIN1024_STATE_WORDS)

-

-#define  SKEIN_256_STATE_BITS  (64*SKEIN_256_STATE_WORDS)

-#define  SKEIN_512_STATE_BITS  (64*SKEIN_512_STATE_WORDS)

-#define  SKEIN1024_STATE_BITS  (64*SKEIN1024_STATE_WORDS)

-

-#define  SKEIN_256_BLOCK_BYTES ( 8*SKEIN_256_STATE_WORDS)

-#define  SKEIN_512_BLOCK_BYTES ( 8*SKEIN_512_STATE_WORDS)

-#define  SKEIN1024_BLOCK_BYTES ( 8*SKEIN1024_STATE_WORDS)

-

-typedef struct

-    {

-    size_t  hashBitLen;                      /* size of hash result, in bits */

-    size_t  bCnt;                            /* current byte count in buffer b[] */

-    u64b_t  T[SKEIN_MODIFIER_WORDS];         /* tweak words: T[0]=byte cnt, T[1]=flags */

-    } Skein_Ctxt_Hdr_t;

-

-typedef struct                               /*  256-bit Skein hash context structure */

-    {

-    Skein_Ctxt_Hdr_t h;                      /* common header context variables */

-    u64b_t  X[SKEIN_256_STATE_WORDS];        /* chaining variables */

-    u08b_t  b[SKEIN_256_BLOCK_BYTES];        /* partial block buffer (8-byte aligned) */

-    } Skein_256_Ctxt_t;

-

-typedef struct                               /*  512-bit Skein hash context structure */

-    {

-    Skein_Ctxt_Hdr_t h;                      /* common header context variables */

-    u64b_t  X[SKEIN_512_STATE_WORDS];        /* chaining variables */

-    u08b_t  b[SKEIN_512_BLOCK_BYTES];        /* partial block buffer (8-byte aligned) */

-    } Skein_512_Ctxt_t;

-

-typedef struct                               /* 1024-bit Skein hash context structure */

-    {

-    Skein_Ctxt_Hdr_t h;                      /* common header context variables */

-    u64b_t  X[SKEIN1024_STATE_WORDS];        /* chaining variables */

-    u08b_t  b[SKEIN1024_BLOCK_BYTES];        /* partial block buffer (8-byte aligned) */

-    } Skein1024_Ctxt_t;

-

-/*   Skein APIs for (incremental) "straight hashing" */

-int  Skein_256_Init  (Skein_256_Ctxt_t *ctx, size_t hashBitLen);

-int  Skein_512_Init  (Skein_512_Ctxt_t *ctx, size_t hashBitLen);

-int  Skein1024_Init  (Skein1024_Ctxt_t *ctx, size_t hashBitLen);

-

-int  Skein_256_Update(Skein_256_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);

-int  Skein_512_Update(Skein_512_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);

-int  Skein1024_Update(Skein1024_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);

-

-int  Skein_256_Final (Skein_256_Ctxt_t *ctx, u08b_t * hashVal);

-int  Skein_512_Final (Skein_512_Ctxt_t *ctx, u08b_t * hashVal);

-int  Skein1024_Final (Skein1024_Ctxt_t *ctx, u08b_t * hashVal);

-

-/*

-**   Skein APIs for "extended" initialization: MAC keys, tree hashing.

-**   After an InitExt() call, just use Update/Final calls as with Init().

-**

-**   Notes: Same parameters as _Init() calls, plus treeInfo/key/keyBytes.

-**          When keyBytes == 0 and treeInfo == SKEIN_SEQUENTIAL, 

-**              the results of InitExt() are identical to calling Init().

-**          The function Init() may be called once to "precompute" the IV for

-**              a given hashBitLen value, then by saving a copy of the context

-**              the IV computation may be avoided in later calls.

-**          Similarly, the function InitExt() may be called once per MAC key 

-**              to precompute the MAC IV, then a copy of the context saved and

-**              reused for each new MAC computation.

-**/

-int  Skein_256_InitExt(Skein_256_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);

-int  Skein_512_InitExt(Skein_512_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);

-int  Skein1024_InitExt(Skein1024_Ctxt_t *ctx, size_t hashBitLen, u64b_t treeInfo, const u08b_t *key, size_t keyBytes);

-

-/*

-**   Skein APIs for MAC and tree hash:

-**      Final_Pad:  pad, do final block, but no OUTPUT type

-**      Output:     do just the output stage

-*/

-int  Skein_256_Final_Pad(Skein_256_Ctxt_t *ctx, u08b_t * hashVal);

-int  Skein_512_Final_Pad(Skein_512_Ctxt_t *ctx, u08b_t * hashVal);

-int  Skein1024_Final_Pad(Skein1024_Ctxt_t *ctx, u08b_t * hashVal);

-

-#ifndef SKEIN_TREE_HASH

-#define SKEIN_TREE_HASH (1)

-#endif

-#if  SKEIN_TREE_HASH

-int  Skein_256_Output   (Skein_256_Ctxt_t *ctx, u08b_t * hashVal);

-int  Skein_512_Output   (Skein_512_Ctxt_t *ctx, u08b_t * hashVal);

-int  Skein1024_Output   (Skein1024_Ctxt_t *ctx, u08b_t * hashVal);

-#endif

-

-/*****************************************************************

-** "Internal" Skein definitions

-**    -- not needed for sequential hashing API, but will be 

-**           helpful for other uses of Skein (e.g., tree hash mode).

-**    -- included here so that they can be shared between

-**           reference and optimized code.

-******************************************************************/

-

-/* tweak word T[1]: bit field starting positions */

-#define SKEIN_T1_BIT(BIT)       ((BIT) - 64)            /* offset 64 because it's the second word  */

-                                

-#define SKEIN_T1_POS_TREE_LVL   SKEIN_T1_BIT(112)       /* bits 112..118: level in hash tree       */

-#define SKEIN_T1_POS_BIT_PAD    SKEIN_T1_BIT(119)       /* bit  119     : partial final input byte */

-#define SKEIN_T1_POS_BLK_TYPE   SKEIN_T1_BIT(120)       /* bits 120..125: type field               */

-#define SKEIN_T1_POS_FIRST      SKEIN_T1_BIT(126)       /* bits 126     : first block flag         */

-#define SKEIN_T1_POS_FINAL      SKEIN_T1_BIT(127)       /* bit  127     : final block flag         */

-                                

-/* tweak word T[1]: flag bit definition(s) */

-#define SKEIN_T1_FLAG_FIRST     (((u64b_t)  1 ) << SKEIN_T1_POS_FIRST)

-#define SKEIN_T1_FLAG_FINAL     (((u64b_t)  1 ) << SKEIN_T1_POS_FINAL)

-#define SKEIN_T1_FLAG_BIT_PAD   (((u64b_t)  1 ) << SKEIN_T1_POS_BIT_PAD)

-                                

-/* tweak word T[1]: tree level bit field mask */

-#define SKEIN_T1_TREE_LVL_MASK  (((u64b_t)0x7F) << SKEIN_T1_POS_TREE_LVL)

-#define SKEIN_T1_TREE_LEVEL(n)  (((u64b_t) (n)) << SKEIN_T1_POS_TREE_LVL)

-

-/* tweak word T[1]: block type field */

-#define SKEIN_BLK_TYPE_KEY      ( 0)                    /* key, for MAC and KDF */

-#define SKEIN_BLK_TYPE_CFG      ( 4)                    /* configuration block */

-#define SKEIN_BLK_TYPE_PERS     ( 8)                    /* personalization string */

-#define SKEIN_BLK_TYPE_PK       (12)                    /* public key (for digital signature hashing) */

-#define SKEIN_BLK_TYPE_KDF      (16)                    /* key identifier for KDF */

-#define SKEIN_BLK_TYPE_NONCE    (20)                    /* nonce for PRNG */

-#define SKEIN_BLK_TYPE_MSG      (48)                    /* message processing */

-#define SKEIN_BLK_TYPE_OUT      (63)                    /* output stage */

-#define SKEIN_BLK_TYPE_MASK     (63)                    /* bit field mask */

-

-#define SKEIN_T1_BLK_TYPE(T)   (((u64b_t) (SKEIN_BLK_TYPE_##T)) << SKEIN_T1_POS_BLK_TYPE)

-#define SKEIN_T1_BLK_TYPE_KEY   SKEIN_T1_BLK_TYPE(KEY)  /* key, for MAC and KDF */

-#define SKEIN_T1_BLK_TYPE_CFG   SKEIN_T1_BLK_TYPE(CFG)  /* configuration block */

-#define SKEIN_T1_BLK_TYPE_PERS  SKEIN_T1_BLK_TYPE(PERS) /* personalization string */

-#define SKEIN_T1_BLK_TYPE_PK    SKEIN_T1_BLK_TYPE(PK)   /* public key (for digital signature hashing) */

-#define SKEIN_T1_BLK_TYPE_KDF   SKEIN_T1_BLK_TYPE(KDF)  /* key identifier for KDF */

-#define SKEIN_T1_BLK_TYPE_NONCE SKEIN_T1_BLK_TYPE(NONCE)/* nonce for PRNG */

-#define SKEIN_T1_BLK_TYPE_MSG   SKEIN_T1_BLK_TYPE(MSG)  /* message processing */

-#define SKEIN_T1_BLK_TYPE_OUT   SKEIN_T1_BLK_TYPE(OUT)  /* output stage */

-#define SKEIN_T1_BLK_TYPE_MASK  SKEIN_T1_BLK_TYPE(MASK) /* field bit mask */

-

-#define SKEIN_T1_BLK_TYPE_CFG_FINAL       (SKEIN_T1_BLK_TYPE_CFG | SKEIN_T1_FLAG_FINAL)

-#define SKEIN_T1_BLK_TYPE_OUT_FINAL       (SKEIN_T1_BLK_TYPE_OUT | SKEIN_T1_FLAG_FINAL)

-

-#define SKEIN_VERSION           (1)

-

-#ifndef SKEIN_ID_STRING_LE      /* allow compile-time personalization */

-#define SKEIN_ID_STRING_LE      (0x33414853)            /* "SHA3" (little-endian)*/

-#endif

-

-#define SKEIN_MK_64(hi32,lo32)  ((lo32) + (((u64b_t) (hi32)) << 32))

-#define SKEIN_SCHEMA_VER        SKEIN_MK_64(SKEIN_VERSION,SKEIN_ID_STRING_LE)

-#define SKEIN_KS_PARITY         SKEIN_MK_64(0x1BD11BDA,0xA9FC1A22)

-

-#define SKEIN_CFG_STR_LEN       (4*8)

-

-/* bit field definitions in config block treeInfo word */

-#define SKEIN_CFG_TREE_LEAF_SIZE_POS  ( 0)

-#define SKEIN_CFG_TREE_NODE_SIZE_POS  ( 8)

-#define SKEIN_CFG_TREE_MAX_LEVEL_POS  (16)

-

-#define SKEIN_CFG_TREE_LEAF_SIZE_MSK  (((u64b_t) 0xFF) << SKEIN_CFG_TREE_LEAF_SIZE_POS)

-#define SKEIN_CFG_TREE_NODE_SIZE_MSK  (((u64b_t) 0xFF) << SKEIN_CFG_TREE_NODE_SIZE_POS)

-#define SKEIN_CFG_TREE_MAX_LEVEL_MSK  (((u64b_t) 0xFF) << SKEIN_CFG_TREE_MAX_LEVEL_POS)

-

-#define SKEIN_CFG_TREE_INFO(leaf,node,maxLvl)                   \

-    ( (((u64b_t)(leaf  )) << SKEIN_CFG_TREE_LEAF_SIZE_POS) |    \

-      (((u64b_t)(node  )) << SKEIN_CFG_TREE_NODE_SIZE_POS) |    \

-      (((u64b_t)(maxLvl)) << SKEIN_CFG_TREE_MAX_LEVEL_POS) )

-

-#define SKEIN_CFG_TREE_INFO_SEQUENTIAL SKEIN_CFG_TREE_INFO(0,0,0) /* use as treeInfo in InitExt() call for sequential processing */

-

-/*

-**   Skein macros for getting/setting tweak words, etc.

-**   These are useful for partial input bytes, hash tree init/update, etc.

-**/

-#define Skein_Get_Tweak(ctxPtr,TWK_NUM)         ((ctxPtr)->h.T[TWK_NUM])

-#define Skein_Set_Tweak(ctxPtr,TWK_NUM,tVal)    {(ctxPtr)->h.T[TWK_NUM] = (tVal);}

-

-#define Skein_Get_T0(ctxPtr)    Skein_Get_Tweak(ctxPtr,0)

-#define Skein_Get_T1(ctxPtr)    Skein_Get_Tweak(ctxPtr,1)

-#define Skein_Set_T0(ctxPtr,T0) Skein_Set_Tweak(ctxPtr,0,T0)

-#define Skein_Set_T1(ctxPtr,T1) Skein_Set_Tweak(ctxPtr,1,T1)

-

-/* set both tweak words at once */

-#define Skein_Set_T0_T1(ctxPtr,T0,T1)           \

-    {                                           \

-    Skein_Set_T0(ctxPtr,(T0));                  \

-    Skein_Set_T1(ctxPtr,(T1));                  \

-    }

-

-#define Skein_Set_Type(ctxPtr,BLK_TYPE)         \

-    Skein_Set_T1(ctxPtr,SKEIN_T1_BLK_TYPE_##BLK_TYPE)

-

-/* set up for starting with a new type: h.T[0]=0; h.T[1] = NEW_TYPE; h.bCnt=0; */

-#define Skein_Start_New_Type(ctxPtr,BLK_TYPE)   \

-    { Skein_Set_T0_T1(ctxPtr,0,SKEIN_T1_FLAG_FIRST | SKEIN_T1_BLK_TYPE_##BLK_TYPE); (ctxPtr)->h.bCnt=0; }

-

-#define Skein_Clear_First_Flag(hdr)      { (hdr).T[1] &= ~SKEIN_T1_FLAG_FIRST;       }

-#define Skein_Set_Bit_Pad_Flag(hdr)      { (hdr).T[1] |=  SKEIN_T1_FLAG_BIT_PAD;     }

-

-#define Skein_Set_Tree_Level(hdr,height) { (hdr).T[1] |= SKEIN_T1_TREE_LEVEL(height);}

-

-/*****************************************************************

-** "Internal" Skein definitions for debugging and error checking

-******************************************************************/

-#ifdef  SKEIN_DEBUG             /* examine/display intermediate values? */

-#include "skein_debug.h"

-#else                           /* default is no callouts */

-#define Skein_Show_Block(bits,ctx,X,blkPtr,wPtr,ksEvenPtr,ksOddPtr)

-#define Skein_Show_Round(bits,ctx,r,X)

-#define Skein_Show_R_Ptr(bits,ctx,r,X_ptr)

-#define Skein_Show_Final(bits,ctx,cnt,outPtr)

-#define Skein_Show_Key(bits,ctx,key,keyBytes)

-#endif

-

-#ifndef SKEIN_ERR_CHECK        /* run-time checks (e.g., bad params, uninitialized context)? */

-#define Skein_Assert(x,retCode)/* default: ignore all Asserts, for performance */

-#define Skein_assert(x)

-#elif   defined(SKEIN_ASSERT)

-#include <assert.h>     

-#define Skein_Assert(x,retCode) assert(x) 

-#define Skein_assert(x)         assert(x) 

-#else

-#include <assert.h>     

-#define Skein_Assert(x,retCode) { if (!(x)) return retCode; } /*  caller  error */

-#define Skein_assert(x)         assert(x)                     /* internal error */

-#endif

-

-/*****************************************************************

-** Skein block function constants (shared across Ref and Opt code)

-******************************************************************/

-enum    

-    {   

-        /* Skein_256 round rotation constants */

-    R_256_0_0=14, R_256_0_1=16,

-    R_256_1_0=52, R_256_1_1=57,

-    R_256_2_0=23, R_256_2_1=40,

-    R_256_3_0= 5, R_256_3_1=37,

-    R_256_4_0=25, R_256_4_1=33,

-    R_256_5_0=46, R_256_5_1=12,

-    R_256_6_0=58, R_256_6_1=22,

-    R_256_7_0=32, R_256_7_1=32,

-

-        /* Skein_512 round rotation constants */

-    R_512_0_0=46, R_512_0_1=36, R_512_0_2=19, R_512_0_3=37,

-    R_512_1_0=33, R_512_1_1=27, R_512_1_2=14, R_512_1_3=42,

-    R_512_2_0=17, R_512_2_1=49, R_512_2_2=36, R_512_2_3=39,

-    R_512_3_0=44, R_512_3_1= 9, R_512_3_2=54, R_512_3_3=56,

-    R_512_4_0=39, R_512_4_1=30, R_512_4_2=34, R_512_4_3=24,

-    R_512_5_0=13, R_512_5_1=50, R_512_5_2=10, R_512_5_3=17,

-    R_512_6_0=25, R_512_6_1=29, R_512_6_2=39, R_512_6_3=43,

-    R_512_7_0= 8, R_512_7_1=35, R_512_7_2=56, R_512_7_3=22,

-

-        /* Skein1024 round rotation constants */

-    R1024_0_0=24, R1024_0_1=13, R1024_0_2= 8, R1024_0_3=47, R1024_0_4= 8, R1024_0_5=17, R1024_0_6=22, R1024_0_7=37,

-    R1024_1_0=38, R1024_1_1=19, R1024_1_2=10, R1024_1_3=55, R1024_1_4=49, R1024_1_5=18, R1024_1_6=23, R1024_1_7=52,

-    R1024_2_0=33, R1024_2_1= 4, R1024_2_2=51, R1024_2_3=13, R1024_2_4=34, R1024_2_5=41, R1024_2_6=59, R1024_2_7=17,

-    R1024_3_0= 5, R1024_3_1=20, R1024_3_2=48, R1024_3_3=41, R1024_3_4=47, R1024_3_5=28, R1024_3_6=16, R1024_3_7=25,

-    R1024_4_0=41, R1024_4_1= 9, R1024_4_2=37, R1024_4_3=31, R1024_4_4=12, R1024_4_5=47, R1024_4_6=44, R1024_4_7=30,

-    R1024_5_0=16, R1024_5_1=34, R1024_5_2=56, R1024_5_3=51, R1024_5_4= 4, R1024_5_5=53, R1024_5_6=42, R1024_5_7=41,

-    R1024_6_0=31, R1024_6_1=44, R1024_6_2=47, R1024_6_3=46, R1024_6_4=19, R1024_6_5=42, R1024_6_6=44, R1024_6_7=25,

-    R1024_7_0= 9, R1024_7_1=48, R1024_7_2=35, R1024_7_3=52, R1024_7_4=23, R1024_7_5=31, R1024_7_6=37, R1024_7_7=20

-    };

-

-#ifndef SKEIN_ROUNDS

-#define SKEIN_256_ROUNDS_TOTAL (72)          /* number of rounds for the different block sizes */

-#define SKEIN_512_ROUNDS_TOTAL (72)

-#define SKEIN1024_ROUNDS_TOTAL (80)

-#else                                        /* allow command-line define in range 8*(5..14)   */

-#define SKEIN_256_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/100) + 5) % 10) + 5))

-#define SKEIN_512_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/ 10) + 5) % 10) + 5))

-#define SKEIN1024_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS    ) + 5) % 10) + 5))

-#endif

-

-#ifdef __cplusplus

-}

-#endif

-

-#endif  /* ifndef _SKEIN_H_ */

diff --git a/jni/libzrtp/sources/srtp/crypto/skeinApi.c b/jni/libzrtp/sources/srtp/crypto/skeinApi.c
deleted file mode 100644
index 84f0120..0000000
--- a/jni/libzrtp/sources/srtp/crypto/skeinApi.c
+++ /dev/null
@@ -1,225 +0,0 @@
-/*
-Copyright (c) 2010 Werner Dittmann
-
-Permission is hereby granted, free of charge, to any person
-obtaining a copy of this software and associated documentation
-files (the "Software"), to deal in the Software without
-restriction, including without limitation the rights to use,
-copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of the Software, and to permit persons to whom the
-Software is furnished to do so, subject to the following
-conditions:
-
-The above copyright notice and this permission notice shall be
-included in all copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
-OTHER DEALINGS IN THE SOFTWARE.
-
-*/
-
-#define SKEIN_ERR_CHECK 1
-#include <crypto/skeinApi.h>
-#include <string.h>
-#include <stdio.h>
-
-int skeinCtxPrepare(SkeinCtx_t* ctx, SkeinSize_t size)
-{
-    Skein_Assert(ctx && size, SKEIN_FAIL);
-
-    memset(ctx ,0, sizeof(SkeinCtx_t));
-    ctx->skeinSize = size;
-
-    return SKEIN_SUCCESS;
-}
-
-int skeinInit(SkeinCtx_t* ctx, size_t hashBitLen)
-{
-    int ret = SKEIN_FAIL;
-    size_t Xlen = 0;
-    u64b_t*  X = NULL;
-    uint64_t treeInfo = SKEIN_CFG_TREE_INFO_SEQUENTIAL;
-
-    Skein_Assert(ctx, SKEIN_FAIL);
-    /*
-     * The following two lines rely of the fact that the real Skein contexts are
-     * a union in out context and thus have tha maximum memory available.
-     * The beauty of C :-) .
-     */
-    X = ctx->m.s256.X;
-    Xlen = (size_t)(ctx->skeinSize/8);
-    /*
-     * If size is the same and hash bit length is zero then reuse
-     * the save chaining variables.
-     */
-    switch (ctx->skeinSize) {
-    case Skein256:
-        ret = Skein_256_InitExt(&ctx->m.s256, hashBitLen,
-                                treeInfo, NULL, 0);
-        break;
-    case Skein512:
-        ret = Skein_512_InitExt(&ctx->m.s512, hashBitLen,
-                                treeInfo, NULL, 0);
-        break;
-    case Skein1024:
-        ret = Skein1024_InitExt(&ctx->m.s1024, hashBitLen,
-                                treeInfo, NULL, 0);
-        break;
-    }
-
-    if (ret == SKEIN_SUCCESS) {
-        /* Save chaining variables for this combination of size and hashBitLen */
-        memcpy(ctx->XSave, X, Xlen);
-    }
-    return ret;
-}
-
-int skeinMacInit(SkeinCtx_t* ctx, const uint8_t *key, size_t keyLen,
-                 size_t hashBitLen)
-{
-    int ret = SKEIN_FAIL;
-    u64b_t*  X = NULL;
-    size_t Xlen = 0;
-    uint64_t treeInfo = SKEIN_CFG_TREE_INFO_SEQUENTIAL;
-
-    Skein_Assert(ctx, SKEIN_FAIL);
-
-    X = ctx->m.s256.X;
-    Xlen = (size_t)(ctx->skeinSize/8);
-
-    Skein_Assert(hashBitLen, SKEIN_BAD_HASHLEN);
-
-    switch (ctx->skeinSize) {
-    case Skein256:
-        ret = Skein_256_InitExt(&ctx->m.s256, hashBitLen,
-                                treeInfo,
-                                (const u08b_t*)key, keyLen);
-
-        break;
-    case Skein512:
-        ret = Skein_512_InitExt(&ctx->m.s512, hashBitLen,
-                                treeInfo,
-                                (const u08b_t*)key, keyLen);
-        break;
-    case Skein1024:
-        ret = Skein1024_InitExt(&ctx->m.s1024, hashBitLen,
-                                treeInfo,
-                                (const u08b_t*)key, keyLen);
-
-        break;
-    }
-    if (ret == SKEIN_SUCCESS) {
-        /* Save chaining variables for this combination of key, keyLen, hashBitLen */
-        memcpy(ctx->XSave, X, Xlen);
-    }
-    return ret;
-}
-
-void skeinReset(SkeinCtx_t* ctx)
-{
-    size_t Xlen = 0;
-    u64b_t*  X = NULL;
-
-    /*
-     * The following two lines rely of the fact that the real Skein contexts are
-     * a union in out context and thus have tha maximum memory available.
-     * The beautiy of C :-) .
-     */
-    X = ctx->m.s256.X;
-    Xlen = (size_t)(ctx->skeinSize/8);
-    /*
-     * If size is the same and hash bit length is zero then reuse
-     * the save chaining variables.
-     */
-    /* Restore the chaing variable, reset byte counter */
-    memcpy(X, ctx->XSave, Xlen);
-
-    /* Setup context to process the message */
-    Skein_Start_New_Type(&ctx->m, MSG);
-}
-
-int skeinUpdate(SkeinCtx_t *ctx, const uint8_t *msg,
-                size_t msgByteCnt)
-{
-    int ret = SKEIN_FAIL;
-    Skein_Assert(ctx, SKEIN_FAIL);
-
-    switch (ctx->skeinSize) {
-    case Skein256:
-        ret = Skein_256_Update(&ctx->m.s256, (const u08b_t*)msg, msgByteCnt);
-        break;
-    case Skein512:
-        ret = Skein_512_Update(&ctx->m.s512, (const u08b_t*)msg, msgByteCnt);
-        break;
-    case Skein1024:
-        ret = Skein1024_Update(&ctx->m.s1024, (const u08b_t*)msg, msgByteCnt);
-        break;
-    }
-    return ret;
-
-}
-
-int skeinUpdateBits(SkeinCtx_t *ctx, const uint8_t *msg,
-                    size_t msgBitCnt)
-{
-    /*
-     * I've used the bit pad implementation from skein_test.c (see NIST CD)
-     * and modified it to use the convenience functions and added some pointer
-     * arithmetic.
-     */
-    size_t length;
-    uint8_t mask;
-    uint8_t* up;
-
-    /* only the final Update() call is allowed do partial bytes, else assert an error */
-    Skein_Assert((ctx->m.h.T[1] & SKEIN_T1_FLAG_BIT_PAD) == 0 || msgBitCnt == 0, SKEIN_FAIL);
-
-    /* if number of bits is a multiple of bytes - that's easy */
-    if ((msgBitCnt & 0x7) == 0) {
-        return skeinUpdate(ctx, msg, msgBitCnt >> 3);
-    }
-    skeinUpdate(ctx, msg, (msgBitCnt >> 3) + 1);
-
-    /*
-     * The next line rely on the fact that the real Skein contexts
-     * are a union in our context. After the addition the pointer points to
-     * Skein's real partial block buffer.
-     * If this layout ever changes we have to adapt this as well.
-     */
-    up = (uint8_t*)ctx->m.s256.X + ctx->skeinSize / 8;
-
-    Skein_Set_Bit_Pad_Flag(ctx->m.h);                       /* set tweak flag for the skeinFinal call */
-
-    /* now "pad" the final partial byte the way NIST likes */
-    length = ctx->m.h.bCnt;                                 /* get the bCnt value (same location for all block sizes) */
-    Skein_assert(length != 0);                              /* internal sanity check: there IS a partial byte in the buffer! */
-    mask = (uint8_t) (1u << (7 - (msgBitCnt & 7)));         /* partial byte bit mask */
-    up[length-1]  = (uint8_t)((up[length-1] & (0-mask))|mask);   /* apply bit padding on final byte (in the buffer) */
-
-    return SKEIN_SUCCESS;
-}
-
-int skeinFinal(SkeinCtx_t* ctx, uint8_t* hash)
-{
-    int ret = SKEIN_FAIL;
-    Skein_Assert(ctx, SKEIN_FAIL);
-
-    switch (ctx->skeinSize) {
-    case Skein256:
-        ret = Skein_256_Final(&ctx->m.s256, (u08b_t*)hash);
-        break;
-    case Skein512:
-        ret = Skein_512_Final(&ctx->m.s512, (u08b_t*)hash);
-        break;
-    case Skein1024:
-        ret = Skein1024_Final(&ctx->m.s1024, (u08b_t*)hash);
-        break;
-    }
-    return ret;
-}
diff --git a/jni/libzrtp/sources/srtp/crypto/skeinApi.h b/jni/libzrtp/sources/srtp/crypto/skeinApi.h
deleted file mode 100644
index 2f25073..0000000
--- a/jni/libzrtp/sources/srtp/crypto/skeinApi.h
+++ /dev/null
@@ -1,253 +0,0 @@
-/*
-Copyright (c) 2010 Werner Dittmann
-
-Permission is hereby granted, free of charge, to any person
-obtaining a copy of this software and associated documentation
-files (the "Software"), to deal in the Software without
-restriction, including without limitation the rights to use,
-copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of the Software, and to permit persons to whom the
-Software is furnished to do so, subject to the following
-conditions:
-
-The above copyright notice and this permission notice shall be
-included in all copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
-OTHER DEALINGS IN THE SOFTWARE.
-
-*/
-
-#ifndef SKEINAPI_H
-#define SKEINAPI_H
-
-/**
- * @file skeinApi.h
- * @brief A Skein API and its functions.
- * @{
- *
- * This API and the functions that implement this API simplify the usage
- * of Skein. The design and the way to use the functions follow the openSSL
- * design but at the same time take care of some Skein specific behaviour
- * and possibilities.
- * 
- * The functions enable applications to create a normal Skein hashes and
- * message authentication codes (MAC).
- * 
- * Using these functions is simple and straight forward:
- * 
- * @code
- * 
- * #include <skeinApi.h>
- * 
- * ...
- * SkeinCtx_t ctx;             // a Skein hash or MAC context
- * 
- * // prepare context, here for a Skein with a state size of 512 bits.
- * skeinCtxPrepare(&ctx, Skein512);
- * 
- * // Initialize the context to set the requested hash length in bits
- * // here request a output hash size of 31 bits (Skein supports variable
- * // output sizes even very strange sizes)
- * skeinInit(&ctx, 31);
- * 
- * // Now update Skein with any number of message bits. A function that
- * // takes a number of bytes is also available.
- * skeinUpdateBits(&ctx, message, msgLength);
- * 
- * // Now get the result of the Skein hash. The output buffer must be
- * // large enough to hold the request number of output bits. The application
- * // may now extract the bits.
- * skeinFinal(&ctx, result);
- * ...
- * @endcode
- * 
- * An application may use @c skeinReset to reset a Skein context and use
- * it for creation of another hash with the same Skein state size and output
- * bit length. In this case the API implementation restores some internal
- * internal state data and saves a full Skein initialization round.
- * 
- * To create a MAC the application just uses @c skeinMacInit instead of 
- * @c skeinInit. All other functions calls remain the same.
- * 
- */
-
-#include <crypto/skein.h>
-
-#ifdef _MSC_VER
-typedef signed __int8 int8_t;
-typedef unsigned __int8 uint8_t;
-typedef signed __int16 int16_t;
-typedef unsigned __int16 uint16_t;
-typedef signed __int32 int32_t;
-typedef unsigned __int32 uint32_t;
-typedef signed __int64 int64_t;
-typedef unsigned __int64 uint64_t;
-#else
-#include <stdint.h>
-#endif
-
-#ifdef __cplusplus
-extern "C"
-{
-#endif
-
-    /**
-     * Which Skein size to use
-     */
-    typedef enum SkeinSize {
-        Skein256 = 256,     /*!< Skein with 256 bit state */
-        Skein512 = 512,     /*!< Skein with 512 bit state */
-        Skein1024 = 1024    /*!< Skein with 1024 bit state */
-    } SkeinSize_t;
-
-    /**
-     * Context for Skein.
-     *
-     * This structure was setup with some know-how of the internal
-     * Skein structures, in particular ordering of header and size dependent
-     * variables. If Skein implementation changes this, then adapt these
-     * structures as well.
-     */
-    typedef struct SkeinCtx {
-        u64b_t skeinSize;
-        u64b_t  XSave[SKEIN_MAX_STATE_WORDS];   /* save area for state variables */
-        union {
-            Skein_Ctxt_Hdr_t h;
-            Skein_256_Ctxt_t s256;
-            Skein_512_Ctxt_t s512;
-            Skein1024_Ctxt_t s1024;
-        } m;
-    } SkeinCtx_t;
-
-    /**
-     * Prepare a Skein context.
-     * 
-     * An application must call this function before it can use the Skein
-     * context. The functions clears memory and initializes size dependent
-     * variables.
-     *
-     * @param ctx
-     *     Pointer to a Skein context.
-     * @param size
-     *     Which Skein size to use.
-     * @return
-     *     SKEIN_SUCESS of SKEIN_FAIL
-     */
-    int skeinCtxPrepare(SkeinCtx_t* ctx, SkeinSize_t size);
-
-    /**
-     * Initialize a Skein context.
-     *
-     * Initializes the context with this data and saves the resulting Skein 
-     * state variables for further use.
-     *
-     * @param ctx
-     *     Pointer to a Skein context.
-     * @param hashBitLen
-     *     Number of MAC hash bits to compute or zero
-     * @return
-     *     SKEIN_SUCESS of SKEIN_FAIL
-     * @see skeinReset
-     */
-    int skeinInit(SkeinCtx_t* ctx, size_t hashBitLen);
-
-    /**
-     * Resets a Skein context for furter use.
-     * 
-     * Restores the saved chaining variables to reset the Skein context. 
-     * Thus applications can reuse the same setup to  process several 
-     * messages. This saves a complete Skein initialization cycle.
-     * 
-     * @param ctx
-     *     Pointer to a pre-initialized Skein MAC context
-     */
-    void skeinReset(SkeinCtx_t* ctx);
-    
-    /**
-     * Initializes or reuses a Skein context for MAC usage.
-     * 
-     * Initializes the context with this data and saves the resulting Skein 
-     * state variables for further use.
-     *
-     * Applications call the normal Skein functions to update the MAC and
-     * get the final result.
-     *
-     * @param ctx
-     *     Pointer to an empty or preinitialized Skein MAC context
-     * @param key
-     *     Pointer to key bytes or NULL
-     * @param keyLen
-     *     Length of the key in bytes or zero
-     * @param hashBitLen
-     *     Number of MAC hash bits to compute or zero
-     * @return
-     *     SKEIN_SUCESS of SKEIN_FAIL
-     */
-    int skeinMacInit(SkeinCtx_t* ctx, const uint8_t *key, size_t keyLen,
-                     size_t hashBitLen);
-
-    /**
-     * Update Skein with the next part of the message.
-     *
-     * @param ctx
-     *     Pointer to initialized Skein context
-     * @param msg
-     *     Pointer to the message.
-     * @param msgByteCnt
-     *     Length of the message in @b bytes
-     * @return
-     *     Success or error code.
-     */
-    int skeinUpdate(SkeinCtx_t *ctx, const uint8_t *msg,
-                    size_t msgByteCnt);
-
-    /**
-     * Update the hash with a message bit string.
-     *
-     * Skein can handle data not only as bytes but also as bit strings of
-     * arbitrary length (up to its maximum design size).
-     *
-     * @param ctx
-     *     Pointer to initialized Skein context
-     * @param msg
-     *     Pointer to the message.
-     * @param msgBitCnt
-     *     Length of the message in @b bits.
-     */
-    int skeinUpdateBits(SkeinCtx_t *ctx, const uint8_t *msg,
-                        size_t msgBitCnt);
-
-    /**
-     * Finalize Skein and return the hash.
-     * 
-     * Before an application can reuse a Skein setup the application must
-     * reinitialize the Skein context.See the approriate initialization 
-     * methods how to achieve this.
-     *
-     * @param ctx
-     *     Pointer to initialized Skein context
-     * @param hash
-     *     Pointer to buffer that receives the hash. The buffer must be large
-     *     enough to store @c hashBitLen bits.
-     * @return
-     *     Success or error code.
-     * @see skeinInit
-     * @see skeinMacInit
-     */
-    int skeinFinal(SkeinCtx_t* ctx, uint8_t* hash);
-
-#ifdef __cplusplus
-}
-#endif
-
-/**
- * @}
- */
-#endif
diff --git a/jni/libzrtp/sources/srtp/crypto/skein_block.c b/jni/libzrtp/sources/srtp/crypto/skein_block.c
deleted file mode 100644
index fbf37e7..0000000
--- a/jni/libzrtp/sources/srtp/crypto/skein_block.c
+++ /dev/null
@@ -1,689 +0,0 @@
-/***********************************************************************

-**

-** Implementation of the Skein block functions.

-**

-** Source code author: Doug Whiting, 2008.

-**

-** This algorithm and source code is released to the public domain.

-**

-** Compile-time switches:

-**

-**  SKEIN_USE_ASM  -- set bits (256/512/1024) to select which

-**                    versions use ASM code for block processing

-**                    [default: use C for all block sizes]

-**

-************************************************************************/

-

-#include <string.h>

-#include <crypto/skein.h>

-

-#ifndef SKEIN_USE_ASM

-#define SKEIN_USE_ASM   (0)                     /* default is all C code (no ASM) */

-#endif

-

-#ifndef SKEIN_LOOP

-#define SKEIN_LOOP 001                          /* default: unroll 256 and 512, but not 1024 */

-#endif

-

-#define BLK_BITS        (WCNT*64)               /* some useful definitions for code here */

-#define KW_TWK_BASE     (0)

-#define KW_KEY_BASE     (3)

-#define ks              (kw + KW_KEY_BASE)                

-#define ts              (kw + KW_TWK_BASE)

-

-#ifdef SKEIN_DEBUG

-#define DebugSaveTweak(ctx) { ctx->h.T[0] = ts[0]; ctx->h.T[1] = ts[1]; }

-#else

-#define DebugSaveTweak(ctx)

-#endif

-

-/*****************************  Skein_256 ******************************/

-#if !(SKEIN_USE_ASM & 256)

-void Skein_256_Process_Block(Skein_256_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)

-    { /* do it in C */

-    enum

-        {

-        WCNT = SKEIN_256_STATE_WORDS

-        };

-#undef  RCNT

-#define RCNT  (SKEIN_256_ROUNDS_TOTAL/8)

-

-#ifdef  SKEIN_LOOP                              /* configure how much to unroll the loop */

-#define SKEIN_UNROLL_256 (((SKEIN_LOOP)/100)%10)

-#else

-#define SKEIN_UNROLL_256 (0)

-#endif

-

-#if SKEIN_UNROLL_256

-#if (RCNT % SKEIN_UNROLL_256)

-#error "Invalid SKEIN_UNROLL_256"               /* sanity check on unroll count */

-#endif

-    size_t  r;

-    u64b_t  kw[WCNT+4+RCNT*2];                  /* key schedule words : chaining vars + tweak + "rotation"*/

-#else

-    u64b_t  kw[WCNT+4];                         /* key schedule words : chaining vars + tweak */

-#endif

-    u64b_t  X0,X1,X2,X3;                        /* local copy of context vars, for speed */

-    u64b_t  w [WCNT];                           /* local copy of input block */

-#ifdef SKEIN_DEBUG

-    const u64b_t *Xptr[4];                      /* use for debugging (help compiler put Xn in registers) */

-    Xptr[0] = &X0;  Xptr[1] = &X1;  Xptr[2] = &X2;  Xptr[3] = &X3;

-#endif

-    Skein_assert(blkCnt != 0);                  /* never call with blkCnt == 0! */

-    ts[0] = ctx->h.T[0];

-    ts[1] = ctx->h.T[1];

-    do  {

-        /* this implementation only supports 2**64 input bytes (no carry out here) */

-        ts[0] += byteCntAdd;                    /* update processed length */

-

-        /* precompute the key schedule for this block */

-        ks[0] = ctx->X[0];     

-        ks[1] = ctx->X[1];

-        ks[2] = ctx->X[2];

-        ks[3] = ctx->X[3];

-        ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;

-

-        ts[2] = ts[0] ^ ts[1];

-

-        Skein_Get64_LSB_First(w,blkPtr,WCNT);   /* get input block in little-endian format */

-        DebugSaveTweak(ctx);

-        Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);

-

-        X0 = w[0] + ks[0];                      /* do the first full key injection */

-        X1 = w[1] + ks[1] + ts[0];

-        X2 = w[2] + ks[2] + ts[1];

-        X3 = w[3] + ks[3];

-

-        Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);    /* show starting state values */

-

-        blkPtr += SKEIN_256_BLOCK_BYTES;

-

-        /* run the rounds */

-

-#define Round256(p0,p1,p2,p3,ROT,rNum)                              \

-    X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \

-    X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \

-

-#if SKEIN_UNROLL_256 == 0                       

-#define R256(p0,p1,p2,p3,ROT,rNum)           /* fully unrolled */   \

-    Round256(p0,p1,p2,p3,ROT,rNum)                                  \

-    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);

-

-#define I256(R)                                                     \

-    X0   += ks[((R)+1) % 5];    /* inject the key schedule value */ \

-    X1   += ks[((R)+2) % 5] + ts[((R)+1) % 3];                      \

-    X2   += ks[((R)+3) % 5] + ts[((R)+2) % 3];                      \

-    X3   += ks[((R)+4) % 5] +     (R)+1;                            \

-    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);

-#else                                       /* looping version */

-#define R256(p0,p1,p2,p3,ROT,rNum)                                  \

-    Round256(p0,p1,p2,p3,ROT,rNum)                                  \

-    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);

-

-#define I256(R)                                                     \

-    X0   += ks[r+(R)+0];        /* inject the key schedule value */ \

-    X1   += ks[r+(R)+1] + ts[r+(R)+0];                              \

-    X2   += ks[r+(R)+2] + ts[r+(R)+1];                              \

-    X3   += ks[r+(R)+3] +    r+(R)   ;                              \

-    ks[r + (R)+4    ]   = ks[r+(R)-1];     /* rotate key schedule */\

-    ts[r + (R)+2    ]   = ts[r+(R)-1];                              \

-    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);

-

-    for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_256)  /* loop thru it */

-#endif  

-        {    

-#define R256_8_rounds(R)                  \

-        R256(0,1,2,3,R_256_0,8*(R) + 1);  \

-        R256(0,3,2,1,R_256_1,8*(R) + 2);  \

-        R256(0,1,2,3,R_256_2,8*(R) + 3);  \

-        R256(0,3,2,1,R_256_3,8*(R) + 4);  \

-        I256(2*(R));                      \

-        R256(0,1,2,3,R_256_4,8*(R) + 5);  \

-        R256(0,3,2,1,R_256_5,8*(R) + 6);  \

-        R256(0,1,2,3,R_256_6,8*(R) + 7);  \

-        R256(0,3,2,1,R_256_7,8*(R) + 8);  \

-        I256(2*(R)+1);

-

-        R256_8_rounds( 0);

-

-#define R256_Unroll_R(NN) ((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_256 > (NN)))

-

-  #if   R256_Unroll_R( 1)

-        R256_8_rounds( 1);

-  #endif

-  #if   R256_Unroll_R( 2)

-        R256_8_rounds( 2);

-  #endif

-  #if   R256_Unroll_R( 3)

-        R256_8_rounds( 3);

-  #endif

-  #if   R256_Unroll_R( 4)

-        R256_8_rounds( 4);

-  #endif

-  #if   R256_Unroll_R( 5)

-        R256_8_rounds( 5);

-  #endif

-  #if   R256_Unroll_R( 6)

-        R256_8_rounds( 6);

-  #endif

-  #if   R256_Unroll_R( 7)

-        R256_8_rounds( 7);

-  #endif

-  #if   R256_Unroll_R( 8)

-        R256_8_rounds( 8);

-  #endif

-  #if   R256_Unroll_R( 9)

-        R256_8_rounds( 9);

-  #endif

-  #if   R256_Unroll_R(10)

-        R256_8_rounds(10);

-  #endif

-  #if   R256_Unroll_R(11)

-        R256_8_rounds(11);

-  #endif

-  #if   R256_Unroll_R(12)

-        R256_8_rounds(12);

-  #endif

-  #if   R256_Unroll_R(13)

-        R256_8_rounds(13);

-  #endif

-  #if   R256_Unroll_R(14)

-        R256_8_rounds(14);

-  #endif

-  #if  (SKEIN_UNROLL_256 > 14)

-#error  "need more unrolling in Skein_256_Process_Block"

-  #endif

-        }

-        /* do the final "feedforward" xor, update context chaining vars */

-        ctx->X[0] = X0 ^ w[0];

-        ctx->X[1] = X1 ^ w[1];

-        ctx->X[2] = X2 ^ w[2];

-        ctx->X[3] = X3 ^ w[3];

-

-        Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);

-

-        ts[1] &= ~SKEIN_T1_FLAG_FIRST;

-        }

-    while (--blkCnt);

-    ctx->h.T[0] = ts[0];

-    ctx->h.T[1] = ts[1];

-    }

-

-#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)

-size_t Skein_256_Process_Block_CodeSize(void)

-    {

-    return ((u08b_t *) Skein_256_Process_Block_CodeSize) -

-           ((u08b_t *) Skein_256_Process_Block);

-    }

-uint_t Skein_256_Unroll_Cnt(void)

-    {

-    return SKEIN_UNROLL_256;

-    }

-#endif

-#endif

-

-/*****************************  Skein_512 ******************************/

-#if !(SKEIN_USE_ASM & 512)

-void Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)

-    { /* do it in C */

-    enum

-        {

-        WCNT = SKEIN_512_STATE_WORDS

-        };

-#undef  RCNT

-#define RCNT  (SKEIN_512_ROUNDS_TOTAL/8)

-

-#ifdef  SKEIN_LOOP                              /* configure how much to unroll the loop */

-#define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)

-#else

-#define SKEIN_UNROLL_512 (0)

-#endif

-

-#if SKEIN_UNROLL_512

-#if (RCNT % SKEIN_UNROLL_512)

-#error "Invalid SKEIN_UNROLL_512"               /* sanity check on unroll count */

-#endif

-    size_t  r;

-    u64b_t  kw[WCNT+4+RCNT*2];                  /* key schedule words : chaining vars + tweak + "rotation"*/

-#else

-    u64b_t  kw[WCNT+4];                         /* key schedule words : chaining vars + tweak */

-#endif

-    u64b_t  X0,X1,X2,X3,X4,X5,X6,X7;            /* local copy of vars, for speed */

-    u64b_t  w [WCNT];                           /* local copy of input block */

-#ifdef SKEIN_DEBUG

-    const u64b_t *Xptr[8];                      /* use for debugging (help compiler put Xn in registers) */

-    Xptr[0] = &X0;  Xptr[1] = &X1;  Xptr[2] = &X2;  Xptr[3] = &X3;

-    Xptr[4] = &X4;  Xptr[5] = &X5;  Xptr[6] = &X6;  Xptr[7] = &X7;

-#endif

-

-    Skein_assert(blkCnt != 0);                  /* never call with blkCnt == 0! */

-    ts[0] = ctx->h.T[0];

-    ts[1] = ctx->h.T[1];

-    do  {

-        /* this implementation only supports 2**64 input bytes (no carry out here) */

-        ts[0] += byteCntAdd;                    /* update processed length */

-

-        /* precompute the key schedule for this block */

-        ks[0] = ctx->X[0];

-        ks[1] = ctx->X[1];

-        ks[2] = ctx->X[2];

-        ks[3] = ctx->X[3];

-        ks[4] = ctx->X[4];

-        ks[5] = ctx->X[5];

-        ks[6] = ctx->X[6];

-        ks[7] = ctx->X[7];

-        ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ 

-                ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;

-

-        ts[2] = ts[0] ^ ts[1];

-

-        Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */

-        DebugSaveTweak(ctx);

-        Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);

-

-        X0   = w[0] + ks[0];                    /* do the first full key injection */

-        X1   = w[1] + ks[1];

-        X2   = w[2] + ks[2];

-        X3   = w[3] + ks[3];

-        X4   = w[4] + ks[4];

-        X5   = w[5] + ks[5] + ts[0];

-        X6   = w[6] + ks[6] + ts[1];

-        X7   = w[7] + ks[7];

-

-        blkPtr += SKEIN_512_BLOCK_BYTES;

-

-        Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);

-        /* run the rounds */

-#define Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum)                  \

-    X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \

-    X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \

-    X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4; \

-    X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6; \

-

-#if SKEIN_UNROLL_512 == 0                       

-#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum)      /* unrolled */  \

-    Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum)                      \

-    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);

-

-#define I512(R)                                                     \

-    X0   += ks[((R)+1) % 9];   /* inject the key schedule value */  \

-    X1   += ks[((R)+2) % 9];                                        \

-    X2   += ks[((R)+3) % 9];                                        \

-    X3   += ks[((R)+4) % 9];                                        \

-    X4   += ks[((R)+5) % 9];                                        \

-    X5   += ks[((R)+6) % 9] + ts[((R)+1) % 3];                      \

-    X6   += ks[((R)+7) % 9] + ts[((R)+2) % 3];                      \

-    X7   += ks[((R)+8) % 9] +     (R)+1;                            \

-    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);

-#else                                       /* looping version */

-#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum)                      \

-    Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum)                      \

-    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);

-

-#define I512(R)                                                     \

-    X0   += ks[r+(R)+0];        /* inject the key schedule value */ \

-    X1   += ks[r+(R)+1];                                            \

-    X2   += ks[r+(R)+2];                                            \

-    X3   += ks[r+(R)+3];                                            \

-    X4   += ks[r+(R)+4];                                            \

-    X5   += ks[r+(R)+5] + ts[r+(R)+0];                              \

-    X6   += ks[r+(R)+6] + ts[r+(R)+1];                              \

-    X7   += ks[r+(R)+7] +    r+(R)   ;                              \

-    ks[r +       (R)+8] = ks[r+(R)-1];  /* rotate key schedule */   \

-    ts[r +       (R)+2] = ts[r+(R)-1];                              \

-    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);

-

-    for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_512)   /* loop thru it */

-#endif                         /* end of looped code definitions */

-        {

-#define R512_8_rounds(R)  /* do 8 full rounds */  \

-        R512(0,1,2,3,4,5,6,7,R_512_0,8*(R)+ 1);   \

-        R512(2,1,4,7,6,5,0,3,R_512_1,8*(R)+ 2);   \

-        R512(4,1,6,3,0,5,2,7,R_512_2,8*(R)+ 3);   \

-        R512(6,1,0,7,2,5,4,3,R_512_3,8*(R)+ 4);   \

-        I512(2*(R));                              \

-        R512(0,1,2,3,4,5,6,7,R_512_4,8*(R)+ 5);   \

-        R512(2,1,4,7,6,5,0,3,R_512_5,8*(R)+ 6);   \

-        R512(4,1,6,3,0,5,2,7,R_512_6,8*(R)+ 7);   \

-        R512(6,1,0,7,2,5,4,3,R_512_7,8*(R)+ 8);   \

-        I512(2*(R)+1);        /* and key injection */

-

-        R512_8_rounds( 0);

-

-#define R512_Unroll_R(NN) ((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_512 > (NN)))

-

-  #if   R512_Unroll_R( 1)

-        R512_8_rounds( 1);

-  #endif

-  #if   R512_Unroll_R( 2)

-        R512_8_rounds( 2);

-  #endif

-  #if   R512_Unroll_R( 3)

-        R512_8_rounds( 3);

-  #endif

-  #if   R512_Unroll_R( 4)

-        R512_8_rounds( 4);

-  #endif

-  #if   R512_Unroll_R( 5)

-        R512_8_rounds( 5);

-  #endif

-  #if   R512_Unroll_R( 6)

-        R512_8_rounds( 6);

-  #endif

-  #if   R512_Unroll_R( 7)

-        R512_8_rounds( 7);

-  #endif

-  #if   R512_Unroll_R( 8)

-        R512_8_rounds( 8);

-  #endif

-  #if   R512_Unroll_R( 9)

-        R512_8_rounds( 9);

-  #endif

-  #if   R512_Unroll_R(10)

-        R512_8_rounds(10);

-  #endif

-  #if   R512_Unroll_R(11)

-        R512_8_rounds(11);

-  #endif

-  #if   R512_Unroll_R(12)

-        R512_8_rounds(12);

-  #endif

-  #if   R512_Unroll_R(13)

-        R512_8_rounds(13);

-  #endif

-  #if   R512_Unroll_R(14)

-        R512_8_rounds(14);

-  #endif

-  #if  (SKEIN_UNROLL_512 > 14)

-#error  "need more unrolling in Skein_512_Process_Block"

-  #endif

-        }

-

-        /* do the final "feedforward" xor, update context chaining vars */

-        ctx->X[0] = X0 ^ w[0];

-        ctx->X[1] = X1 ^ w[1];

-        ctx->X[2] = X2 ^ w[2];

-        ctx->X[3] = X3 ^ w[3];

-        ctx->X[4] = X4 ^ w[4];

-        ctx->X[5] = X5 ^ w[5];

-        ctx->X[6] = X6 ^ w[6];

-        ctx->X[7] = X7 ^ w[7];

-        Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);

-

-        ts[1] &= ~SKEIN_T1_FLAG_FIRST;

-        }

-    while (--blkCnt);

-    ctx->h.T[0] = ts[0];

-    ctx->h.T[1] = ts[1];

-    }

-

-#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)

-size_t Skein_512_Process_Block_CodeSize(void)

-    {

-    return ((u08b_t *) Skein_512_Process_Block_CodeSize) -

-           ((u08b_t *) Skein_512_Process_Block);

-    }

-uint_t Skein_512_Unroll_Cnt(void)

-    {

-    return SKEIN_UNROLL_512;

-    }

-#endif

-#endif

-

-/*****************************  Skein1024 ******************************/

-#if !(SKEIN_USE_ASM & 1024)

-void Skein1024_Process_Block(Skein1024_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)

-    { /* do it in C, always looping (unrolled is bigger AND slower!) */

-    enum

-        {

-        WCNT = SKEIN1024_STATE_WORDS

-        };

-#undef  RCNT

-#define RCNT  (SKEIN1024_ROUNDS_TOTAL/8)

-

-#ifdef  SKEIN_LOOP                              /* configure how much to unroll the loop */

-#define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)

-#else

-#define SKEIN_UNROLL_1024 (0)

-#endif

-

-#if (SKEIN_UNROLL_1024 != 0)

-#if (RCNT % SKEIN_UNROLL_1024)

-#error "Invalid SKEIN_UNROLL_1024"              /* sanity check on unroll count */

-#endif

-    size_t  r;

-    u64b_t  kw[WCNT+4+RCNT*2];                  /* key schedule words : chaining vars + tweak + "rotation"*/

-#else

-    u64b_t  kw[WCNT+4];                         /* key schedule words : chaining vars + tweak */

-#endif

-

-    u64b_t  X00,X01,X02,X03,X04,X05,X06,X07,    /* local copy of vars, for speed */

-            X08,X09,X10,X11,X12,X13,X14,X15;

-    u64b_t  w [WCNT];                           /* local copy of input block */

-#ifdef SKEIN_DEBUG

-    const u64b_t *Xptr[16];                     /* use for debugging (help compiler put Xn in registers) */

-    Xptr[ 0] = &X00;  Xptr[ 1] = &X01;  Xptr[ 2] = &X02;  Xptr[ 3] = &X03;

-    Xptr[ 4] = &X04;  Xptr[ 5] = &X05;  Xptr[ 6] = &X06;  Xptr[ 7] = &X07;

-    Xptr[ 8] = &X08;  Xptr[ 9] = &X09;  Xptr[10] = &X10;  Xptr[11] = &X11;

-    Xptr[12] = &X12;  Xptr[13] = &X13;  Xptr[14] = &X14;  Xptr[15] = &X15;

-#endif

-

-    Skein_assert(blkCnt != 0);                  /* never call with blkCnt == 0! */

-    ts[0] = ctx->h.T[0];

-    ts[1] = ctx->h.T[1];

-    do  {

-        /* this implementation only supports 2**64 input bytes (no carry out here) */

-        ts[0] += byteCntAdd;                    /* update processed length */

-

-        /* precompute the key schedule for this block */

-        ks[ 0] = ctx->X[ 0];

-        ks[ 1] = ctx->X[ 1];

-        ks[ 2] = ctx->X[ 2];

-        ks[ 3] = ctx->X[ 3];

-        ks[ 4] = ctx->X[ 4];

-        ks[ 5] = ctx->X[ 5];

-        ks[ 6] = ctx->X[ 6];

-        ks[ 7] = ctx->X[ 7];

-        ks[ 8] = ctx->X[ 8];

-        ks[ 9] = ctx->X[ 9];

-        ks[10] = ctx->X[10];

-        ks[11] = ctx->X[11];

-        ks[12] = ctx->X[12];

-        ks[13] = ctx->X[13];

-        ks[14] = ctx->X[14];

-        ks[15] = ctx->X[15];

-        ks[16] = ks[ 0] ^ ks[ 1] ^ ks[ 2] ^ ks[ 3] ^

-                 ks[ 4] ^ ks[ 5] ^ ks[ 6] ^ ks[ 7] ^

-                 ks[ 8] ^ ks[ 9] ^ ks[10] ^ ks[11] ^

-                 ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;

-

-        ts[2]  = ts[0] ^ ts[1];

-

-        Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */

-        DebugSaveTweak(ctx);

-        Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);

-

-        X00    = w[ 0] + ks[ 0];                 /* do the first full key injection */

-        X01    = w[ 1] + ks[ 1];

-        X02    = w[ 2] + ks[ 2];

-        X03    = w[ 3] + ks[ 3];

-        X04    = w[ 4] + ks[ 4];

-        X05    = w[ 5] + ks[ 5];

-        X06    = w[ 6] + ks[ 6];

-        X07    = w[ 7] + ks[ 7];

-        X08    = w[ 8] + ks[ 8];

-        X09    = w[ 9] + ks[ 9];

-        X10    = w[10] + ks[10];

-        X11    = w[11] + ks[11];

-        X12    = w[12] + ks[12];

-        X13    = w[13] + ks[13] + ts[0];

-        X14    = w[14] + ks[14] + ts[1];

-        X15    = w[15] + ks[15];

-

-        Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);

-

-#define Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rNum) \

-    X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0;   \

-    X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2;   \

-    X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4;   \

-    X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6;   \

-    X##p8 += X##p9; X##p9 = RotL_64(X##p9,ROT##_4); X##p9 ^= X##p8;   \

-    X##pA += X##pB; X##pB = RotL_64(X##pB,ROT##_5); X##pB ^= X##pA;   \

-    X##pC += X##pD; X##pD = RotL_64(X##pD,ROT##_6); X##pD ^= X##pC;   \

-    X##pE += X##pF; X##pF = RotL_64(X##pF,ROT##_7); X##pF ^= X##pE;   \

-

-#if SKEIN_UNROLL_1024 == 0                      

-#define R1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \

-    Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \

-    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rn,Xptr);

-

-#define I1024(R)                                                      \

-    X00   += ks[((R)+ 1) % 17]; /* inject the key schedule value */   \

-    X01   += ks[((R)+ 2) % 17];                                       \

-    X02   += ks[((R)+ 3) % 17];                                       \

-    X03   += ks[((R)+ 4) % 17];                                       \

-    X04   += ks[((R)+ 5) % 17];                                       \

-    X05   += ks[((R)+ 6) % 17];                                       \

-    X06   += ks[((R)+ 7) % 17];                                       \

-    X07   += ks[((R)+ 8) % 17];                                       \

-    X08   += ks[((R)+ 9) % 17];                                       \

-    X09   += ks[((R)+10) % 17];                                       \

-    X10   += ks[((R)+11) % 17];                                       \

-    X11   += ks[((R)+12) % 17];                                       \

-    X12   += ks[((R)+13) % 17];                                       \

-    X13   += ks[((R)+14) % 17] + ts[((R)+1) % 3];                     \

-    X14   += ks[((R)+15) % 17] + ts[((R)+2) % 3];                     \

-    X15   += ks[((R)+16) % 17] +     (R)+1;                           \

-    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr); 

-#else                                       /* looping version */

-#define R1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \

-    Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \

-    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rn,Xptr);

-

-#define I1024(R)                                                      \

-    X00   += ks[r+(R)+ 0];    /* inject the key schedule value */     \

-    X01   += ks[r+(R)+ 1];                                            \

-    X02   += ks[r+(R)+ 2];                                            \

-    X03   += ks[r+(R)+ 3];                                            \

-    X04   += ks[r+(R)+ 4];                                            \

-    X05   += ks[r+(R)+ 5];                                            \

-    X06   += ks[r+(R)+ 6];                                            \

-    X07   += ks[r+(R)+ 7];                                            \

-    X08   += ks[r+(R)+ 8];                                            \

-    X09   += ks[r+(R)+ 9];                                            \

-    X10   += ks[r+(R)+10];                                            \

-    X11   += ks[r+(R)+11];                                            \

-    X12   += ks[r+(R)+12];                                            \

-    X13   += ks[r+(R)+13] + ts[r+(R)+0];                              \

-    X14   += ks[r+(R)+14] + ts[r+(R)+1];                              \

-    X15   += ks[r+(R)+15] +    r+(R)   ;                              \

-    ks[r  +       (R)+16] = ks[r+(R)-1];  /* rotate key schedule */   \

-    ts[r  +       (R)+ 2] = ts[r+(R)-1];                              \

-    Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);

-

-    for (r=1;r <= 2*RCNT;r+=2*SKEIN_UNROLL_1024)    /* loop thru it */

-#endif  

-        {

-#define R1024_8_rounds(R)    /* do 8 full rounds */                               \

-        R1024(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,R1024_0,8*(R) + 1); \

-        R1024(00,09,02,13,06,11,04,15,10,07,12,03,14,05,08,01,R1024_1,8*(R) + 2); \

-        R1024(00,07,02,05,04,03,06,01,12,15,14,13,08,11,10,09,R1024_2,8*(R) + 3); \

-        R1024(00,15,02,11,06,13,04,09,14,01,08,05,10,03,12,07,R1024_3,8*(R) + 4); \

-        I1024(2*(R));                                                             \

-        R1024(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,R1024_4,8*(R) + 5); \

-        R1024(00,09,02,13,06,11,04,15,10,07,12,03,14,05,08,01,R1024_5,8*(R) + 6); \

-        R1024(00,07,02,05,04,03,06,01,12,15,14,13,08,11,10,09,R1024_6,8*(R) + 7); \

-        R1024(00,15,02,11,06,13,04,09,14,01,08,05,10,03,12,07,R1024_7,8*(R) + 8); \

-        I1024(2*(R)+1);

-

-        R1024_8_rounds( 0);

-

-#define R1024_Unroll_R(NN) ((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_1024 > (NN)))

-

-  #if   R1024_Unroll_R( 1)

-        R1024_8_rounds( 1);

-  #endif

-  #if   R1024_Unroll_R( 2)

-        R1024_8_rounds( 2);

-  #endif

-  #if   R1024_Unroll_R( 3)

-        R1024_8_rounds( 3);

-  #endif

-  #if   R1024_Unroll_R( 4)

-        R1024_8_rounds( 4);

-  #endif

-  #if   R1024_Unroll_R( 5)

-        R1024_8_rounds( 5);

-  #endif

-  #if   R1024_Unroll_R( 6)

-        R1024_8_rounds( 6);

-  #endif

-  #if   R1024_Unroll_R( 7)

-        R1024_8_rounds( 7);

-  #endif

-  #if   R1024_Unroll_R( 8)

-        R1024_8_rounds( 8);

-  #endif

-  #if   R1024_Unroll_R( 9)

-        R1024_8_rounds( 9);

-  #endif

-  #if   R1024_Unroll_R(10)

-        R1024_8_rounds(10);

-  #endif

-  #if   R1024_Unroll_R(11)

-        R1024_8_rounds(11);

-  #endif

-  #if   R1024_Unroll_R(12)

-        R1024_8_rounds(12);

-  #endif

-  #if   R1024_Unroll_R(13)

-        R1024_8_rounds(13);

-  #endif

-  #if   R1024_Unroll_R(14)

-        R1024_8_rounds(14);

-  #endif

-  #if  (SKEIN_UNROLL_1024 > 14)

-#error  "need more unrolling in Skein_1024_Process_Block"

-  #endif

-        }

-        /* do the final "feedforward" xor, update context chaining vars */

-

-        ctx->X[ 0] = X00 ^ w[ 0];

-        ctx->X[ 1] = X01 ^ w[ 1];

-        ctx->X[ 2] = X02 ^ w[ 2];

-        ctx->X[ 3] = X03 ^ w[ 3];

-        ctx->X[ 4] = X04 ^ w[ 4];

-        ctx->X[ 5] = X05 ^ w[ 5];

-        ctx->X[ 6] = X06 ^ w[ 6];

-        ctx->X[ 7] = X07 ^ w[ 7];

-        ctx->X[ 8] = X08 ^ w[ 8];

-        ctx->X[ 9] = X09 ^ w[ 9];

-        ctx->X[10] = X10 ^ w[10];

-        ctx->X[11] = X11 ^ w[11];

-        ctx->X[12] = X12 ^ w[12];

-        ctx->X[13] = X13 ^ w[13];

-        ctx->X[14] = X14 ^ w[14];

-        ctx->X[15] = X15 ^ w[15];

-

-        Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);

-        

-        ts[1] &= ~SKEIN_T1_FLAG_FIRST;

-        blkPtr += SKEIN1024_BLOCK_BYTES;

-        }

-    while (--blkCnt);

-    ctx->h.T[0] = ts[0];

-    ctx->h.T[1] = ts[1];

-    }

-

-#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)

-size_t Skein1024_Process_Block_CodeSize(void)

-    {

-    return ((u08b_t *) Skein1024_Process_Block_CodeSize) -

-           ((u08b_t *) Skein1024_Process_Block);

-    }

-uint_t Skein1024_Unroll_Cnt(void)

-    {

-    return SKEIN_UNROLL_1024;

-    }

-#endif

-#endif

diff --git a/jni/libzrtp/sources/srtp/crypto/skein_iv.h b/jni/libzrtp/sources/srtp/crypto/skein_iv.h
deleted file mode 100644
index 0c62fac..0000000
--- a/jni/libzrtp/sources/srtp/crypto/skein_iv.h
+++ /dev/null
@@ -1,199 +0,0 @@
-#ifndef _SKEIN_IV_H_

-#define _SKEIN_IV_H_

-

-#include <crypto/skein.h>    /* get Skein macros and types */

-

-/*

-***************** Pre-computed Skein IVs *******************

-**

-** NOTE: these values are not "magic" constants, but

-** are generated using the Threefish block function.

-** They are pre-computed here only for speed; i.e., to

-** avoid the need for a Threefish call during Init().

-**

-** The IV for any fixed hash length may be pre-computed.

-** Only the most common values are included here.

-**

-************************************************************

-**/

-

-#define MK_64 SKEIN_MK_64

-

-/* blkSize =  256 bits. hashSize =  128 bits */

-const u64b_t SKEIN_256_IV_128[] =

-    {

-    MK_64(0xE1111906,0x964D7260),

-    MK_64(0x883DAAA7,0x7C8D811C),

-    MK_64(0x10080DF4,0x91960F7A),

-    MK_64(0xCCF7DDE5,0xB45BC1C2)

-    };

-

-/* blkSize =  256 bits. hashSize =  160 bits */

-const u64b_t SKEIN_256_IV_160[] =

-    {

-    MK_64(0x14202314,0x72825E98),

-    MK_64(0x2AC4E9A2,0x5A77E590),

-    MK_64(0xD47A5856,0x8838D63E),

-    MK_64(0x2DD2E496,0x8586AB7D)

-    };

-

-/* blkSize =  256 bits. hashSize =  224 bits */

-const u64b_t SKEIN_256_IV_224[] =

-    {

-    MK_64(0xC6098A8C,0x9AE5EA0B),

-    MK_64(0x876D5686,0x08C5191C),

-    MK_64(0x99CB88D7,0xD7F53884),

-    MK_64(0x384BDDB1,0xAEDDB5DE)

-    };

-

-/* blkSize =  256 bits. hashSize =  256 bits */

-const u64b_t SKEIN_256_IV_256[] =

-    {

-    MK_64(0xFC9DA860,0xD048B449),

-    MK_64(0x2FCA6647,0x9FA7D833),

-    MK_64(0xB33BC389,0x6656840F),

-    MK_64(0x6A54E920,0xFDE8DA69)

-    };

-

-/* blkSize =  512 bits. hashSize =  128 bits */

-const u64b_t SKEIN_512_IV_128[] =

-    {

-    MK_64(0xA8BC7BF3,0x6FBF9F52),

-    MK_64(0x1E9872CE,0xBD1AF0AA),

-    MK_64(0x309B1790,0xB32190D3),

-    MK_64(0xBCFBB854,0x3F94805C),

-    MK_64(0x0DA61BCD,0x6E31B11B),

-    MK_64(0x1A18EBEA,0xD46A32E3),

-    MK_64(0xA2CC5B18,0xCE84AA82),

-    MK_64(0x6982AB28,0x9D46982D)

-    };

-

-/* blkSize =  512 bits. hashSize =  160 bits */

-const u64b_t SKEIN_512_IV_160[] =

-    {

-    MK_64(0x28B81A2A,0xE013BD91),

-    MK_64(0xC2F11668,0xB5BDF78F),

-    MK_64(0x1760D8F3,0xF6A56F12),

-    MK_64(0x4FB74758,0x8239904F),

-    MK_64(0x21EDE07F,0x7EAF5056),

-    MK_64(0xD908922E,0x63ED70B8),

-    MK_64(0xB8EC76FF,0xECCB52FA),

-    MK_64(0x01A47BB8,0xA3F27A6E)

-    };

-

-/* blkSize =  512 bits. hashSize =  224 bits */

-const u64b_t SKEIN_512_IV_224[] =

-    {

-    MK_64(0xCCD06162,0x48677224),

-    MK_64(0xCBA65CF3,0xA92339EF),

-    MK_64(0x8CCD69D6,0x52FF4B64),

-    MK_64(0x398AED7B,0x3AB890B4),

-    MK_64(0x0F59D1B1,0x457D2BD0),

-    MK_64(0x6776FE65,0x75D4EB3D),

-    MK_64(0x99FBC70E,0x997413E9),

-    MK_64(0x9E2CFCCF,0xE1C41EF7)

-    };

-

-/* blkSize =  512 bits. hashSize =  256 bits */

-const u64b_t SKEIN_512_IV_256[] =

-    {

-    MK_64(0xCCD044A1,0x2FDB3E13),

-    MK_64(0xE8359030,0x1A79A9EB),

-    MK_64(0x55AEA061,0x4F816E6F),

-    MK_64(0x2A2767A4,0xAE9B94DB),

-    MK_64(0xEC06025E,0x74DD7683),

-    MK_64(0xE7A436CD,0xC4746251),

-    MK_64(0xC36FBAF9,0x393AD185),

-    MK_64(0x3EEDBA18,0x33EDFC13)

-    };

-

-/* blkSize =  512 bits. hashSize =  384 bits */

-const u64b_t SKEIN_512_IV_384[] =

-    {

-    MK_64(0xA3F6C6BF,0x3A75EF5F),

-    MK_64(0xB0FEF9CC,0xFD84FAA4),

-    MK_64(0x9D77DD66,0x3D770CFE),

-    MK_64(0xD798CBF3,0xB468FDDA),

-    MK_64(0x1BC4A666,0x8A0E4465),

-    MK_64(0x7ED7D434,0xE5807407),

-    MK_64(0x548FC1AC,0xD4EC44D6),

-    MK_64(0x266E1754,0x6AA18FF8)

-    };

-

-/* blkSize =  512 bits. hashSize =  512 bits */

-const u64b_t SKEIN_512_IV_512[] =

-    {

-    MK_64(0x4903ADFF,0x749C51CE),

-    MK_64(0x0D95DE39,0x9746DF03),

-    MK_64(0x8FD19341,0x27C79BCE),

-    MK_64(0x9A255629,0xFF352CB1),

-    MK_64(0x5DB62599,0xDF6CA7B0),

-    MK_64(0xEABE394C,0xA9D5C3F4),

-    MK_64(0x991112C7,0x1A75B523),

-    MK_64(0xAE18A40B,0x660FCC33)

-    };

-

-/* blkSize = 1024 bits. hashSize =  384 bits */

-const u64b_t SKEIN1024_IV_384[] =

-    {

-    MK_64(0x5102B6B8,0xC1894A35),

-    MK_64(0xFEEBC9E3,0xFE8AF11A),

-    MK_64(0x0C807F06,0xE32BED71),

-    MK_64(0x60C13A52,0xB41A91F6),

-    MK_64(0x9716D35D,0xD4917C38),

-    MK_64(0xE780DF12,0x6FD31D3A),

-    MK_64(0x797846B6,0xC898303A),

-    MK_64(0xB172C2A8,0xB3572A3B),

-    MK_64(0xC9BC8203,0xA6104A6C),

-    MK_64(0x65909338,0xD75624F4),

-    MK_64(0x94BCC568,0x4B3F81A0),

-    MK_64(0x3EBBF51E,0x10ECFD46),

-    MK_64(0x2DF50F0B,0xEEB08542),

-    MK_64(0x3B5A6530,0x0DBC6516),

-    MK_64(0x484B9CD2,0x167BBCE1),

-    MK_64(0x2D136947,0xD4CBAFEA)

-    };

-

-/* blkSize = 1024 bits. hashSize =  512 bits */

-const u64b_t SKEIN1024_IV_512[] =

-    {

-    MK_64(0xCAEC0E5D,0x7C1B1B18),

-    MK_64(0xA01B0E04,0x5F03E802),

-    MK_64(0x33840451,0xED912885),

-    MK_64(0x374AFB04,0xEAEC2E1C),

-    MK_64(0xDF25A0E2,0x813581F7),

-    MK_64(0xE4004093,0x8B12F9D2),

-    MK_64(0xA662D539,0xC2ED39B6),

-    MK_64(0xFA8B85CF,0x45D8C75A),

-    MK_64(0x8316ED8E,0x29EDE796),

-    MK_64(0x053289C0,0x2E9F91B8),

-    MK_64(0xC3F8EF1D,0x6D518B73),

-    MK_64(0xBDCEC3C4,0xD5EF332E),

-    MK_64(0x549A7E52,0x22974487),

-    MK_64(0x67070872,0x5B749816),

-    MK_64(0xB9CD28FB,0xF0581BD1),

-    MK_64(0x0E2940B8,0x15804974)

-    };

-

-/* blkSize = 1024 bits. hashSize = 1024 bits */

-const u64b_t SKEIN1024_IV_1024[] =

-    {

-    MK_64(0xD593DA07,0x41E72355),

-    MK_64(0x15B5E511,0xAC73E00C),

-    MK_64(0x5180E5AE,0xBAF2C4F0),

-    MK_64(0x03BD41D3,0xFCBCAFAF),

-    MK_64(0x1CAEC6FD,0x1983A898),

-    MK_64(0x6E510B8B,0xCDD0589F),

-    MK_64(0x77E2BDFD,0xC6394ADA),

-    MK_64(0xC11E1DB5,0x24DCB0A3),

-    MK_64(0xD6D14AF9,0xC6329AB5),

-    MK_64(0x6A9B0BFC,0x6EB67E0D),

-    MK_64(0x9243C60D,0xCCFF1332),

-    MK_64(0x1A1F1DDE,0x743F02D4),

-    MK_64(0x0996753C,0x10ED0BB8),

-    MK_64(0x6572DD22,0xF2B4969A),

-    MK_64(0x61FD3062,0xD00A579A),

-    MK_64(0x1DE0536E,0x8682E539)

-    };

-

-#endif /* _SKEIN_IV_H_ */

diff --git a/jni/libzrtp/sources/srtp/crypto/skein_port.h b/jni/libzrtp/sources/srtp/crypto/skein_port.h
deleted file mode 100644
index 256e9d5..0000000
--- a/jni/libzrtp/sources/srtp/crypto/skein_port.h
+++ /dev/null
@@ -1,127 +0,0 @@
-#ifndef _SKEIN_PORT_H_

-#define _SKEIN_PORT_H_

-/*******************************************************************

-**

-** Platform-specific definitions for Skein hash function.

-**

-** Source code author: Doug Whiting, 2008.

-**

-** This algorithm and source code is released to the public domain.

-**

-** Many thanks to Brian Gladman for his portable header files.

-**

-** To port Skein to an "unsupported" platform, change the definitions

-** in this file appropriately.

-** 

-********************************************************************/

-

-#include <crypto/brg_types.h>                      /* get integer type definitions */

-

-/*r3gis3r : android already has that defined in types */

-#ifndef ANDROID

-typedef unsigned int    uint_t;             /* native unsigned integer */

-#endif

-typedef uint_8t         u08b_t;             /*  8-bit unsigned integer */

-typedef uint_64t        u64b_t;             /* 64-bit unsigned integer */

-

-#ifndef RotL_64

-#define RotL_64(x,N)    (((x) << (N)) | ((x) >> (64-(N))))

-#endif

-

-/*

- * Skein is "natively" little-endian (unlike SHA-xxx), for optimal

- * performance on x86 CPUs.  The Skein code requires the following

- * definitions for dealing with endianness:

- *

- *    SKEIN_NEED_SWAP:  0 for little-endian, 1 for big-endian

- *    Skein_Put64_LSB_First

- *    Skein_Get64_LSB_First

- *    Skein_Swap64

- *

- * If SKEIN_NEED_SWAP is defined at compile time, it is used here

- * along with the portable versions of Put64/Get64/Swap64, which 

- * are slow in general.

- *

- * Otherwise, an "auto-detect" of endianness is attempted below.

- * If the default handling doesn't work well, the user may insert

- * platform-specific code instead (e.g., for big-endian CPUs).

- *

- */

-#ifndef SKEIN_NEED_SWAP /* compile-time "override" for endianness? */

-

-#include <crypto/brg_endian.h>              /* get endianness selection */

-#if   PLATFORM_BYTE_ORDER == IS_BIG_ENDIAN

-    /* here for big-endian CPUs */

-#define SKEIN_NEED_SWAP   (1)

-#elif PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN

-    /* here for x86 and x86-64 CPUs (and other detected little-endian CPUs) */

-#define SKEIN_NEED_SWAP   (0)

-#if   PLATFORM_MUST_ALIGN == 0              /* ok to use "fast" versions? */

-#define Skein_Put64_LSB_First(dst08,src64,bCnt) memcpy(dst08,src64,bCnt)

-#define Skein_Get64_LSB_First(dst64,src08,wCnt) memcpy(dst64,src08,8*(wCnt))

-#endif

-#else

-#error "Skein needs endianness setting!"

-#endif

-

-#endif /* ifndef SKEIN_NEED_SWAP */

-

-/*

- ******************************************************************

- *      Provide any definitions still needed.

- ******************************************************************

- */

-#ifndef Skein_Swap64  /* swap for big-endian, nop for little-endian */

-#if     SKEIN_NEED_SWAP

-#define Skein_Swap64(w64)                       \

-  ( (( ((u64b_t)(w64))       & 0xFF) << 56) |   \

-    (((((u64b_t)(w64)) >> 8) & 0xFF) << 48) |   \

-    (((((u64b_t)(w64)) >>16) & 0xFF) << 40) |   \

-    (((((u64b_t)(w64)) >>24) & 0xFF) << 32) |   \

-    (((((u64b_t)(w64)) >>32) & 0xFF) << 24) |   \

-    (((((u64b_t)(w64)) >>40) & 0xFF) << 16) |   \

-    (((((u64b_t)(w64)) >>48) & 0xFF) <<  8) |   \

-    (((((u64b_t)(w64)) >>56) & 0xFF)      ) )

-#else

-#define Skein_Swap64(w64)  (w64)

-#endif

-#endif  /* ifndef Skein_Swap64 */

-

-

-#ifndef Skein_Put64_LSB_First

-void    Skein_Put64_LSB_First(u08b_t *dst,const u64b_t *src,size_t bCnt)

-#ifdef  SKEIN_PORT_CODE /* instantiate the function code here? */

-    { /* this version is fully portable (big-endian or little-endian), but slow */

-    size_t n;

-

-    for (n=0;n<bCnt;n++)

-        dst[n] = (u08b_t) (src[n>>3] >> (8*(n&7)));

-    }

-#else

-    ;    /* output only the function prototype */

-#endif

-#endif   /* ifndef Skein_Put64_LSB_First */

-

-

-#ifndef Skein_Get64_LSB_First

-void    Skein_Get64_LSB_First(u64b_t *dst,const u08b_t *src,size_t wCnt)

-#ifdef  SKEIN_PORT_CODE /* instantiate the function code here? */

-    { /* this version is fully portable (big-endian or little-endian), but slow */

-    size_t n;

-

-    for (n=0;n<8*wCnt;n+=8)

-        dst[n/8] = (((u64b_t) src[n  ])      ) +

-                   (((u64b_t) src[n+1]) <<  8) +

-                   (((u64b_t) src[n+2]) << 16) +

-                   (((u64b_t) src[n+3]) << 24) +

-                   (((u64b_t) src[n+4]) << 32) +

-                   (((u64b_t) src[n+5]) << 40) +

-                   (((u64b_t) src[n+6]) << 48) +

-                   (((u64b_t) src[n+7]) << 56) ;

-    }

-#else

-    ;    /* output only the function prototype */

-#endif

-#endif   /* ifndef Skein_Get64_LSB_First */

-

-#endif   /* ifndef _SKEIN_PORT_H_ */