* #29632: Added libsndfile dep
jni: updated sflphone
diff --git a/jni/libsndfile-1.0.25/src/G72x/g72x.c b/jni/libsndfile-1.0.25/src/G72x/g72x.c
new file mode 100644
index 0000000..3fae81a
--- /dev/null
+++ b/jni/libsndfile-1.0.25/src/G72x/g72x.c
@@ -0,0 +1,644 @@
+/*
+ * This source code is a product of Sun Microsystems, Inc. and is provided
+ * for unrestricted use.  Users may copy or modify this source code without
+ * charge.
+ *
+ * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
+ * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
+ *
+ * Sun source code is provided with no support and without any obligation on
+ * the part of Sun Microsystems, Inc. to assist in its use, correction,
+ * modification or enhancement.
+ *
+ * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
+ * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
+ * OR ANY PART THEREOF.
+ *
+ * In no event will Sun Microsystems, Inc. be liable for any lost revenue
+ * or profits or other special, indirect and consequential damages, even if
+ * Sun has been advised of the possibility of such damages.
+ *
+ * Sun Microsystems, Inc.
+ * 2550 Garcia Avenue
+ * Mountain View, California  94043
+ */
+
+/*
+ * g72x.c
+ *
+ * Common routines for G.721 and G.723 conversions.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "g72x.h"
+#include "g72x_priv.h"
+
+static G72x_STATE * g72x_state_new (void) ;
+static int unpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples) ;
+static int pack_bytes (int bits, const short * samples, unsigned char * block) ;
+
+static
+short power2 [15] =
+{	1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
+	0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000
+} ;
+
+/*
+ * quan()
+ *
+ * quantizes the input val against the table of size short integers.
+ * It returns i if table[i - 1] <= val < table[i].
+ *
+ * Using linear search for simple coding.
+ */
+static
+int quan (int val, short *table, int size)
+{
+	int		i;
+
+	for (i = 0; i < size; i++)
+		if (val < *table++)
+			break;
+	return (i);
+}
+
+/*
+ * fmult()
+ *
+ * returns the integer product of the 14-bit integer "an" and
+ * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
+ */
+static
+int fmult (int an, int srn)
+{
+	short		anmag, anexp, anmant;
+	short		wanexp, wanmant;
+	short		retval;
+
+	anmag = (an > 0) ? an : ((-an) & 0x1FFF);
+	anexp = quan(anmag, power2, 15) - 6;
+	anmant = (anmag == 0) ? 32 :
+	    (anexp >= 0) ? anmag >> anexp : anmag << -anexp;
+	wanexp = anexp + ((srn >> 6) & 0xF) - 13;
+
+	/*
+	** The original was :
+	**		wanmant = (anmant * (srn & 0x3F) + 0x30) >> 4 ;
+	** but could see no valid reason for the + 0x30.
+	** Removed it and it improved the SNR of the codec.
+	*/
+
+	wanmant = (anmant * (srn & 0x3F)) >> 4 ;
+
+	retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
+	    (wanmant >> -wanexp);
+
+	return (((an ^ srn) < 0) ? -retval : retval);
+}
+
+static G72x_STATE * g72x_state_new (void)
+{	return calloc (1, sizeof (G72x_STATE)) ;
+}
+
+/*
+ * private_init_state()
+ *
+ * This routine initializes and/or resets the G72x_PRIVATE structure
+ * pointed to by 'state_ptr'.
+ * All the initial state values are specified in the CCITT G.721 document.
+ */
+void private_init_state (G72x_STATE *state_ptr)
+{
+	int		cnta;
+
+	state_ptr->yl = 34816;
+	state_ptr->yu = 544;
+	state_ptr->dms = 0;
+	state_ptr->dml = 0;
+	state_ptr->ap = 0;
+	for (cnta = 0; cnta < 2; cnta++) {
+		state_ptr->a[cnta] = 0;
+		state_ptr->pk[cnta] = 0;
+		state_ptr->sr[cnta] = 32;
+	}
+	for (cnta = 0; cnta < 6; cnta++) {
+		state_ptr->b[cnta] = 0;
+		state_ptr->dq[cnta] = 32;
+	}
+	state_ptr->td = 0;
+}	/* private_init_state */
+
+struct g72x_state * g72x_reader_init (int codec, int *blocksize, int *samplesperblock)
+{	G72x_STATE *pstate ;
+
+	if ((pstate = g72x_state_new ()) == NULL)
+		return NULL ;
+
+	private_init_state (pstate) ;
+
+	pstate->encoder = NULL ;
+
+	switch (codec)
+	{	case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */
+				pstate->decoder = g723_16_decoder ;
+				*blocksize = G723_16_BYTES_PER_BLOCK ;
+				*samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
+				pstate->codec_bits = 2 ;
+				pstate->blocksize = G723_16_BYTES_PER_BLOCK ;
+				pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
+				break ;
+
+		case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */
+				pstate->decoder = g723_24_decoder ;
+				*blocksize = G723_24_BYTES_PER_BLOCK ;
+				*samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
+				pstate->codec_bits = 3 ;
+				pstate->blocksize = G723_24_BYTES_PER_BLOCK ;
+				pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
+				break ;
+
+		case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */
+				pstate->decoder = g721_decoder ;
+				*blocksize = G721_32_BYTES_PER_BLOCK ;
+				*samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
+				pstate->codec_bits = 4 ;
+				pstate->blocksize = G721_32_BYTES_PER_BLOCK ;
+				pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
+				break ;
+
+		case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */
+				pstate->decoder = g723_40_decoder ;
+				*blocksize = G721_40_BYTES_PER_BLOCK ;
+				*samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
+				pstate->codec_bits = 5 ;
+				pstate->blocksize = G721_40_BYTES_PER_BLOCK ;
+				pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
+				break ;
+
+		default :
+				free (pstate) ;
+				return NULL ;
+		} ;
+
+	return pstate ;
+}	/* g72x_reader_init */
+
+struct g72x_state * g72x_writer_init (int codec, int *blocksize, int *samplesperblock)
+{	G72x_STATE *pstate ;
+
+	if ((pstate = g72x_state_new ()) == NULL)
+		return NULL ;
+
+	private_init_state (pstate) ;
+	pstate->decoder = NULL ;
+
+	switch (codec)
+	{	case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */
+				pstate->encoder = g723_16_encoder ;
+				*blocksize = G723_16_BYTES_PER_BLOCK ;
+				*samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
+				pstate->codec_bits = 2 ;
+				pstate->blocksize = G723_16_BYTES_PER_BLOCK ;
+				pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
+				break ;
+
+		case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */
+				pstate->encoder = g723_24_encoder ;
+				*blocksize = G723_24_BYTES_PER_BLOCK ;
+				*samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
+				pstate->codec_bits = 3 ;
+				pstate->blocksize = G723_24_BYTES_PER_BLOCK ;
+				pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
+				break ;
+
+		case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */
+				pstate->encoder = g721_encoder ;
+				*blocksize = G721_32_BYTES_PER_BLOCK ;
+				*samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
+				pstate->codec_bits = 4 ;
+				pstate->blocksize = G721_32_BYTES_PER_BLOCK ;
+				pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
+				break ;
+
+		case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */
+				pstate->encoder = g723_40_encoder ;
+				*blocksize = G721_40_BYTES_PER_BLOCK ;
+				*samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
+				pstate->codec_bits = 5 ;
+				pstate->blocksize = G721_40_BYTES_PER_BLOCK ;
+				pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
+				break ;
+
+		default :
+				free (pstate) ;
+				return NULL ;
+		} ;
+
+	return pstate ;
+}	/* g72x_writer_init */
+
+int g72x_decode_block (G72x_STATE *pstate, const unsigned char *block, short *samples)
+{	int	k, count ;
+
+	count = unpack_bytes (pstate->codec_bits, pstate->blocksize, block, samples) ;
+
+	for (k = 0 ; k < count ; k++)
+		samples [k] = pstate->decoder (samples [k], pstate) ;
+
+	return 0 ;
+}	/* g72x_decode_block */
+
+int g72x_encode_block (G72x_STATE *pstate, short *samples, unsigned char *block)
+{	int k, count ;
+
+	for (k = 0 ; k < pstate->samplesperblock ; k++)
+		samples [k] = pstate->encoder (samples [k], pstate) ;
+
+	count = pack_bytes (pstate->codec_bits, samples, block) ;
+
+	return count ;
+}	/* g72x_encode_block */
+
+/*
+ * predictor_zero()
+ *
+ * computes the estimated signal from 6-zero predictor.
+ *
+ */
+int  predictor_zero (G72x_STATE *state_ptr)
+{
+	int		i;
+	int		sezi;
+
+	sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
+	for (i = 1; i < 6; i++)			/* ACCUM */
+		sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
+	return (sezi);
+}
+/*
+ * predictor_pole()
+ *
+ * computes the estimated signal from 2-pole predictor.
+ *
+ */
+int  predictor_pole(G72x_STATE *state_ptr)
+{
+	return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
+	    fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
+}
+/*
+ * step_size()
+ *
+ * computes the quantization step size of the adaptive quantizer.
+ *
+ */
+int  step_size (G72x_STATE *state_ptr)
+{
+	int		y;
+	int		dif;
+	int		al;
+
+	if (state_ptr->ap >= 256)
+		return (state_ptr->yu);
+	else {
+		y = state_ptr->yl >> 6;
+		dif = state_ptr->yu - y;
+		al = state_ptr->ap >> 2;
+		if (dif > 0)
+			y += (dif * al) >> 6;
+		else if (dif < 0)
+			y += (dif * al + 0x3F) >> 6;
+		return (y);
+	}
+}
+
+/*
+ * quantize()
+ *
+ * Given a raw sample, 'd', of the difference signal and a
+ * quantization step size scale factor, 'y', this routine returns the
+ * ADPCM codeword to which that sample gets quantized.  The step
+ * size scale factor division operation is done in the log base 2 domain
+ * as a subtraction.
+ */
+int quantize(
+	int		d,	/* Raw difference signal sample */
+	int		y,	/* Step size multiplier */
+	short	*table,	/* quantization table */
+	int		size)	/* table size of short integers */
+{
+	short		dqm;	/* Magnitude of 'd' */
+	short		expon;	/* Integer part of base 2 log of 'd' */
+	short		mant;	/* Fractional part of base 2 log */
+	short		dl;	/* Log of magnitude of 'd' */
+	short		dln;	/* Step size scale factor normalized log */
+	int		i;
+
+	/*
+	 * LOG
+	 *
+	 * Compute base 2 log of 'd', and store in 'dl'.
+	 */
+	dqm = abs(d);
+	expon = quan(dqm >> 1, power2, 15);
+	mant = ((dqm << 7) >> expon) & 0x7F;	/* Fractional portion. */
+	dl = (expon << 7) + mant;
+
+	/*
+	 * SUBTB
+	 *
+	 * "Divide" by step size multiplier.
+	 */
+	dln = dl - (y >> 2);
+
+	/*
+	 * QUAN
+	 *
+	 * Obtain codword i for 'd'.
+	 */
+	i = quan(dln, table, size);
+	if (d < 0)			/* take 1's complement of i */
+		return ((size << 1) + 1 - i);
+	else if (i == 0)		/* take 1's complement of 0 */
+		return ((size << 1) + 1); /* new in 1988 */
+	else
+		return (i);
+}
+/*
+ * reconstruct()
+ *
+ * Returns reconstructed difference signal 'dq' obtained from
+ * codeword 'i' and quantization step size scale factor 'y'.
+ * Multiplication is performed in log base 2 domain as addition.
+ */
+int
+reconstruct(
+	int		sign,	/* 0 for non-negative value */
+	int		dqln,	/* G.72x codeword */
+	int		y)	/* Step size multiplier */
+{
+	short		dql;	/* Log of 'dq' magnitude */
+	short		dex;	/* Integer part of log */
+	short		dqt;
+	short		dq;	/* Reconstructed difference signal sample */
+
+	dql = dqln + (y >> 2);	/* ADDA */
+
+	if (dql < 0) {
+		return ((sign) ? -0x8000 : 0);
+	} else {		/* ANTILOG */
+		dex = (dql >> 7) & 15;
+		dqt = 128 + (dql & 127);
+		dq = (dqt << 7) >> (14 - dex);
+		return ((sign) ? (dq - 0x8000) : dq);
+	}
+}
+
+
+/*
+ * update()
+ *
+ * updates the state variables for each output code
+ */
+void
+update(
+	int		code_size,	/* distinguish 723_40 with others */
+	int		y,		/* quantizer step size */
+	int		wi,		/* scale factor multiplier */
+	int		fi,		/* for long/short term energies */
+	int		dq,		/* quantized prediction difference */
+	int		sr,		/* reconstructed signal */
+	int		dqsez,		/* difference from 2-pole predictor */
+	G72x_STATE *state_ptr)	/* coder state pointer */
+{
+	int		cnt;
+	short		mag, expon;	/* Adaptive predictor, FLOAT A */
+	short		a2p = 0;	/* LIMC */
+	short		a1ul;		/* UPA1 */
+	short		pks1;		/* UPA2 */
+	short		fa1;
+	char		tr;		/* tone/transition detector */
+	short		ylint, thr2, dqthr;
+	short  		ylfrac, thr1;
+	short		pk0;
+
+	pk0 = (dqsez < 0) ? 1 : 0;	/* needed in updating predictor poles */
+
+	mag = dq & 0x7FFF;		/* prediction difference magnitude */
+	/* TRANS */
+	ylint = state_ptr->yl >> 15;	/* exponent part of yl */
+	ylfrac = (state_ptr->yl >> 10) & 0x1F;	/* fractional part of yl */
+	thr1 = (32 + ylfrac) << ylint;		/* threshold */
+	thr2 = (ylint > 9) ? 31 << 10 : thr1;	/* limit thr2 to 31 << 10 */
+	dqthr = (thr2 + (thr2 >> 1)) >> 1;	/* dqthr = 0.75 * thr2 */
+	if (state_ptr->td == 0)		/* signal supposed voice */
+		tr = 0;
+	else if (mag <= dqthr)		/* supposed data, but small mag */
+		tr = 0;			/* treated as voice */
+	else				/* signal is data (modem) */
+		tr = 1;
+
+	/*
+	 * Quantizer scale factor adaptation.
+	 */
+
+	/* FUNCTW & FILTD & DELAY */
+	/* update non-steady state step size multiplier */
+	state_ptr->yu = y + ((wi - y) >> 5);
+
+	/* LIMB */
+	if (state_ptr->yu < 544)	/* 544 <= yu <= 5120 */
+		state_ptr->yu = 544;
+	else if (state_ptr->yu > 5120)
+		state_ptr->yu = 5120;
+
+	/* FILTE & DELAY */
+	/* update steady state step size multiplier */
+	state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
+
+	/*
+	 * Adaptive predictor coefficients.
+	 */
+	if (tr == 1) {			/* reset a's and b's for modem signal */
+		state_ptr->a[0] = 0;
+		state_ptr->a[1] = 0;
+		state_ptr->b[0] = 0;
+		state_ptr->b[1] = 0;
+		state_ptr->b[2] = 0;
+		state_ptr->b[3] = 0;
+		state_ptr->b[4] = 0;
+		state_ptr->b[5] = 0;
+	} else {			/* update a's and b's */
+		pks1 = pk0 ^ state_ptr->pk[0];		/* UPA2 */
+
+		/* update predictor pole a[1] */
+		a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
+		if (dqsez != 0) {
+			fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
+			if (fa1 < -8191)	/* a2p = function of fa1 */
+				a2p -= 0x100;
+			else if (fa1 > 8191)
+				a2p += 0xFF;
+			else
+				a2p += fa1 >> 5;
+
+			if (pk0 ^ state_ptr->pk[1])
+			{	/* LIMC */
+				if (a2p <= -12160)
+					a2p = -12288;
+				else if (a2p >= 12416)
+					a2p = 12288;
+				else
+					a2p -= 0x80;
+				}
+			else if (a2p <= -12416)
+				a2p = -12288;
+			else if (a2p >= 12160)
+				a2p = 12288;
+			else
+				a2p += 0x80;
+		}
+
+		/* TRIGB & DELAY */
+		state_ptr->a[1] = a2p;
+
+		/* UPA1 */
+		/* update predictor pole a[0] */
+		state_ptr->a[0] -= state_ptr->a[0] >> 8;
+		if (dqsez != 0)
+		{	if (pks1 == 0)
+				state_ptr->a[0] += 192;
+			else
+				state_ptr->a[0] -= 192;
+			} ;
+
+		/* LIMD */
+		a1ul = 15360 - a2p;
+		if (state_ptr->a[0] < -a1ul)
+			state_ptr->a[0] = -a1ul;
+		else if (state_ptr->a[0] > a1ul)
+			state_ptr->a[0] = a1ul;
+
+		/* UPB : update predictor zeros b[6] */
+		for (cnt = 0; cnt < 6; cnt++) {
+			if (code_size == 5)		/* for 40Kbps G.723 */
+				state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
+			else			/* for G.721 and 24Kbps G.723 */
+				state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
+			if (dq & 0x7FFF) {			/* XOR */
+				if ((dq ^ state_ptr->dq[cnt]) >= 0)
+					state_ptr->b[cnt] += 128;
+				else
+					state_ptr->b[cnt] -= 128;
+			}
+		}
+	}
+
+	for (cnt = 5; cnt > 0; cnt--)
+		state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
+	/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
+	if (mag == 0) {
+		state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
+	} else {
+		expon = quan(mag, power2, 15);
+		state_ptr->dq[0] = (dq >= 0) ?
+		    (expon << 6) + ((mag << 6) >> expon) :
+		    (expon << 6) + ((mag << 6) >> expon) - 0x400;
+	}
+
+	state_ptr->sr[1] = state_ptr->sr[0];
+	/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
+	if (sr == 0) {
+		state_ptr->sr[0] = 0x20;
+	} else if (sr > 0) {
+		expon = quan(sr, power2, 15);
+		state_ptr->sr[0] = (expon << 6) + ((sr << 6) >> expon);
+	} else if (sr > -32768) {
+		mag = -sr;
+		expon = quan(mag, power2, 15);
+		state_ptr->sr[0] =  (expon << 6) + ((mag << 6) >> expon) - 0x400;
+	} else
+		state_ptr->sr[0] = (short) 0xFC20;
+
+	/* DELAY A */
+	state_ptr->pk[1] = state_ptr->pk[0];
+	state_ptr->pk[0] = pk0;
+
+	/* TONE */
+	if (tr == 1)		/* this sample has been treated as data */
+		state_ptr->td = 0;	/* next one will be treated as voice */
+	else if (a2p < -11776)	/* small sample-to-sample correlation */
+		state_ptr->td = 1;	/* signal may be data */
+	else				/* signal is voice */
+		state_ptr->td = 0;
+
+	/*
+	 * Adaptation speed control.
+	 */
+	state_ptr->dms += (fi - state_ptr->dms) >> 5;		/* FILTA */
+	state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7);	/* FILTB */
+
+	if (tr == 1)
+		state_ptr->ap = 256;
+	else if (y < 1536)					/* SUBTC */
+		state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
+	else if (state_ptr->td == 1)
+		state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
+	else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
+	    (state_ptr->dml >> 3))
+		state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
+	else
+		state_ptr->ap += (-state_ptr->ap) >> 4;
+
+	return ;
+} /* update */
+
+/*------------------------------------------------------------------------------
+*/
+
+static int
+unpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples)
+{	unsigned int    in_buffer = 0 ;
+	unsigned char	in_byte ;
+	int				k, in_bits = 0, bindex = 0 ;
+
+	for (k = 0 ; bindex <= blocksize && k < G72x_BLOCK_SIZE ; k++)
+	{	if (in_bits < bits)
+		{	in_byte = block [bindex++] ;
+
+			in_buffer |= (in_byte << in_bits);
+			in_bits += 8;
+			}
+		samples [k] = in_buffer & ((1 << bits) - 1);
+		in_buffer >>= bits;
+		in_bits -= bits;
+		} ;
+
+	return k ;
+} /* unpack_bytes */
+
+static int
+pack_bytes (int bits, const short * samples, unsigned char * block)
+{
+	unsigned int	out_buffer = 0 ;
+	int				k, bindex = 0, out_bits = 0 ;
+	unsigned char	out_byte ;
+
+	for (k = 0 ; k < G72x_BLOCK_SIZE ; k++)
+	{	out_buffer |= (samples [k] << out_bits) ;
+		out_bits += bits ;
+		if (out_bits >= 8)
+		{	out_byte = out_buffer & 0xFF ;
+			out_bits -= 8 ;
+			out_buffer >>= 8 ;
+			block [bindex++] = out_byte ;
+			}
+		} ;
+
+	return bindex ;
+} /* pack_bytes */
+