* #30460: added opus dep
diff --git a/jni/libopus/celt/mathops.c b/jni/libopus/celt/mathops.c
new file mode 100644
index 0000000..ce472c9
--- /dev/null
+++ b/jni/libopus/celt/mathops.c
@@ -0,0 +1,206 @@
+/* Copyright (c) 2002-2008 Jean-Marc Valin
+   Copyright (c) 2007-2008 CSIRO
+   Copyright (c) 2007-2009 Xiph.Org Foundation
+   Written by Jean-Marc Valin */
+/**
+   @file mathops.h
+   @brief Various math functions
+*/
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "mathops.h"
+
+/*Compute floor(sqrt(_val)) with exact arithmetic.
+  This has been tested on all possible 32-bit inputs.*/
+unsigned isqrt32(opus_uint32 _val){
+  unsigned b;
+  unsigned g;
+  int      bshift;
+  /*Uses the second method from
+     http://www.azillionmonkeys.com/qed/sqroot.html
+    The main idea is to search for the largest binary digit b such that
+     (g+b)*(g+b) <= _val, and add it to the solution g.*/
+  g=0;
+  bshift=(EC_ILOG(_val)-1)>>1;
+  b=1U<<bshift;
+  do{
+    opus_uint32 t;
+    t=(((opus_uint32)g<<1)+b)<<bshift;
+    if(t<=_val){
+      g+=b;
+      _val-=t;
+    }
+    b>>=1;
+    bshift--;
+  }
+  while(bshift>=0);
+  return g;
+}
+
+#ifdef FIXED_POINT
+
+opus_val32 frac_div32(opus_val32 a, opus_val32 b)
+{
+   opus_val16 rcp;
+   opus_val32 result, rem;
+   int shift = celt_ilog2(b)-29;
+   a = VSHR32(a,shift);
+   b = VSHR32(b,shift);
+   /* 16-bit reciprocal */
+   rcp = ROUND16(celt_rcp(ROUND16(b,16)),3);
+   result = MULT16_32_Q15(rcp, a);
+   rem = PSHR32(a,2)-MULT32_32_Q31(result, b);
+   result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2));
+   if (result >= 536870912)       /*  2^29 */
+      return 2147483647;          /*  2^31 - 1 */
+   else if (result <= -536870912) /* -2^29 */
+      return -2147483647;         /* -2^31 */
+   else
+      return SHL32(result, 2);
+}
+
+/** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
+opus_val16 celt_rsqrt_norm(opus_val32 x)
+{
+   opus_val16 n;
+   opus_val16 r;
+   opus_val16 r2;
+   opus_val16 y;
+   /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
+   n = x-32768;
+   /* Get a rough initial guess for the root.
+      The optimal minimax quadratic approximation (using relative error) is
+       r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
+      Coefficients here, and the final result r, are Q14.*/
+   r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
+   /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
+      We can compute the result from n and r using Q15 multiplies with some
+       adjustment, carefully done to avoid overflow.
+      Range of y is [-1564,1594]. */
+   r2 = MULT16_16_Q15(r, r);
+   y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
+   /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
+      This yields the Q14 reciprocal square root of the Q16 x, with a maximum
+       relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
+       peak absolute error of 2.26591/16384. */
+   return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
+              SUB16(MULT16_16_Q15(y, 12288), 16384))));
+}
+
+/** Sqrt approximation (QX input, QX/2 output) */
+opus_val32 celt_sqrt(opus_val32 x)
+{
+   int k;
+   opus_val16 n;
+   opus_val32 rt;
+   static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664};
+   if (x==0)
+      return 0;
+   k = (celt_ilog2(x)>>1)-7;
+   x = VSHR32(x, 2*k);
+   n = x-32768;
+   rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
+              MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
+   rt = VSHR32(rt,7-k);
+   return rt;
+}
+
+#define L1 32767
+#define L2 -7651
+#define L3 8277
+#define L4 -626
+
+static inline opus_val16 _celt_cos_pi_2(opus_val16 x)
+{
+   opus_val16 x2;
+
+   x2 = MULT16_16_P15(x,x);
+   return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
+                                                                                ))))))));
+}
+
+#undef L1
+#undef L2
+#undef L3
+#undef L4
+
+opus_val16 celt_cos_norm(opus_val32 x)
+{
+   x = x&0x0001ffff;
+   if (x>SHL32(EXTEND32(1), 16))
+      x = SUB32(SHL32(EXTEND32(1), 17),x);
+   if (x&0x00007fff)
+   {
+      if (x<SHL32(EXTEND32(1), 15))
+      {
+         return _celt_cos_pi_2(EXTRACT16(x));
+      } else {
+         return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x)));
+      }
+   } else {
+      if (x&0x0000ffff)
+         return 0;
+      else if (x&0x0001ffff)
+         return -32767;
+      else
+         return 32767;
+   }
+}
+
+/** Reciprocal approximation (Q15 input, Q16 output) */
+opus_val32 celt_rcp(opus_val32 x)
+{
+   int i;
+   opus_val16 n;
+   opus_val16 r;
+   celt_assert2(x>0, "celt_rcp() only defined for positive values");
+   i = celt_ilog2(x);
+   /* n is Q15 with range [0,1). */
+   n = VSHR32(x,i-15)-32768;
+   /* Start with a linear approximation:
+      r = 1.8823529411764706-0.9411764705882353*n.
+      The coefficients and the result are Q14 in the range [15420,30840].*/
+   r = ADD16(30840, MULT16_16_Q15(-15420, n));
+   /* Perform two Newton iterations:
+      r -= r*((r*n)-1.Q15)
+         = r*((r*n)+(r-1.Q15)). */
+   r = SUB16(r, MULT16_16_Q15(r,
+             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))));
+   /* We subtract an extra 1 in the second iteration to avoid overflow; it also
+       neatly compensates for truncation error in the rest of the process. */
+   r = SUB16(r, ADD16(1, MULT16_16_Q15(r,
+             ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))));
+   /* r is now the Q15 solution to 2/(n+1), with a maximum relative error
+       of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
+       error of 1.24665/32768. */
+   return VSHR32(EXTEND32(r),i-16);
+}
+
+#endif