#14371: Add opensll to main repository
diff --git a/jni/openssl/crypto/bn/asm/ia64.S b/jni/openssl/crypto/bn/asm/ia64.S
new file mode 100644
index 0000000..951abc5
--- /dev/null
+++ b/jni/openssl/crypto/bn/asm/ia64.S
@@ -0,0 +1,1555 @@
+.explicit
+.text
+.ident	"ia64.S, Version 2.1"
+.ident	"IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"
+
+//
+// ====================================================================
+// Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
+// project.
+//
+// Rights for redistribution and usage in source and binary forms are
+// granted according to the OpenSSL license. Warranty of any kind is
+// disclaimed.
+// ====================================================================
+//
+// Version 2.x is Itanium2 re-tune. Few words about how Itanum2 is
+// different from Itanium to this module viewpoint. Most notably, is it
+// "wider" than Itanium? Can you experience loop scalability as
+// discussed in commentary sections? Not really:-( Itanium2 has 6
+// integer ALU ports, i.e. it's 2 ports wider, but it's not enough to
+// spin twice as fast, as I need 8 IALU ports. Amount of floating point
+// ports is the same, i.e. 2, while I need 4. In other words, to this
+// module Itanium2 remains effectively as "wide" as Itanium. Yet it's
+// essentially different in respect to this module, and a re-tune was
+// required. Well, because some intruction latencies has changed. Most
+// noticeably those intensively used:
+//
+//			Itanium	Itanium2
+//	ldf8		9	6		L2 hit
+//	ld8		2	1		L1 hit
+//	getf		2	5
+//	xma[->getf]	7[+1]	4[+0]
+//	add[->st8]	1[+1]	1[+0]
+//
+// What does it mean? You might ratiocinate that the original code
+// should run just faster... Because sum of latencies is smaller...
+// Wrong! Note that getf latency increased. This means that if a loop is
+// scheduled for lower latency (as they were), then it will suffer from
+// stall condition and the code will therefore turn anti-scalable, e.g.
+// original bn_mul_words spun at 5*n or 2.5 times slower than expected
+// on Itanium2! What to do? Reschedule loops for Itanium2? But then
+// Itanium would exhibit anti-scalability. So I've chosen to reschedule
+// for worst latency for every instruction aiming for best *all-round*
+// performance.  
+
+// Q.	How much faster does it get?
+// A.	Here is the output from 'openssl speed rsa dsa' for vanilla
+//	0.9.6a compiled with gcc version 2.96 20000731 (Red Hat
+//	Linux 7.1 2.96-81):
+//
+//	                  sign    verify    sign/s verify/s
+//	rsa  512 bits   0.0036s   0.0003s    275.3   2999.2
+//	rsa 1024 bits   0.0203s   0.0011s     49.3    894.1
+//	rsa 2048 bits   0.1331s   0.0040s      7.5    250.9
+//	rsa 4096 bits   0.9270s   0.0147s      1.1     68.1
+//	                  sign    verify    sign/s verify/s
+//	dsa  512 bits   0.0035s   0.0043s    288.3    234.8
+//	dsa 1024 bits   0.0111s   0.0135s     90.0     74.2
+//
+//	And here is similar output but for this assembler
+//	implementation:-)
+//
+//	                  sign    verify    sign/s verify/s
+//	rsa  512 bits   0.0021s   0.0001s    549.4   9638.5
+//	rsa 1024 bits   0.0055s   0.0002s    183.8   4481.1
+//	rsa 2048 bits   0.0244s   0.0006s     41.4   1726.3
+//	rsa 4096 bits   0.1295s   0.0018s      7.7    561.5
+//	                  sign    verify    sign/s verify/s
+//	dsa  512 bits   0.0012s   0.0013s    891.9    756.6
+//	dsa 1024 bits   0.0023s   0.0028s    440.4    376.2
+//	
+//	Yes, you may argue that it's not fair comparison as it's
+//	possible to craft the C implementation with BN_UMULT_HIGH
+//	inline assembler macro. But of course! Here is the output
+//	with the macro:
+//
+//	                  sign    verify    sign/s verify/s
+//	rsa  512 bits   0.0020s   0.0002s    495.0   6561.0
+//	rsa 1024 bits   0.0086s   0.0004s    116.2   2235.7
+//	rsa 2048 bits   0.0519s   0.0015s     19.3    667.3
+//	rsa 4096 bits   0.3464s   0.0053s      2.9    187.7
+//	                  sign    verify    sign/s verify/s
+//	dsa  512 bits   0.0016s   0.0020s    613.1    510.5
+//	dsa 1024 bits   0.0045s   0.0054s    221.0    183.9
+//
+//	My code is still way faster, huh:-) And I believe that even
+//	higher performance can be achieved. Note that as keys get
+//	longer, performance gain is larger. Why? According to the
+//	profiler there is another player in the field, namely
+//	BN_from_montgomery consuming larger and larger portion of CPU
+//	time as keysize decreases. I therefore consider putting effort
+//	to assembler implementation of the following routine:
+//
+//	void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0)
+//	{
+//	int      i,j;
+//	BN_ULONG v;
+//
+//	for (i=0; i<nl; i++)
+//		{
+//		v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);
+//		nrp++;
+//		rp++;
+//		if (((nrp[-1]+=v)&BN_MASK2) < v)
+//			for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ;
+//		}
+//	}
+//
+//	It might as well be beneficial to implement even combaX
+//	variants, as it appears as it can literally unleash the
+//	performance (see comment section to bn_mul_comba8 below).
+//
+//	And finally for your reference the output for 0.9.6a compiled
+//	with SGIcc version 0.01.0-12 (keep in mind that for the moment
+//	of this writing it's not possible to convince SGIcc to use
+//	BN_UMULT_HIGH inline assembler macro, yet the code is fast,
+//	i.e. for a compiler generated one:-):
+//
+//	                  sign    verify    sign/s verify/s
+//	rsa  512 bits   0.0022s   0.0002s    452.7   5894.3
+//	rsa 1024 bits   0.0097s   0.0005s    102.7   2002.9
+//	rsa 2048 bits   0.0578s   0.0017s     17.3    600.2
+//	rsa 4096 bits   0.3838s   0.0061s      2.6    164.5
+//	                  sign    verify    sign/s verify/s
+//	dsa  512 bits   0.0018s   0.0022s    547.3    459.6
+//	dsa 1024 bits   0.0051s   0.0062s    196.6    161.3
+//
+//	Oh! Benchmarks were performed on 733MHz Lion-class Itanium
+//	system running Redhat Linux 7.1 (very special thanks to Ray
+//	McCaffity of Williams Communications for providing an account).
+//
+// Q.	What's the heck with 'rum 1<<5' at the end of every function?
+// A.	Well, by clearing the "upper FP registers written" bit of the
+//	User Mask I want to excuse the kernel from preserving upper
+//	(f32-f128) FP register bank over process context switch, thus
+//	minimizing bus bandwidth consumption during the switch (i.e.
+//	after PKI opration completes and the program is off doing
+//	something else like bulk symmetric encryption). Having said
+//	this, I also want to point out that it might be good idea
+//	to compile the whole toolkit (as well as majority of the
+//	programs for that matter) with -mfixed-range=f32-f127 command
+//	line option. No, it doesn't prevent the compiler from writing
+//	to upper bank, but at least discourages to do so. If you don't
+//	like the idea you have the option to compile the module with
+//	-Drum=nop.m in command line.
+//
+
+#if defined(_HPUX_SOURCE) && !defined(_LP64)
+#define	ADDP	addp4
+#else
+#define	ADDP	add
+#endif
+
+#if 1
+//
+// bn_[add|sub]_words routines.
+//
+// Loops are spinning in 2*(n+5) ticks on Itanuim (provided that the
+// data reside in L1 cache, i.e. 2 ticks away). It's possible to
+// compress the epilogue and get down to 2*n+6, but at the cost of
+// scalability (the neat feature of this implementation is that it
+// shall automagically spin in n+5 on "wider" IA-64 implementations:-)
+// I consider that the epilogue is short enough as it is to trade tiny
+// performance loss on Itanium for scalability.
+//
+// BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
+//
+.global	bn_add_words#
+.proc	bn_add_words#
+.align	64
+.skip	32	// makes the loop body aligned at 64-byte boundary
+bn_add_words:
+	.prologue
+	.save	ar.pfs,r2
+{ .mii;	alloc		r2=ar.pfs,4,12,0,16
+	cmp4.le		p6,p0=r35,r0	};;
+{ .mfb;	mov		r8=r0			// return value
+(p6)	br.ret.spnt.many	b0	};;
+
+{ .mib;	sub		r10=r35,r0,1
+	.save	ar.lc,r3
+	mov		r3=ar.lc
+	brp.loop.imp	.L_bn_add_words_ctop,.L_bn_add_words_cend-16
+					}
+{ .mib;	ADDP		r14=0,r32		// rp
+	.save	pr,r9
+	mov		r9=pr		};;
+	.body
+{ .mii;	ADDP		r15=0,r33		// ap
+	mov		ar.lc=r10
+	mov		ar.ec=6		}
+{ .mib;	ADDP		r16=0,r34		// bp
+	mov		pr.rot=1<<16	};;
+
+.L_bn_add_words_ctop:
+{ .mii;	(p16)	ld8		r32=[r16],8	  // b=*(bp++)
+	(p18)	add		r39=r37,r34
+	(p19)	cmp.ltu.unc	p56,p0=r40,r38	}
+{ .mfb;	(p0)	nop.m		0x0
+	(p0)	nop.f		0x0
+	(p0)	nop.b		0x0		}
+{ .mii;	(p16)	ld8		r35=[r15],8	  // a=*(ap++)
+	(p58)	cmp.eq.or	p57,p0=-1,r41	  // (p20)
+	(p58)	add		r41=1,r41	} // (p20)
+{ .mfb;	(p21)	st8		[r14]=r42,8	  // *(rp++)=r
+	(p0)	nop.f		0x0
+	br.ctop.sptk	.L_bn_add_words_ctop	};;
+.L_bn_add_words_cend:
+
+{ .mii;
+(p59)	add		r8=1,r8		// return value
+	mov		pr=r9,0x1ffff
+	mov		ar.lc=r3	}
+{ .mbb;	nop.b		0x0
+	br.ret.sptk.many	b0	};;
+.endp	bn_add_words#
+
+//
+// BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
+//
+.global	bn_sub_words#
+.proc	bn_sub_words#
+.align	64
+.skip	32	// makes the loop body aligned at 64-byte boundary
+bn_sub_words:
+	.prologue
+	.save	ar.pfs,r2
+{ .mii;	alloc		r2=ar.pfs,4,12,0,16
+	cmp4.le		p6,p0=r35,r0	};;
+{ .mfb;	mov		r8=r0			// return value
+(p6)	br.ret.spnt.many	b0	};;
+
+{ .mib;	sub		r10=r35,r0,1
+	.save	ar.lc,r3
+	mov		r3=ar.lc
+	brp.loop.imp	.L_bn_sub_words_ctop,.L_bn_sub_words_cend-16
+					}
+{ .mib;	ADDP		r14=0,r32		// rp
+	.save	pr,r9
+	mov		r9=pr		};;
+	.body
+{ .mii;	ADDP		r15=0,r33		// ap
+	mov		ar.lc=r10
+	mov		ar.ec=6		}
+{ .mib;	ADDP		r16=0,r34		// bp
+	mov		pr.rot=1<<16	};;
+
+.L_bn_sub_words_ctop:
+{ .mii;	(p16)	ld8		r32=[r16],8	  // b=*(bp++)
+	(p18)	sub		r39=r37,r34
+	(p19)	cmp.gtu.unc	p56,p0=r40,r38	}
+{ .mfb;	(p0)	nop.m		0x0
+	(p0)	nop.f		0x0
+	(p0)	nop.b		0x0		}
+{ .mii;	(p16)	ld8		r35=[r15],8	  // a=*(ap++)
+	(p58)	cmp.eq.or	p57,p0=0,r41	  // (p20)
+	(p58)	add		r41=-1,r41	} // (p20)
+{ .mbb;	(p21)	st8		[r14]=r42,8	  // *(rp++)=r
+	(p0)	nop.b		0x0
+	br.ctop.sptk	.L_bn_sub_words_ctop	};;
+.L_bn_sub_words_cend:
+
+{ .mii;
+(p59)	add		r8=1,r8		// return value
+	mov		pr=r9,0x1ffff
+	mov		ar.lc=r3	}
+{ .mbb;	nop.b		0x0
+	br.ret.sptk.many	b0	};;
+.endp	bn_sub_words#
+#endif
+
+#if 0
+#define XMA_TEMPTATION
+#endif
+
+#if 1
+//
+// BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
+//
+.global	bn_mul_words#
+.proc	bn_mul_words#
+.align	64
+.skip	32	// makes the loop body aligned at 64-byte boundary
+bn_mul_words:
+	.prologue
+	.save	ar.pfs,r2
+#ifdef XMA_TEMPTATION
+{ .mfi;	alloc		r2=ar.pfs,4,0,0,0	};;
+#else
+{ .mfi;	alloc		r2=ar.pfs,4,12,0,16	};;
+#endif
+{ .mib;	mov		r8=r0			// return value
+	cmp4.le		p6,p0=r34,r0
+(p6)	br.ret.spnt.many	b0		};;
+
+{ .mii;	sub	r10=r34,r0,1
+	.save	ar.lc,r3
+	mov	r3=ar.lc
+	.save	pr,r9
+	mov	r9=pr			};;
+
+	.body
+{ .mib;	setf.sig	f8=r35	// w
+	mov		pr.rot=0x800001<<16
+			// ------^----- serves as (p50) at first (p27)
+	brp.loop.imp	.L_bn_mul_words_ctop,.L_bn_mul_words_cend-16
+					}
+
+#ifndef XMA_TEMPTATION
+
+{ .mmi;	ADDP		r14=0,r32	// rp
+	ADDP		r15=0,r33	// ap
+	mov		ar.lc=r10	}
+{ .mmi;	mov		r40=0		// serves as r35 at first (p27)
+	mov		ar.ec=13	};;
+
+// This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium
+// L2 cache (i.e. 9 ticks away) as floating point load/store instructions
+// bypass L1 cache and L2 latency is actually best-case scenario for
+// ldf8. The loop is not scalable and shall run in 2*(n+12) even on
+// "wider" IA-64 implementations. It's a trade-off here. n+24 loop
+// would give us ~5% in *overall* performance improvement on "wider"
+// IA-64, but would hurt Itanium for about same because of longer
+// epilogue. As it's a matter of few percents in either case I've
+// chosen to trade the scalability for development time (you can see
+// this very instruction sequence in bn_mul_add_words loop which in
+// turn is scalable).
+.L_bn_mul_words_ctop:
+{ .mfi;	(p25)	getf.sig	r36=f52			// low
+	(p21)	xmpy.lu		f48=f37,f8
+	(p28)	cmp.ltu		p54,p50=r41,r39	}
+{ .mfi;	(p16)	ldf8		f32=[r15],8
+	(p21)	xmpy.hu		f40=f37,f8
+	(p0)	nop.i		0x0		};;
+{ .mii;	(p25)	getf.sig	r32=f44			// high
+	.pred.rel	"mutex",p50,p54
+	(p50)	add		r40=r38,r35		// (p27)
+	(p54)	add		r40=r38,r35,1	}	// (p27)
+{ .mfb;	(p28)	st8		[r14]=r41,8
+	(p0)	nop.f		0x0
+	br.ctop.sptk	.L_bn_mul_words_ctop	};;
+.L_bn_mul_words_cend:
+
+{ .mii;	nop.m		0x0
+.pred.rel	"mutex",p51,p55
+(p51)	add		r8=r36,r0
+(p55)	add		r8=r36,r0,1	}
+{ .mfb;	nop.m	0x0
+	nop.f	0x0
+	nop.b	0x0			}
+
+#else	// XMA_TEMPTATION
+
+	setf.sig	f37=r0	// serves as carry at (p18) tick
+	mov		ar.lc=r10
+	mov		ar.ec=5;;
+
+// Most of you examining this code very likely wonder why in the name
+// of Intel the following loop is commented out? Indeed, it looks so
+// neat that you find it hard to believe that it's something wrong
+// with it, right? The catch is that every iteration depends on the
+// result from previous one and the latter isn't available instantly.
+// The loop therefore spins at the latency of xma minus 1, or in other
+// words at 6*(n+4) ticks:-( Compare to the "production" loop above
+// that runs in 2*(n+11) where the low latency problem is worked around
+// by moving the dependency to one-tick latent interger ALU. Note that
+// "distance" between ldf8 and xma is not latency of ldf8, but the
+// *difference* between xma and ldf8 latencies.
+.L_bn_mul_words_ctop:
+{ .mfi;	(p16)	ldf8		f32=[r33],8
+	(p18)	xma.hu		f38=f34,f8,f39	}
+{ .mfb;	(p20)	stf8		[r32]=f37,8
+	(p18)	xma.lu		f35=f34,f8,f39
+	br.ctop.sptk	.L_bn_mul_words_ctop	};;
+.L_bn_mul_words_cend:
+
+	getf.sig	r8=f41		// the return value
+
+#endif	// XMA_TEMPTATION
+
+{ .mii;	nop.m		0x0
+	mov		pr=r9,0x1ffff
+	mov		ar.lc=r3	}
+{ .mfb;	rum		1<<5		// clear um.mfh
+	nop.f		0x0
+	br.ret.sptk.many	b0	};;
+.endp	bn_mul_words#
+#endif
+
+#if 1
+//
+// BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
+//
+.global	bn_mul_add_words#
+.proc	bn_mul_add_words#
+.align	64
+.skip	48	// makes the loop body aligned at 64-byte boundary
+bn_mul_add_words:
+	.prologue
+	.save	ar.pfs,r2
+{ .mmi;	alloc		r2=ar.pfs,4,4,0,8
+	cmp4.le		p6,p0=r34,r0
+	.save	ar.lc,r3
+	mov		r3=ar.lc	};;
+{ .mib;	mov		r8=r0		// return value
+	sub		r10=r34,r0,1
+(p6)	br.ret.spnt.many	b0	};;
+
+{ .mib;	setf.sig	f8=r35		// w
+	.save	pr,r9
+	mov		r9=pr
+	brp.loop.imp	.L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16
+					}
+	.body
+{ .mmi;	ADDP		r14=0,r32	// rp
+	ADDP		r15=0,r33	// ap
+	mov		ar.lc=r10	}
+{ .mii;	ADDP		r16=0,r32	// rp copy
+	mov		pr.rot=0x2001<<16
+			// ------^----- serves as (p40) at first (p27)
+	mov		ar.ec=11	};;
+
+// This loop spins in 3*(n+10) ticks on Itanium and in 2*(n+10) on
+// Itanium 2. Yes, unlike previous versions it scales:-) Previous
+// version was peforming *all* additions in IALU and was starving
+// for those even on Itanium 2. In this version one addition is
+// moved to FPU and is folded with multiplication. This is at cost
+// of propogating the result from previous call to this subroutine
+// to L2 cache... In other words negligible even for shorter keys.
+// *Overall* performance improvement [over previous version] varies
+// from 11 to 22 percent depending on key length.
+.L_bn_mul_add_words_ctop:
+.pred.rel	"mutex",p40,p42
+{ .mfi;	(p23)	getf.sig	r36=f45			// low
+	(p20)	xma.lu		f42=f36,f8,f50		// low
+	(p40)	add		r39=r39,r35	}	// (p27)
+{ .mfi;	(p16)	ldf8		f32=[r15],8		// *(ap++)
+	(p20)	xma.hu		f36=f36,f8,f50		// high
+	(p42)	add		r39=r39,r35,1	};;	// (p27)
+{ .mmi;	(p24)	getf.sig	r32=f40			// high
+	(p16)	ldf8		f46=[r16],8		// *(rp1++)
+	(p40)	cmp.ltu		p41,p39=r39,r35	}	// (p27)
+{ .mib;	(p26)	st8		[r14]=r39,8		// *(rp2++)
+	(p42)	cmp.leu		p41,p39=r39,r35		// (p27)
+	br.ctop.sptk	.L_bn_mul_add_words_ctop};;
+.L_bn_mul_add_words_cend:
+
+{ .mmi;	.pred.rel	"mutex",p40,p42
+(p40)	add		r8=r35,r0
+(p42)	add		r8=r35,r0,1
+	mov		pr=r9,0x1ffff	}
+{ .mib;	rum		1<<5		// clear um.mfh
+	mov		ar.lc=r3
+	br.ret.sptk.many	b0	};;
+.endp	bn_mul_add_words#
+#endif
+
+#if 1
+//
+// void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num)
+//
+.global	bn_sqr_words#
+.proc	bn_sqr_words#
+.align	64
+.skip	32	// makes the loop body aligned at 64-byte boundary 
+bn_sqr_words:
+	.prologue
+	.save	ar.pfs,r2
+{ .mii;	alloc		r2=ar.pfs,3,0,0,0
+	sxt4		r34=r34		};;
+{ .mii;	cmp.le		p6,p0=r34,r0
+	mov		r8=r0		}	// return value
+{ .mfb;	ADDP		r32=0,r32
+	nop.f		0x0
+(p6)	br.ret.spnt.many	b0	};;
+
+{ .mii;	sub	r10=r34,r0,1
+	.save	ar.lc,r3
+	mov	r3=ar.lc
+	.save	pr,r9
+	mov	r9=pr			};;
+
+	.body
+{ .mib;	ADDP		r33=0,r33
+	mov		pr.rot=1<<16
+	brp.loop.imp	.L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16
+					}
+{ .mii;	add		r34=8,r32
+	mov		ar.lc=r10
+	mov		ar.ec=18	};;
+
+// 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's
+// possible to compress the epilogue (I'm getting tired to write this
+// comment over and over) and get down to 2*n+16 at the cost of
+// scalability. The decision will very likely be reconsidered after the
+// benchmark program is profiled. I.e. if perfomance gain on Itanium
+// will appear larger than loss on "wider" IA-64, then the loop should
+// be explicitely split and the epilogue compressed.
+.L_bn_sqr_words_ctop:
+{ .mfi;	(p16)	ldf8		f32=[r33],8
+	(p25)	xmpy.lu		f42=f41,f41
+	(p0)	nop.i		0x0		}
+{ .mib;	(p33)	stf8		[r32]=f50,16
+	(p0)	nop.i		0x0
+	(p0)	nop.b		0x0		}
+{ .mfi;	(p0)	nop.m		0x0
+	(p25)	xmpy.hu		f52=f41,f41
+	(p0)	nop.i		0x0		}
+{ .mib;	(p33)	stf8		[r34]=f60,16
+	(p0)	nop.i		0x0
+	br.ctop.sptk	.L_bn_sqr_words_ctop	};;
+.L_bn_sqr_words_cend:
+
+{ .mii;	nop.m		0x0
+	mov		pr=r9,0x1ffff
+	mov		ar.lc=r3	}
+{ .mfb;	rum		1<<5		// clear um.mfh
+	nop.f		0x0
+	br.ret.sptk.many	b0	};;
+.endp	bn_sqr_words#
+#endif
+
+#if 1
+// Apparently we win nothing by implementing special bn_sqr_comba8.
+// Yes, it is possible to reduce the number of multiplications by
+// almost factor of two, but then the amount of additions would
+// increase by factor of two (as we would have to perform those
+// otherwise performed by xma ourselves). Normally we would trade
+// anyway as multiplications are way more expensive, but not this
+// time... Multiplication kernel is fully pipelined and as we drain
+// one 128-bit multiplication result per clock cycle multiplications
+// are effectively as inexpensive as additions. Special implementation
+// might become of interest for "wider" IA-64 implementation as you'll
+// be able to get through the multiplication phase faster (there won't
+// be any stall issues as discussed in the commentary section below and
+// you therefore will be able to employ all 4 FP units)... But these
+// Itanium days it's simply too hard to justify the effort so I just
+// drop down to bn_mul_comba8 code:-)
+//
+// void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a)
+//
+.global	bn_sqr_comba8#
+.proc	bn_sqr_comba8#
+.align	64
+bn_sqr_comba8:
+	.prologue
+	.save	ar.pfs,r2
+#if defined(_HPUX_SOURCE) && !defined(_LP64)
+{ .mii;	alloc	r2=ar.pfs,2,1,0,0
+	addp4	r33=0,r33
+	addp4	r32=0,r32		};;
+{ .mii;
+#else
+{ .mii;	alloc	r2=ar.pfs,2,1,0,0
+#endif
+	mov	r34=r33
+	add	r14=8,r33		};;
+	.body
+{ .mii;	add	r17=8,r34
+	add	r15=16,r33
+	add	r18=16,r34		}
+{ .mfb;	add	r16=24,r33
+	br	.L_cheat_entry_point8	};;
+.endp	bn_sqr_comba8#
+#endif
+
+#if 1
+// I've estimated this routine to run in ~120 ticks, but in reality
+// (i.e. according to ar.itc) it takes ~160 ticks. Are those extra
+// cycles consumed for instructions fetch? Or did I misinterpret some
+// clause in Itanium µ-architecture manual? Comments are welcomed and
+// highly appreciated.
+//
+// On Itanium 2 it takes ~190 ticks. This is because of stalls on
+// result from getf.sig. I do nothing about it at this point for
+// reasons depicted below.
+//
+// However! It should be noted that even 160 ticks is darn good result
+// as it's over 10 (yes, ten, spelled as t-e-n) times faster than the
+// C version (compiled with gcc with inline assembler). I really
+// kicked compiler's butt here, didn't I? Yeah! This brings us to the
+// following statement. It's damn shame that this routine isn't called
+// very often nowadays! According to the profiler most CPU time is
+// consumed by bn_mul_add_words called from BN_from_montgomery. In
+// order to estimate what we're missing, I've compared the performance
+// of this routine against "traditional" implementation, i.e. against
+// following routine:
+//
+// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
+// {	r[ 8]=bn_mul_words(    &(r[0]),a,8,b[0]);
+//	r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
+//	r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
+//	r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
+//	r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
+//	r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
+//	r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
+//	r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
+// }
+//
+// The one below is over 8 times faster than the one above:-( Even
+// more reasons to "combafy" bn_mul_add_mont...
+//
+// And yes, this routine really made me wish there were an optimizing
+// assembler! It also feels like it deserves a dedication.
+//
+//	To my wife for being there and to my kids...
+//
+// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
+//
+#define	carry1	r14
+#define	carry2	r15
+#define	carry3	r34
+.global	bn_mul_comba8#
+.proc	bn_mul_comba8#
+.align	64
+bn_mul_comba8:
+	.prologue
+	.save	ar.pfs,r2
+#if defined(_HPUX_SOURCE) && !defined(_LP64)
+{ .mii;	alloc	r2=ar.pfs,3,0,0,0
+	addp4	r33=0,r33
+	addp4	r34=0,r34		};;
+{ .mii;	addp4	r32=0,r32
+#else
+{ .mii;	alloc   r2=ar.pfs,3,0,0,0
+#endif
+	add	r14=8,r33
+	add	r17=8,r34		}
+	.body
+{ .mii;	add	r15=16,r33
+	add	r18=16,r34
+	add	r16=24,r33		}
+.L_cheat_entry_point8:
+{ .mmi;	add	r19=24,r34
+
+	ldf8	f32=[r33],32		};;
+
+{ .mmi;	ldf8	f120=[r34],32
+	ldf8	f121=[r17],32		}
+{ .mmi;	ldf8	f122=[r18],32
+	ldf8	f123=[r19],32		};;
+{ .mmi;	ldf8	f124=[r34]
+	ldf8	f125=[r17]		}
+{ .mmi;	ldf8	f126=[r18]
+	ldf8	f127=[r19]		}
+
+{ .mmi;	ldf8	f33=[r14],32
+	ldf8	f34=[r15],32		}
+{ .mmi;	ldf8	f35=[r16],32;;
+	ldf8	f36=[r33]		}
+{ .mmi;	ldf8	f37=[r14]
+	ldf8	f38=[r15]		}
+{ .mfi;	ldf8	f39=[r16]
+// -------\ Entering multiplier's heaven /-------
+// ------------\                    /------------
+// -----------------\          /-----------------
+// ----------------------\/----------------------
+		xma.hu	f41=f32,f120,f0		}
+{ .mfi;		xma.lu	f40=f32,f120,f0		};; // (*)
+{ .mfi;		xma.hu	f51=f32,f121,f0		}
+{ .mfi;		xma.lu	f50=f32,f121,f0		};;
+{ .mfi;		xma.hu	f61=f32,f122,f0		}
+{ .mfi;		xma.lu	f60=f32,f122,f0		};;
+{ .mfi;		xma.hu	f71=f32,f123,f0		}
+{ .mfi;		xma.lu	f70=f32,f123,f0		};;
+{ .mfi;		xma.hu	f81=f32,f124,f0		}
+{ .mfi;		xma.lu	f80=f32,f124,f0		};;
+{ .mfi;		xma.hu	f91=f32,f125,f0		}
+{ .mfi;		xma.lu	f90=f32,f125,f0		};;
+{ .mfi;		xma.hu	f101=f32,f126,f0	}
+{ .mfi;		xma.lu	f100=f32,f126,f0	};;
+{ .mfi;		xma.hu	f111=f32,f127,f0	}
+{ .mfi;		xma.lu	f110=f32,f127,f0	};;//
+// (*)	You can argue that splitting at every second bundle would
+//	prevent "wider" IA-64 implementations from achieving the peak
+//	performance. Well, not really... The catch is that if you
+//	intend to keep 4 FP units busy by splitting at every fourth
+//	bundle and thus perform these 16 multiplications in 4 ticks,
+//	the first bundle *below* would stall because the result from
+//	the first xma bundle *above* won't be available for another 3
+//	ticks (if not more, being an optimist, I assume that "wider"
+//	implementation will have same latency:-). This stall will hold
+//	you back and the performance would be as if every second bundle
+//	were split *anyway*...
+{ .mfi;	getf.sig	r16=f40
+		xma.hu	f42=f33,f120,f41
+	add		r33=8,r32		}
+{ .mfi;		xma.lu	f41=f33,f120,f41	};;
+{ .mfi;	getf.sig	r24=f50
+		xma.hu	f52=f33,f121,f51	}
+{ .mfi;		xma.lu	f51=f33,f121,f51	};;
+{ .mfi;	st8		[r32]=r16,16
+		xma.hu	f62=f33,f122,f61	}
+{ .mfi;		xma.lu	f61=f33,f122,f61	};;
+{ .mfi;		xma.hu	f72=f33,f123,f71	}
+{ .mfi;		xma.lu	f71=f33,f123,f71	};;
+{ .mfi;		xma.hu	f82=f33,f124,f81	}
+{ .mfi;		xma.lu	f81=f33,f124,f81	};;
+{ .mfi;		xma.hu	f92=f33,f125,f91	}
+{ .mfi;		xma.lu	f91=f33,f125,f91	};;
+{ .mfi;		xma.hu	f102=f33,f126,f101	}
+{ .mfi;		xma.lu	f101=f33,f126,f101	};;
+{ .mfi;		xma.hu	f112=f33,f127,f111	}
+{ .mfi;		xma.lu	f111=f33,f127,f111	};;//
+//-------------------------------------------------//
+{ .mfi;	getf.sig	r25=f41
+		xma.hu	f43=f34,f120,f42	}
+{ .mfi;		xma.lu	f42=f34,f120,f42	};;
+{ .mfi;	getf.sig	r16=f60
+		xma.hu	f53=f34,f121,f52	}
+{ .mfi;		xma.lu	f52=f34,f121,f52	};;
+{ .mfi;	getf.sig	r17=f51
+		xma.hu	f63=f34,f122,f62
+	add		r25=r25,r24		}
+{ .mfi;		xma.lu	f62=f34,f122,f62
+	mov		carry1=0		};;
+{ .mfi;	cmp.ltu		p6,p0=r25,r24
+		xma.hu	f73=f34,f123,f72	}
+{ .mfi;		xma.lu	f72=f34,f123,f72	};;
+{ .mfi;	st8		[r33]=r25,16
+		xma.hu	f83=f34,f124,f82
+(p6)	add		carry1=1,carry1		}
+{ .mfi;		xma.lu	f82=f34,f124,f82	};;
+{ .mfi;		xma.hu	f93=f34,f125,f92	}
+{ .mfi;		xma.lu	f92=f34,f125,f92	};;
+{ .mfi;		xma.hu	f103=f34,f126,f102	}
+{ .mfi;		xma.lu	f102=f34,f126,f102	};;
+{ .mfi;		xma.hu	f113=f34,f127,f112	}
+{ .mfi;		xma.lu	f112=f34,f127,f112	};;//
+//-------------------------------------------------//
+{ .mfi;	getf.sig	r18=f42
+		xma.hu	f44=f35,f120,f43
+	add		r17=r17,r16		}
+{ .mfi;		xma.lu	f43=f35,f120,f43	};;
+{ .mfi;	getf.sig	r24=f70
+		xma.hu	f54=f35,f121,f53	}
+{ .mfi;	mov		carry2=0
+		xma.lu	f53=f35,f121,f53	};;
+{ .mfi;	getf.sig	r25=f61
+		xma.hu	f64=f35,f122,f63
+	cmp.ltu		p7,p0=r17,r16		}
+{ .mfi;	add		r18=r18,r17
+		xma.lu	f63=f35,f122,f63	};;
+{ .mfi;	getf.sig	r26=f52
+		xma.hu	f74=f35,f123,f73
+(p7)	add		carry2=1,carry2		}
+{ .mfi;	cmp.ltu		p7,p0=r18,r17
+		xma.lu	f73=f35,f123,f73
+	add		r18=r18,carry1		};;
+{ .mfi;
+		xma.hu	f84=f35,f124,f83
+(p7)	add		carry2=1,carry2		}
+{ .mfi;	cmp.ltu		p7,p0=r18,carry1
+		xma.lu	f83=f35,f124,f83	};;
+{ .mfi;	st8		[r32]=r18,16
+		xma.hu	f94=f35,f125,f93
+(p7)	add		carry2=1,carry2		}
+{ .mfi;		xma.lu	f93=f35,f125,f93	};;
+{ .mfi;		xma.hu	f104=f35,f126,f103	}
+{ .mfi;		xma.lu	f103=f35,f126,f103	};;
+{ .mfi;		xma.hu	f114=f35,f127,f113	}
+{ .mfi;	mov		carry1=0
+		xma.lu	f113=f35,f127,f113
+	add		r25=r25,r24		};;//
+//-------------------------------------------------//
+{ .mfi;	getf.sig	r27=f43
+		xma.hu	f45=f36,f120,f44
+	cmp.ltu		p6,p0=r25,r24		}
+{ .mfi;		xma.lu	f44=f36,f120,f44	
+	add		r26=r26,r25		};;
+{ .mfi;	getf.sig	r16=f80
+		xma.hu	f55=f36,f121,f54
+(p6)	add		carry1=1,carry1		}
+{ .mfi;		xma.lu	f54=f36,f121,f54	};;
+{ .mfi;	getf.sig	r17=f71
+		xma.hu	f65=f36,f122,f64
+	cmp.ltu		p6,p0=r26,r25		}
+{ .mfi;		xma.lu	f64=f36,f122,f64
+	add		r27=r27,r26		};;
+{ .mfi;	getf.sig	r18=f62
+		xma.hu	f75=f36,f123,f74
+(p6)	add		carry1=1,carry1		}
+{ .mfi;	cmp.ltu		p6,p0=r27,r26
+		xma.lu	f74=f36,f123,f74
+	add		r27=r27,carry2		};;
+{ .mfi;	getf.sig	r19=f53
+		xma.hu	f85=f36,f124,f84
+(p6)	add		carry1=1,carry1		}
+{ .mfi;		xma.lu	f84=f36,f124,f84
+	cmp.ltu		p6,p0=r27,carry2	};;
+{ .mfi;	st8		[r33]=r27,16
+		xma.hu	f95=f36,f125,f94
+(p6)	add		carry1=1,carry1		}
+{ .mfi;		xma.lu	f94=f36,f125,f94	};;
+{ .mfi;		xma.hu	f105=f36,f126,f104	}
+{ .mfi;	mov		carry2=0
+		xma.lu	f104=f36,f126,f104
+	add		r17=r17,r16		};;
+{ .mfi;		xma.hu	f115=f36,f127,f114
+	cmp.ltu		p7,p0=r17,r16		}
+{ .mfi;		xma.lu	f114=f36,f127,f114
+	add		r18=r18,r17		};;//
+//-------------------------------------------------//
+{ .mfi;	getf.sig	r20=f44
+		xma.hu	f46=f37,f120,f45
+(p7)	add		carry2=1,carry2		}
+{ .mfi;	cmp.ltu		p7,p0=r18,r17
+		xma.lu	f45=f37,f120,f45
+	add		r19=r19,r18		};;
+{ .mfi;	getf.sig	r24=f90
+		xma.hu	f56=f37,f121,f55	}
+{ .mfi;		xma.lu	f55=f37,f121,f55	};;
+{ .mfi;	getf.sig	r25=f81
+		xma.hu	f66=f37,f122,f65
+(p7)	add		carry2=1,carry2		}
+{ .mfi;	cmp.ltu		p7,p0=r19,r18
+		xma.lu	f65=f37,f122,f65
+	add		r20=r20,r19		};;
+{ .mfi;	getf.sig	r26=f72
+		xma.hu	f76=f37,f123,f75
+(p7)	add		carry2=1,carry2		}
+{ .mfi;	cmp.ltu		p7,p0=r20,r19
+		xma.lu	f75=f37,f123,f75
+	add		r20=r20,carry1		};;
+{ .mfi;	getf.sig	r27=f63
+		xma.hu	f86=f37,f124,f85
+(p7)	add		carry2=1,carry2		}
+{ .mfi;		xma.lu	f85=f37,f124,f85
+	cmp.ltu		p7,p0=r20,carry1	};;
+{ .mfi;	getf.sig	r28=f54
+		xma.hu	f96=f37,f125,f95
+(p7)	add		carry2=1,carry2		}
+{ .mfi;	st8		[r32]=r20,16
+		xma.lu	f95=f37,f125,f95	};;
+{ .mfi;		xma.hu	f106=f37,f126,f105	}
+{ .mfi;	mov		carry1=0
+		xma.lu	f105=f37,f126,f105
+	add		r25=r25,r24		};;
+{ .mfi;		xma.hu	f116=f37,f127,f115
+	cmp.ltu		p6,p0=r25,r24		}
+{ .mfi;		xma.lu	f115=f37,f127,f115
+	add		r26=r26,r25		};;//
+//-------------------------------------------------//
+{ .mfi;	getf.sig	r29=f45
+		xma.hu	f47=f38,f120,f46
+(p6)	add		carry1=1,carry1		}
+{ .mfi;	cmp.ltu		p6,p0=r26,r25
+		xma.lu	f46=f38,f120,f46
+	add		r27=r27,r26		};;
+{ .mfi;	getf.sig	r16=f100
+		xma.hu	f57=f38,f121,f56
+(p6)	add		carry1=1,carry1		}
+{ .mfi;	cmp.ltu		p6,p0=r27,r26
+		xma.lu	f56=f38,f121,f56
+	add		r28=r28,r27		};;
+{ .mfi;	getf.sig	r17=f91
+		xma.hu	f67=f38,f122,f66
+(p6)	add		carry1=1,carry1		}
+{ .mfi;	cmp.ltu		p6,p0=r28,r27
+		xma.lu	f66=f38,f122,f66
+	add		r29=r29,r28		};;
+{ .mfi;	getf.sig	r18=f82
+		xma.hu	f77=f38,f123,f76
+(p6)	add		carry1=1,carry1		}
+{ .mfi;	cmp.ltu		p6,p0=r29,r28
+		xma.lu	f76=f38,f123,f76
+	add		r29=r29,carry2		};;
+{ .mfi;	getf.sig	r19=f73
+		xma.hu	f87=f38,f124,f86
+(p6)	add		carry1=1,carry1		}
+{ .mfi;		xma.lu	f86=f38,f124,f86
+	cmp.ltu		p6,p0=r29,carry2	};;
+{ .mfi;	getf.sig	r20=f64
+		xma.hu	f97=f38,f125,f96
+(p6)	add		carry1=1,carry1		}
+{ .mfi;	st8		[r33]=r29,16
+		xma.lu	f96=f38,f125,f96	};;
+{ .mfi;	getf.sig	r21=f55
+		xma.hu	f107=f38,f126,f106	}
+{ .mfi;	mov		carry2=0
+		xma.lu	f106=f38,f126,f106
+	add		r17=r17,r16		};;
+{ .mfi;		xma.hu	f117=f38,f127,f116
+	cmp.ltu		p7,p0=r17,r16		}
+{ .mfi;		xma.lu	f116=f38,f127,f116
+	add		r18=r18,r17		};;//
+//-------------------------------------------------//
+{ .mfi;	getf.sig	r22=f46
+		xma.hu	f48=f39,f120,f47
+(p7)	add		carry2=1,carry2		}
+{ .mfi;	cmp.ltu		p7,p0=r18,r17
+		xma.lu	f47=f39,f120,f47
+	add		r19=r19,r18		};;
+{ .mfi;	getf.sig	r24=f110
+		xma.hu	f58=f39,f121,f57
+(p7)	add		carry2=1,carry2		}
+{ .mfi;	cmp.ltu		p7,p0=r19,r18
+		xma.lu	f57=f39,f121,f57
+	add		r20=r20,r19		};;
+{ .mfi;	getf.sig	r25=f101
+		xma.hu	f68=f39,f122,f67
+(p7)	add		carry2=1,carry2		}
+{ .mfi;	cmp.ltu		p7,p0=r20,r19
+		xma.lu	f67=f39,f122,f67
+	add		r21=r21,r20		};;
+{ .mfi;	getf.sig	r26=f92
+		xma.hu	f78=f39,f123,f77
+(p7)	add		carry2=1,carry2		}
+{ .mfi;	cmp.ltu		p7,p0=r21,r20
+		xma.lu	f77=f39,f123,f77
+	add		r22=r22,r21		};;
+{ .mfi;	getf.sig	r27=f83
+		xma.hu	f88=f39,f124,f87
+(p7)	add		carry2=1,carry2		}
+{ .mfi;	cmp.ltu		p7,p0=r22,r21
+		xma.lu	f87=f39,f124,f87
+	add		r22=r22,carry1		};;
+{ .mfi;	getf.sig	r28=f74
+		xma.hu	f98=f39,f125,f97
+(p7)	add		carry2=1,carry2		}
+{ .mfi;		xma.lu	f97=f39,f125,f97
+	cmp.ltu		p7,p0=r22,carry1	};;
+{ .mfi;	getf.sig	r29=f65
+		xma.hu	f108=f39,f126,f107
+(p7)	add		carry2=1,carry2		}
+{ .mfi;	st8		[r32]=r22,16
+		xma.lu	f107=f39,f126,f107	};;
+{ .mfi;	getf.sig	r30=f56
+		xma.hu	f118=f39,f127,f117	}
+{ .mfi;		xma.lu	f117=f39,f127,f117	};;//
+//-------------------------------------------------//
+// Leaving muliplier's heaven... Quite a ride, huh?
+
+{ .mii;	getf.sig	r31=f47
+	add		r25=r25,r24
+	mov		carry1=0		};;
+{ .mii;		getf.sig	r16=f111
+	cmp.ltu		p6,p0=r25,r24
+	add		r26=r26,r25		};;
+{ .mfb;		getf.sig	r17=f102	}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r26,r25
+	add		r27=r27,r26		};;
+{ .mfb;	nop.m	0x0				}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r27,r26
+	add		r28=r28,r27		};;
+{ .mii;		getf.sig	r18=f93
+		add		r17=r17,r16
+		mov		carry3=0	}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r28,r27
+	add		r29=r29,r28		};;
+{ .mii;		getf.sig	r19=f84
+		cmp.ltu		p7,p0=r17,r16	}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r29,r28
+	add		r30=r30,r29		};;
+{ .mii;		getf.sig	r20=f75
+		add		r18=r18,r17	}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r30,r29
+	add		r31=r31,r30		};;
+{ .mfb;		getf.sig	r21=f66		}
+{ .mii;	(p7)	add		carry3=1,carry3
+		cmp.ltu		p7,p0=r18,r17
+		add		r19=r19,r18	}
+{ .mfb;	nop.m	0x0				}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r31,r30
+	add		r31=r31,carry2		};;
+{ .mfb;		getf.sig	r22=f57		}
+{ .mii;	(p7)	add		carry3=1,carry3
+		cmp.ltu		p7,p0=r19,r18
+		add		r20=r20,r19	}
+{ .mfb;	nop.m	0x0				}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r31,carry2	};;
+{ .mfb;		getf.sig	r23=f48		}
+{ .mii;	(p7)	add		carry3=1,carry3
+		cmp.ltu		p7,p0=r20,r19
+		add		r21=r21,r20	}
+{ .mii;
+(p6)	add		carry1=1,carry1		}
+{ .mfb;	st8		[r33]=r31,16		};;
+
+{ .mfb;	getf.sig	r24=f112		}
+{ .mii;	(p7)	add		carry3=1,carry3
+		cmp.ltu		p7,p0=r21,r20
+		add		r22=r22,r21	};;
+{ .mfb;	getf.sig	r25=f103		}
+{ .mii;	(p7)	add		carry3=1,carry3
+		cmp.ltu		p7,p0=r22,r21
+		add		r23=r23,r22	};;
+{ .mfb;	getf.sig	r26=f94			}
+{ .mii;	(p7)	add		carry3=1,carry3
+		cmp.ltu		p7,p0=r23,r22
+		add		r23=r23,carry1	};;
+{ .mfb;	getf.sig	r27=f85			}
+{ .mii;	(p7)	add		carry3=1,carry3
+		cmp.ltu		p7,p8=r23,carry1};;
+{ .mii;	getf.sig	r28=f76
+	add		r25=r25,r24
+	mov		carry1=0		}
+{ .mii;		st8		[r32]=r23,16
+	(p7)	add		carry2=1,carry3
+	(p8)	add		carry2=0,carry3	};;
+
+{ .mfb;	nop.m	0x0				}
+{ .mii;	getf.sig	r29=f67
+	cmp.ltu		p6,p0=r25,r24
+	add		r26=r26,r25		};;
+{ .mfb;	getf.sig	r30=f58			}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r26,r25
+	add		r27=r27,r26		};;
+{ .mfb;		getf.sig	r16=f113	}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r27,r26
+	add		r28=r28,r27		};;
+{ .mfb;		getf.sig	r17=f104	}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r28,r27
+	add		r29=r29,r28		};;
+{ .mfb;		getf.sig	r18=f95		}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r29,r28
+	add		r30=r30,r29		};;
+{ .mii;		getf.sig	r19=f86
+		add		r17=r17,r16
+		mov		carry3=0	}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r30,r29
+	add		r30=r30,carry2		};;
+{ .mii;		getf.sig	r20=f77
+		cmp.ltu		p7,p0=r17,r16
+		add		r18=r18,r17	}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r30,carry2	};;
+{ .mfb;		getf.sig	r21=f68		}
+{ .mii;	st8		[r33]=r30,16
+(p6)	add		carry1=1,carry1		};;
+
+{ .mfb;	getf.sig	r24=f114		}
+{ .mii;	(p7)	add		carry3=1,carry3
+		cmp.ltu		p7,p0=r18,r17
+		add		r19=r19,r18	};;
+{ .mfb;	getf.sig	r25=f105		}
+{ .mii;	(p7)	add		carry3=1,carry3
+		cmp.ltu		p7,p0=r19,r18
+		add		r20=r20,r19	};;
+{ .mfb;	getf.sig	r26=f96			}
+{ .mii;	(p7)	add		carry3=1,carry3
+		cmp.ltu		p7,p0=r20,r19
+		add		r21=r21,r20	};;
+{ .mfb;	getf.sig	r27=f87			}
+{ .mii;	(p7)	add		carry3=1,carry3
+		cmp.ltu		p7,p0=r21,r20
+		add		r21=r21,carry1	};;
+{ .mib;	getf.sig	r28=f78			
+	add		r25=r25,r24		}
+{ .mib;	(p7)	add		carry3=1,carry3
+		cmp.ltu		p7,p8=r21,carry1};;
+{ .mii;		st8		[r32]=r21,16
+	(p7)	add		carry2=1,carry3
+	(p8)	add		carry2=0,carry3	}
+
+{ .mii;	mov		carry1=0
+	cmp.ltu		p6,p0=r25,r24
+	add		r26=r26,r25		};;
+{ .mfb;		getf.sig	r16=f115	}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r26,r25
+	add		r27=r27,r26		};;
+{ .mfb;		getf.sig	r17=f106	}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r27,r26
+	add		r28=r28,r27		};;
+{ .mfb;		getf.sig	r18=f97		}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r28,r27
+	add		r28=r28,carry2		};;
+{ .mib;		getf.sig	r19=f88
+		add		r17=r17,r16	}
+{ .mib;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r28,carry2	};;
+{ .mii;	st8		[r33]=r28,16
+(p6)	add		carry1=1,carry1		}
+
+{ .mii;		mov		carry2=0
+		cmp.ltu		p7,p0=r17,r16
+		add		r18=r18,r17	};;
+{ .mfb;	getf.sig	r24=f116		}
+{ .mii;	(p7)	add		carry2=1,carry2
+		cmp.ltu		p7,p0=r18,r17
+		add		r19=r19,r18	};;
+{ .mfb;	getf.sig	r25=f107		}
+{ .mii;	(p7)	add		carry2=1,carry2
+		cmp.ltu		p7,p0=r19,r18
+		add		r19=r19,carry1	};;
+{ .mfb;	getf.sig	r26=f98			}
+{ .mii;	(p7)	add		carry2=1,carry2
+		cmp.ltu		p7,p0=r19,carry1};;
+{ .mii;		st8		[r32]=r19,16
+	(p7)	add		carry2=1,carry2	}
+
+{ .mfb;	add		r25=r25,r24		};;
+
+{ .mfb;		getf.sig	r16=f117	}
+{ .mii;	mov		carry1=0
+	cmp.ltu		p6,p0=r25,r24
+	add		r26=r26,r25		};;
+{ .mfb;		getf.sig	r17=f108	}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r26,r25
+	add		r26=r26,carry2		};;
+{ .mfb;	nop.m	0x0				}
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r26,carry2	};;
+{ .mii;	st8		[r33]=r26,16
+(p6)	add		carry1=1,carry1		}
+
+{ .mfb;		add		r17=r17,r16	};;
+{ .mfb;	getf.sig	r24=f118		}
+{ .mii;		mov		carry2=0
+		cmp.ltu		p7,p0=r17,r16
+		add		r17=r17,carry1	};;
+{ .mii;	(p7)	add		carry2=1,carry2
+		cmp.ltu		p7,p0=r17,carry1};;
+{ .mii;		st8		[r32]=r17
+	(p7)	add		carry2=1,carry2	};;
+{ .mfb;	add		r24=r24,carry2		};;
+{ .mib;	st8		[r33]=r24		}
+
+{ .mib;	rum		1<<5		// clear um.mfh
+	br.ret.sptk.many	b0	};;
+.endp	bn_mul_comba8#
+#undef	carry3
+#undef	carry2
+#undef	carry1
+#endif
+
+#if 1
+// It's possible to make it faster (see comment to bn_sqr_comba8), but
+// I reckon it doesn't worth the effort. Basically because the routine
+// (actually both of them) practically never called... So I just play
+// same trick as with bn_sqr_comba8.
+//
+// void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a)
+//
+.global	bn_sqr_comba4#
+.proc	bn_sqr_comba4#
+.align	64
+bn_sqr_comba4:
+	.prologue
+	.save	ar.pfs,r2
+#if defined(_HPUX_SOURCE) && !defined(_LP64)
+{ .mii;	alloc   r2=ar.pfs,2,1,0,0
+	addp4	r32=0,r32
+	addp4	r33=0,r33		};;
+{ .mii;
+#else
+{ .mii;	alloc	r2=ar.pfs,2,1,0,0
+#endif
+	mov	r34=r33
+	add	r14=8,r33		};;
+	.body
+{ .mii;	add	r17=8,r34
+	add	r15=16,r33
+	add	r18=16,r34		}
+{ .mfb;	add	r16=24,r33
+	br	.L_cheat_entry_point4	};;
+.endp	bn_sqr_comba4#
+#endif
+
+#if 1
+// Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever...
+//
+// void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
+//
+#define	carry1	r14
+#define	carry2	r15
+.global	bn_mul_comba4#
+.proc	bn_mul_comba4#
+.align	64
+bn_mul_comba4:
+	.prologue
+	.save	ar.pfs,r2
+#if defined(_HPUX_SOURCE) && !defined(_LP64)
+{ .mii;	alloc   r2=ar.pfs,3,0,0,0
+	addp4	r33=0,r33
+	addp4	r34=0,r34		};;
+{ .mii;	addp4	r32=0,r32
+#else
+{ .mii;	alloc	r2=ar.pfs,3,0,0,0
+#endif
+	add	r14=8,r33
+	add	r17=8,r34		}
+	.body
+{ .mii;	add	r15=16,r33
+	add	r18=16,r34
+	add	r16=24,r33		};;
+.L_cheat_entry_point4:
+{ .mmi;	add	r19=24,r34
+
+	ldf8	f32=[r33]		}
+
+{ .mmi;	ldf8	f120=[r34]
+	ldf8	f121=[r17]		};;
+{ .mmi;	ldf8	f122=[r18]
+	ldf8	f123=[r19]		}
+
+{ .mmi;	ldf8	f33=[r14]
+	ldf8	f34=[r15]		}
+{ .mfi;	ldf8	f35=[r16]
+
+		xma.hu	f41=f32,f120,f0		}
+{ .mfi;		xma.lu	f40=f32,f120,f0		};;
+{ .mfi;		xma.hu	f51=f32,f121,f0		}
+{ .mfi;		xma.lu	f50=f32,f121,f0		};;
+{ .mfi;		xma.hu	f61=f32,f122,f0		}
+{ .mfi;		xma.lu	f60=f32,f122,f0		};;
+{ .mfi;		xma.hu	f71=f32,f123,f0		}
+{ .mfi;		xma.lu	f70=f32,f123,f0		};;//
+// Major stall takes place here, and 3 more places below. Result from
+// first xma is not available for another 3 ticks.
+{ .mfi;	getf.sig	r16=f40
+		xma.hu	f42=f33,f120,f41
+	add		r33=8,r32		}
+{ .mfi;		xma.lu	f41=f33,f120,f41	};;
+{ .mfi;	getf.sig	r24=f50
+		xma.hu	f52=f33,f121,f51	}
+{ .mfi;		xma.lu	f51=f33,f121,f51	};;
+{ .mfi;	st8		[r32]=r16,16
+		xma.hu	f62=f33,f122,f61	}
+{ .mfi;		xma.lu	f61=f33,f122,f61	};;
+{ .mfi;		xma.hu	f72=f33,f123,f71	}
+{ .mfi;		xma.lu	f71=f33,f123,f71	};;//
+//-------------------------------------------------//
+{ .mfi;	getf.sig	r25=f41
+		xma.hu	f43=f34,f120,f42	}
+{ .mfi;		xma.lu	f42=f34,f120,f42	};;
+{ .mfi;	getf.sig	r16=f60
+		xma.hu	f53=f34,f121,f52	}
+{ .mfi;		xma.lu	f52=f34,f121,f52	};;
+{ .mfi;	getf.sig	r17=f51
+		xma.hu	f63=f34,f122,f62
+	add		r25=r25,r24		}
+{ .mfi;	mov		carry1=0
+		xma.lu	f62=f34,f122,f62	};;
+{ .mfi;	st8		[r33]=r25,16
+		xma.hu	f73=f34,f123,f72
+	cmp.ltu		p6,p0=r25,r24		}
+{ .mfi;		xma.lu	f72=f34,f123,f72	};;//
+//-------------------------------------------------//
+{ .mfi;	getf.sig	r18=f42
+		xma.hu	f44=f35,f120,f43
+(p6)	add		carry1=1,carry1		}
+{ .mfi;	add		r17=r17,r16
+		xma.lu	f43=f35,f120,f43
+	mov		carry2=0		};;
+{ .mfi;	getf.sig	r24=f70
+		xma.hu	f54=f35,f121,f53
+	cmp.ltu		p7,p0=r17,r16		}
+{ .mfi;		xma.lu	f53=f35,f121,f53	};;
+{ .mfi;	getf.sig	r25=f61
+		xma.hu	f64=f35,f122,f63
+	add		r18=r18,r17		}
+{ .mfi;		xma.lu	f63=f35,f122,f63
+(p7)	add		carry2=1,carry2		};;
+{ .mfi;	getf.sig	r26=f52
+		xma.hu	f74=f35,f123,f73
+	cmp.ltu		p7,p0=r18,r17		}
+{ .mfi;		xma.lu	f73=f35,f123,f73
+	add		r18=r18,carry1		};;
+//-------------------------------------------------//
+{ .mii;	st8		[r32]=r18,16
+(p7)	add		carry2=1,carry2
+	cmp.ltu		p7,p0=r18,carry1	};;
+
+{ .mfi;	getf.sig	r27=f43	// last major stall
+(p7)	add		carry2=1,carry2		};;
+{ .mii;		getf.sig	r16=f71
+	add		r25=r25,r24
+	mov		carry1=0		};;
+{ .mii;		getf.sig	r17=f62	
+	cmp.ltu		p6,p0=r25,r24
+	add		r26=r26,r25		};;
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r26,r25
+	add		r27=r27,r26		};;
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r27,r26
+	add		r27=r27,carry2		};;
+{ .mii;		getf.sig	r18=f53
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r27,carry2	};;
+{ .mfi;	st8		[r33]=r27,16
+(p6)	add		carry1=1,carry1		}
+
+{ .mii;		getf.sig	r19=f44
+		add		r17=r17,r16
+		mov		carry2=0	};;
+{ .mii;	getf.sig	r24=f72
+		cmp.ltu		p7,p0=r17,r16
+		add		r18=r18,r17	};;
+{ .mii;	(p7)	add		carry2=1,carry2
+		cmp.ltu		p7,p0=r18,r17
+		add		r19=r19,r18	};;
+{ .mii;	(p7)	add		carry2=1,carry2
+		cmp.ltu		p7,p0=r19,r18
+		add		r19=r19,carry1	};;
+{ .mii;	getf.sig	r25=f63
+	(p7)	add		carry2=1,carry2
+		cmp.ltu		p7,p0=r19,carry1};;
+{ .mii;		st8		[r32]=r19,16
+	(p7)	add		carry2=1,carry2	}
+
+{ .mii;	getf.sig	r26=f54
+	add		r25=r25,r24
+	mov		carry1=0		};;
+{ .mii;		getf.sig	r16=f73
+	cmp.ltu		p6,p0=r25,r24
+	add		r26=r26,r25		};;
+{ .mii;
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r26,r25
+	add		r26=r26,carry2		};;
+{ .mii;		getf.sig	r17=f64
+(p6)	add		carry1=1,carry1
+	cmp.ltu		p6,p0=r26,carry2	};;
+{ .mii;	st8		[r33]=r26,16
+(p6)	add		carry1=1,carry1		}
+
+{ .mii;	getf.sig	r24=f74
+		add		r17=r17,r16	
+		mov		carry2=0	};;
+{ .mii;		cmp.ltu		p7,p0=r17,r16
+		add		r17=r17,carry1	};;
+
+{ .mii;	(p7)	add		carry2=1,carry2
+		cmp.ltu		p7,p0=r17,carry1};;
+{ .mii;		st8		[r32]=r17,16
+	(p7)	add		carry2=1,carry2	};;
+
+{ .mii;	add		r24=r24,carry2		};;
+{ .mii;	st8		[r33]=r24		}
+
+{ .mib;	rum		1<<5		// clear um.mfh
+	br.ret.sptk.many	b0	};;
+.endp	bn_mul_comba4#
+#undef	carry2
+#undef	carry1
+#endif
+
+#if 1
+//
+// BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
+//
+// In the nutshell it's a port of my MIPS III/IV implementation.
+//
+#define	AT	r14
+#define	H	r16
+#define	HH	r20
+#define	L	r17
+#define	D	r18
+#define	DH	r22
+#define	I	r21
+
+#if 0
+// Some preprocessors (most notably HP-UX) appear to be allergic to
+// macros enclosed to parenthesis [as these three were].
+#define	cont	p16
+#define	break	p0	// p20
+#define	equ	p24
+#else
+cont=p16
+break=p0
+equ=p24
+#endif
+
+.global	abort#
+.global	bn_div_words#
+.proc	bn_div_words#
+.align	64
+bn_div_words:
+	.prologue
+	.save	ar.pfs,r2
+{ .mii;	alloc		r2=ar.pfs,3,5,0,8
+	.save	b0,r3
+	mov		r3=b0
+	.save	pr,r10
+	mov		r10=pr		};;
+{ .mmb;	cmp.eq		p6,p0=r34,r0
+	mov		r8=-1
+(p6)	br.ret.spnt.many	b0	};;
+
+	.body
+{ .mii;	mov		H=r32		// save h
+	mov		ar.ec=0		// don't rotate at exit
+	mov		pr.rot=0	}
+{ .mii;	mov		L=r33		// save l
+	mov		r36=r0		};;
+
+.L_divw_shift:	// -vv- note signed comparison
+{ .mfi;	(p0)	cmp.lt		p16,p0=r0,r34	// d
+	(p0)	shladd		r33=r34,1,r0	}
+{ .mfb;	(p0)	add		r35=1,r36
+	(p0)	nop.f		0x0
+(p16)	br.wtop.dpnt		.L_divw_shift	};;
+
+{ .mii;	mov		D=r34
+	shr.u		DH=r34,32
+	sub		r35=64,r36		};;
+{ .mii;	setf.sig	f7=DH
+	shr.u		AT=H,r35
+	mov		I=r36			};;
+{ .mib;	cmp.ne		p6,p0=r0,AT
+	shl		H=H,r36
+(p6)	br.call.spnt.clr	b0=abort	};;	// overflow, die...
+
+{ .mfi;	fcvt.xuf.s1	f7=f7
+	shr.u		AT=L,r35		};;
+{ .mii;	shl		L=L,r36
+	or		H=H,AT			};;
+
+{ .mii;	nop.m		0x0
+	cmp.leu		p6,p0=D,H;;
+(p6)	sub		H=H,D			}
+
+{ .mlx;	setf.sig	f14=D
+	movl		AT=0xffffffff		};;
+///////////////////////////////////////////////////////////
+{ .mii;	setf.sig	f6=H
+	shr.u		HH=H,32;;
+	cmp.eq		p6,p7=HH,DH		};;
+{ .mfb;
+(p6)	setf.sig	f8=AT
+(p7)	fcvt.xuf.s1	f6=f6
+(p7)	br.call.sptk	b6=.L_udiv64_32_b6	};;
+
+{ .mfi;	getf.sig	r33=f8				// q
+	xmpy.lu		f9=f8,f14		}
+{ .mfi;	xmpy.hu		f10=f8,f14
+	shrp		H=H,L,32		};;
+
+{ .mmi;	getf.sig	r35=f9				// tl
+	getf.sig	r31=f10			};;	// th
+
+.L_divw_1st_iter:
+{ .mii;	(p0)	add		r32=-1,r33
+	(p0)	cmp.eq		equ,cont=HH,r31		};;
+{ .mii;	(p0)	cmp.ltu		p8,p0=r35,D
+	(p0)	sub		r34=r35,D
+	(equ)	cmp.leu		break,cont=r35,H	};;
+{ .mib;	(cont)	cmp.leu		cont,break=HH,r31
+	(p8)	add		r31=-1,r31
+(cont)	br.wtop.spnt		.L_divw_1st_iter	};;
+///////////////////////////////////////////////////////////
+{ .mii;	sub		H=H,r35
+	shl		r8=r33,32
+	shl		L=L,32			};;
+///////////////////////////////////////////////////////////
+{ .mii;	setf.sig	f6=H
+	shr.u		HH=H,32;;
+	cmp.eq		p6,p7=HH,DH		};;
+{ .mfb;
+(p6)	setf.sig	f8=AT
+(p7)	fcvt.xuf.s1	f6=f6
+(p7)	br.call.sptk	b6=.L_udiv64_32_b6	};;
+
+{ .mfi;	getf.sig	r33=f8				// q
+	xmpy.lu		f9=f8,f14		}
+{ .mfi;	xmpy.hu		f10=f8,f14
+	shrp		H=H,L,32		};;
+
+{ .mmi;	getf.sig	r35=f9				// tl
+	getf.sig	r31=f10			};;	// th
+
+.L_divw_2nd_iter:
+{ .mii;	(p0)	add		r32=-1,r33
+	(p0)	cmp.eq		equ,cont=HH,r31		};;
+{ .mii;	(p0)	cmp.ltu		p8,p0=r35,D
+	(p0)	sub		r34=r35,D
+	(equ)	cmp.leu		break,cont=r35,H	};;
+{ .mib;	(cont)	cmp.leu		cont,break=HH,r31
+	(p8)	add		r31=-1,r31
+(cont)	br.wtop.spnt		.L_divw_2nd_iter	};;
+///////////////////////////////////////////////////////////
+{ .mii;	sub	H=H,r35
+	or	r8=r8,r33
+	mov	ar.pfs=r2		};;
+{ .mii;	shr.u	r9=H,I			// remainder if anybody wants it
+	mov	pr=r10,0x1ffff		}
+{ .mfb;	br.ret.sptk.many	b0	};;
+
+// Unsigned 64 by 32 (well, by 64 for the moment) bit integer division
+// procedure.
+//
+// inputs:	f6 = (double)a, f7 = (double)b
+// output:	f8 = (int)(a/b)
+// clobbered:	f8,f9,f10,f11,pred
+pred=p15
+// One can argue that this snippet is copyrighted to Intel
+// Corporation, as it's essentially identical to one of those
+// found in "Divide, Square Root and Remainder" section at
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// Yes, I admit that the referred code was used as template,
+// but after I realized that there hardly is any other instruction
+// sequence which would perform this operation. I mean I figure that
+// any independent attempt to implement high-performance division
+// will result in code virtually identical to the Intel code. It
+// should be noted though that below division kernel is 1 cycle
+// faster than Intel one (note commented splits:-), not to mention
+// original prologue (rather lack of one) and epilogue.
+.align	32
+.skip	16
+.L_udiv64_32_b6:
+	frcpa.s1	f8,pred=f6,f7;;		// [0]  y0 = 1 / b
+
+(pred)	fnma.s1		f9=f7,f8,f1		// [5]  e0 = 1 - b * y0
+(pred)	fmpy.s1		f10=f6,f8;;		// [5]  q0 = a * y0
+(pred)	fmpy.s1		f11=f9,f9		// [10] e1 = e0 * e0
+(pred)	fma.s1		f10=f9,f10,f10;;	// [10] q1 = q0 + e0 * q0
+(pred)	fma.s1		f8=f9,f8,f8	//;;	// [15] y1 = y0 + e0 * y0
+(pred)	fma.s1		f9=f11,f10,f10;;	// [15] q2 = q1 + e1 * q1
+(pred)	fma.s1		f8=f11,f8,f8	//;;	// [20] y2 = y1 + e1 * y1
+(pred)	fnma.s1		f10=f7,f9,f6;;		// [20] r2 = a - b * q2
+(pred)	fma.s1		f8=f10,f8,f9;;		// [25] q3 = q2 + r2 * y2
+
+	fcvt.fxu.trunc.s1	f8=f8		// [30] q = trunc(q3)
+	br.ret.sptk.many	b6;;
+.endp	bn_div_words#
+#endif