* #30460: added opus dep
diff --git a/jni/libopus/silk/A2NLSF.c b/jni/libopus/silk/A2NLSF.c
new file mode 100644
index 0000000..49d5d9d
--- /dev/null
+++ b/jni/libopus/silk/A2NLSF.c
@@ -0,0 +1,252 @@
+/***********************************************************************
+Copyright (c) 2006-2011, Skype Limited. All rights reserved.
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions
+are met:
+- Redistributions of source code must retain the above copyright notice,
+this list of conditions and the following disclaimer.
+- Redistributions in binary form must reproduce the above copyright
+notice, this list of conditions and the following disclaimer in the
+documentation and/or other materials provided with the distribution.
+- Neither the name of Internet Society, IETF or IETF Trust, nor the 
+names of specific contributors, may be used to endorse or promote
+products derived from this software without specific prior written
+permission.
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+***********************************************************************/
+
+/* Conversion between prediction filter coefficients and NLSFs  */
+/* Requires the order to be an even number                      */
+/* A piecewise linear approximation maps LSF <-> cos(LSF)       */
+/* Therefore the result is not accurate NLSFs, but the two      */
+/* functions are accurate inverses of each other                */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "SigProc_FIX.h"
+#include "tables.h"
+
+/* Number of binary divisions, when not in low complexity mode */
+#define BIN_DIV_STEPS_A2NLSF_FIX      3 /* must be no higher than 16 - log2( LSF_COS_TAB_SZ_FIX ) */
+#define MAX_ITERATIONS_A2NLSF_FIX    30
+
+/* Helper function for A2NLSF(..)                    */
+/* Transforms polynomials from cos(n*f) to cos(f)^n  */
+static inline void silk_A2NLSF_trans_poly(
+    opus_int32          *p,                     /* I/O    Polynomial                                */
+    const opus_int      dd                      /* I      Polynomial order (= filter order / 2 )    */
+)
+{
+    opus_int k, n;
+
+    for( k = 2; k <= dd; k++ ) {
+        for( n = dd; n > k; n-- ) {
+            p[ n - 2 ] -= p[ n ];
+        }
+        p[ k - 2 ] -= silk_LSHIFT( p[ k ], 1 );
+    }
+}
+/* Helper function for A2NLSF(..) */
+/* Polynomial evaluation          */
+static inline opus_int32 silk_A2NLSF_eval_poly( /* return the polynomial evaluation, in Q16     */
+    opus_int32          *p,                     /* I    Polynomial, Q16                         */
+    const opus_int32    x,                      /* I    Evaluation point, Q12                   */
+    const opus_int      dd                      /* I    Order                                   */
+)
+{
+    opus_int   n;
+    opus_int32 x_Q16, y32;
+
+    y32 = p[ dd ];                                  /* Q16 */
+    x_Q16 = silk_LSHIFT( x, 4 );
+    for( n = dd - 1; n >= 0; n-- ) {
+        y32 = silk_SMLAWW( p[ n ], y32, x_Q16 );    /* Q16 */
+    }
+    return y32;
+}
+
+static inline void silk_A2NLSF_init(
+     const opus_int32    *a_Q16,
+     opus_int32          *P,
+     opus_int32          *Q,
+     const opus_int      dd
+)
+{
+    opus_int k;
+
+    /* Convert filter coefs to even and odd polynomials */
+    P[dd] = silk_LSHIFT( 1, 16 );
+    Q[dd] = silk_LSHIFT( 1, 16 );
+    for( k = 0; k < dd; k++ ) {
+        P[ k ] = -a_Q16[ dd - k - 1 ] - a_Q16[ dd + k ];    /* Q16 */
+        Q[ k ] = -a_Q16[ dd - k - 1 ] + a_Q16[ dd + k ];    /* Q16 */
+    }
+
+    /* Divide out zeros as we have that for even filter orders, */
+    /* z =  1 is always a root in Q, and                        */
+    /* z = -1 is always a root in P                             */
+    for( k = dd; k > 0; k-- ) {
+        P[ k - 1 ] -= P[ k ];
+        Q[ k - 1 ] += Q[ k ];
+    }
+
+    /* Transform polynomials from cos(n*f) to cos(f)^n */
+    silk_A2NLSF_trans_poly( P, dd );
+    silk_A2NLSF_trans_poly( Q, dd );
+}
+
+/* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients      */
+/* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
+void silk_A2NLSF(
+    opus_int16                  *NLSF,              /* O    Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
+    opus_int32                  *a_Q16,             /* I/O  Monic whitening filter coefficients in Q16 [d]              */
+    const opus_int              d                   /* I    Filter order (must be even)                                 */
+)
+{
+    opus_int      i, k, m, dd, root_ix, ffrac;
+    opus_int32 xlo, xhi, xmid;
+    opus_int32 ylo, yhi, ymid, thr;
+    opus_int32 nom, den;
+    opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ];
+    opus_int32 Q[ SILK_MAX_ORDER_LPC / 2 + 1 ];
+    opus_int32 *PQ[ 2 ];
+    opus_int32 *p;
+
+    /* Store pointers to array */
+    PQ[ 0 ] = P;
+    PQ[ 1 ] = Q;
+
+    dd = silk_RSHIFT( d, 1 );
+
+    silk_A2NLSF_init( a_Q16, P, Q, dd );
+
+    /* Find roots, alternating between P and Q */
+    p = P;                          /* Pointer to polynomial */
+
+    xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
+    ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
+
+    if( ylo < 0 ) {
+        /* Set the first NLSF to zero and move on to the next */
+        NLSF[ 0 ] = 0;
+        p = Q;                      /* Pointer to polynomial */
+        ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
+        root_ix = 1;                /* Index of current root */
+    } else {
+        root_ix = 0;                /* Index of current root */
+    }
+    k = 1;                          /* Loop counter */
+    i = 0;                          /* Counter for bandwidth expansions applied */
+    thr = 0;
+    while( 1 ) {
+        /* Evaluate polynomial */
+        xhi = silk_LSFCosTab_FIX_Q12[ k ]; /* Q12 */
+        yhi = silk_A2NLSF_eval_poly( p, xhi, dd );
+
+        /* Detect zero crossing */
+        if( ( ylo <= 0 && yhi >= thr ) || ( ylo >= 0 && yhi <= -thr ) ) {
+            if( yhi == 0 ) {
+                /* If the root lies exactly at the end of the current       */
+                /* interval, look for the next root in the next interval    */
+                thr = 1;
+            } else {
+                thr = 0;
+            }
+            /* Binary division */
+            ffrac = -256;
+            for( m = 0; m < BIN_DIV_STEPS_A2NLSF_FIX; m++ ) {
+                /* Evaluate polynomial */
+                xmid = silk_RSHIFT_ROUND( xlo + xhi, 1 );
+                ymid = silk_A2NLSF_eval_poly( p, xmid, dd );
+
+                /* Detect zero crossing */
+                if( ( ylo <= 0 && ymid >= 0 ) || ( ylo >= 0 && ymid <= 0 ) ) {
+                    /* Reduce frequency */
+                    xhi = xmid;
+                    yhi = ymid;
+                } else {
+                    /* Increase frequency */
+                    xlo = xmid;
+                    ylo = ymid;
+                    ffrac = silk_ADD_RSHIFT( ffrac, 128, m );
+                }
+            }
+
+            /* Interpolate */
+            if( silk_abs( ylo ) < 65536 ) {
+                /* Avoid dividing by zero */
+                den = ylo - yhi;
+                nom = silk_LSHIFT( ylo, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) + silk_RSHIFT( den, 1 );
+                if( den != 0 ) {
+                    ffrac += silk_DIV32( nom, den );
+                }
+            } else {
+                /* No risk of dividing by zero because abs(ylo - yhi) >= abs(ylo) >= 65536 */
+                ffrac += silk_DIV32( ylo, silk_RSHIFT( ylo - yhi, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) );
+            }
+            NLSF[ root_ix ] = (opus_int16)silk_min_32( silk_LSHIFT( (opus_int32)k, 8 ) + ffrac, silk_int16_MAX );
+
+            silk_assert( NLSF[ root_ix ] >= 0 );
+
+            root_ix++;        /* Next root */
+            if( root_ix >= d ) {
+                /* Found all roots */
+                break;
+            }
+            /* Alternate pointer to polynomial */
+            p = PQ[ root_ix & 1 ];
+
+            /* Evaluate polynomial */
+            xlo = silk_LSFCosTab_FIX_Q12[ k - 1 ]; /* Q12*/
+            ylo = silk_LSHIFT( 1 - ( root_ix & 2 ), 12 );
+        } else {
+            /* Increment loop counter */
+            k++;
+            xlo = xhi;
+            ylo = yhi;
+            thr = 0;
+
+            if( k > LSF_COS_TAB_SZ_FIX ) {
+                i++;
+                if( i > MAX_ITERATIONS_A2NLSF_FIX ) {
+                    /* Set NLSFs to white spectrum and exit */
+                    NLSF[ 0 ] = (opus_int16)silk_DIV32_16( 1 << 15, d + 1 );
+                    for( k = 1; k < d; k++ ) {
+                        NLSF[ k ] = (opus_int16)silk_SMULBB( k + 1, NLSF[ 0 ] );
+                    }
+                    return;
+                }
+
+                /* Error: Apply progressively more bandwidth expansion and run again */
+                silk_bwexpander_32( a_Q16, d, 65536 - silk_SMULBB( 10 + i, i ) ); /* 10_Q16 = 0.00015*/
+
+                silk_A2NLSF_init( a_Q16, P, Q, dd );
+                p = P;                            /* Pointer to polynomial */
+                xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
+                ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
+                if( ylo < 0 ) {
+                    /* Set the first NLSF to zero and move on to the next */
+                    NLSF[ 0 ] = 0;
+                    p = Q;                        /* Pointer to polynomial */
+                    ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
+                    root_ix = 1;                  /* Index of current root */
+                } else {
+                    root_ix = 0;                  /* Index of current root */
+                }
+                k = 1;                            /* Reset loop counter */
+            }
+        }
+    }
+}