blob: 7f1066fd2d387ca8e74b973912ddd3875eac9d48 [file] [log] [blame]
/* $Id$ */
/*
* Copyright (C) 2008-2011 Teluu Inc. (http://www.teluu.com)
* Copyright (C) 2003-2008 Benny Prijono <benny@prijono.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <pjmedia/resample.h>
#include <pjmedia/errno.h>
#include <pj/assert.h>
#include <pj/log.h>
#include <pj/pool.h>
#if PJMEDIA_RESAMPLE_IMP==PJMEDIA_RESAMPLE_LIBRESAMPLE
#include <third_party/resample/include/resamplesubs.h>
#define THIS_FILE "resample.c"
struct pjmedia_resample
{
double factor; /* Conversion factor = rate_out / rate_in. */
pj_bool_t large_filter; /* Large filter? */
pj_bool_t high_quality; /* Not fast? */
unsigned xoff; /* History and lookahead size, in samples */
unsigned frame_size; /* Samples per frame. */
unsigned channel_cnt; /* Channel count. */
/* Buffer for monochannel */
pj_int16_t *buffer; /* Input buffer. */
/* Buffer for multichannel */
pj_int16_t **in_buffer; /* Array of input buffer for each channel. */
pj_int16_t *tmp_buffer; /* Temporary output buffer for processing. */
};
PJ_DEF(pj_status_t) pjmedia_resample_create( pj_pool_t *pool,
pj_bool_t high_quality,
pj_bool_t large_filter,
unsigned channel_count,
unsigned rate_in,
unsigned rate_out,
unsigned samples_per_frame,
pjmedia_resample **p_resample)
{
pjmedia_resample *resample;
PJ_ASSERT_RETURN(pool && p_resample && rate_in &&
rate_out && samples_per_frame, PJ_EINVAL);
resample = PJ_POOL_ZALLOC_T(pool, pjmedia_resample);
PJ_ASSERT_RETURN(resample, PJ_ENOMEM);
/*
* If we're downsampling, always use the fast algorithm since it seems
* to yield the same quality.
*/
if (rate_out < rate_in) {
//no this is not a good idea. It sounds pretty good with speech,
//but very poor with background noise etc.
//high_quality = 0;
}
resample->factor = rate_out * 1.0 / rate_in;
resample->large_filter = large_filter;
resample->high_quality = high_quality;
resample->channel_cnt = channel_count;
resample->frame_size = samples_per_frame;
if (high_quality) {
/* This is a bug in xoff calculation, thanks Stephane Lussier
* of Macadamian dot com.
* resample->xoff = large_filter ? 32 : 6;
*/
resample->xoff = res_GetXOFF(resample->factor, (char)large_filter);
} else {
resample->xoff = 1;
}
if (channel_count == 1) {
unsigned size;
/* Allocate input buffer */
size = (samples_per_frame + 2*resample->xoff) * sizeof(pj_int16_t);
resample->buffer = (pj_int16_t*) pj_pool_alloc(pool, size);
PJ_ASSERT_RETURN(resample->buffer, PJ_ENOMEM);
pjmedia_zero_samples(resample->buffer, resample->xoff*2);
} else if (channel_count > 1) {
unsigned i, size;
/* Allocate input buffer table */
size = channel_count * sizeof(pj_int16_t*);
resample->in_buffer = (pj_int16_t**)pj_pool_alloc(pool, size);
/* Allocate input buffer */
size = (samples_per_frame/channel_count + 2*resample->xoff) *
sizeof(pj_int16_t);
for (i = 0; i < channel_count; ++i) {
resample->in_buffer[i] = (pj_int16_t*)pj_pool_alloc(pool, size);
PJ_ASSERT_RETURN(resample->in_buffer, PJ_ENOMEM);
pjmedia_zero_samples(resample->in_buffer[i], resample->xoff*2);
}
/* Allocate temporary output buffer */
size = (unsigned) (resample->frame_size * sizeof(pj_int16_t) *
resample->factor / channel_count + 0.5);
resample->tmp_buffer = (pj_int16_t*) pj_pool_alloc(pool, size);
PJ_ASSERT_RETURN(resample->tmp_buffer, PJ_ENOMEM);
}
*p_resample = resample;
PJ_LOG(5,(THIS_FILE, "resample created: %s qualiy, %s filter, in/out "
"rate=%d/%d",
(high_quality?"high":"low"),
(large_filter?"large":"small"),
rate_in, rate_out));
return PJ_SUCCESS;
}
PJ_DEF(void) pjmedia_resample_run( pjmedia_resample *resample,
const pj_int16_t *input,
pj_int16_t *output )
{
PJ_ASSERT_ON_FAIL(resample, return);
/* Okay chaps, here's how we do resampling.
*
* The original resample algorithm requires xoff samples *before* the
* input buffer as history, and another xoff samples *after* the
* end of the input buffer as lookahead. Since application can only
* supply framesize buffer on each run, PJMEDIA needs to arrange the
* buffer to meet these requirements.
*
* So here comes the trick.
*
* First of all, because of the history and lookahead requirement,
* resample->buffer need to accomodate framesize+2*xoff samples in its
* buffer. This is done when the buffer is created.
*
* On the first run, the input frame (supplied by application) is
* copied to resample->buffer at 2*xoff position. The first 2*xoff
* samples are initially zeroed (in the initialization). The resample
* algorithm then invoked at resample->buffer+xoff ONLY, thus giving
* it one xoff at the beginning as zero, and one xoff at the end
* as the end of the original input. The resample algorithm will see
* that the first xoff samples in the input as zero.
*
* So here's the layout of resample->buffer on the first run.
*
* run 0
* +------+------+--------------+
* | 0000 | 0000 | frame0... |
* +------+------+--------------+
* ^ ^ ^ ^
* 0 xoff 2*xoff size+2*xoff
*
* (Note again: resample algorithm is called at resample->buffer+xoff)
*
* At the end of the run, 2*xoff samples from the end of
* resample->buffer are copied to the beginning of resample->buffer.
* The first xoff part of this will be used as history for the next
* run, and the second xoff part of this is actually the start of
* resampling for the next run.
*
* And the first run completes, the function returns.
*
*
* On the next run, the input frame supplied by application is again
* copied at 2*xoff position in the resample->buffer, and the
* resample algorithm is again invoked at resample->buffer+xoff
* position. So effectively, the resample algorithm will start its
* operation on the last xoff from the previous frame, and gets the
* history from the last 2*xoff of the previous frame, and the look-
* ahead from the last xoff of current frame.
*
* So on this run, the buffer layout is:
*
* run 1
* +------+------+--------------+
* | frm0 | frm0 | frame1... |
* +------+------+--------------+
* ^ ^ ^ ^
* 0 xoff 2*xoff size+2*xoff
*
* As you can see from above diagram, the resampling algorithm is
* actually called from the last xoff part of previous frame (frm0).
*
* And so on the process continues for the next frame, and the next,
* and the next, ...
*
*/
if (resample->channel_cnt == 1) {
pj_int16_t *dst_buf;
const pj_int16_t *src_buf;
/* Prepare input frame */
dst_buf = resample->buffer + resample->xoff*2;
pjmedia_copy_samples(dst_buf, input, resample->frame_size);
/* Resample */
if (resample->high_quality) {
res_Resample(resample->buffer + resample->xoff, output,
resample->factor, (pj_uint16_t)resample->frame_size,
(char)resample->large_filter, (char)PJ_TRUE);
} else {
res_SrcLinear(resample->buffer + resample->xoff, output,
resample->factor, (pj_uint16_t)resample->frame_size);
}
/* Update history */
dst_buf = resample->buffer;
src_buf = input + resample->frame_size - resample->xoff*2;
pjmedia_copy_samples(dst_buf, src_buf, resample->xoff * 2);
} else { /* Multichannel */
unsigned i, j;
for (i = 0; i < resample->channel_cnt; ++i) {
pj_int16_t *dst_buf;
const pj_int16_t *src_buf;
unsigned mono_frm_sz_in;
unsigned mono_frm_sz_out;
mono_frm_sz_in = resample->frame_size / resample->channel_cnt;
mono_frm_sz_out = (unsigned)(mono_frm_sz_in * resample->factor + 0.5);
/* Deinterleave input */
dst_buf = resample->in_buffer[i] + resample->xoff*2;
src_buf = input + i;
for (j = 0; j < mono_frm_sz_in; ++j) {
*dst_buf++ = *src_buf;
src_buf += resample->channel_cnt;
}
/* Resample this channel */
if (resample->high_quality) {
res_Resample(resample->in_buffer[i] + resample->xoff,
resample->tmp_buffer, resample->factor,
(pj_uint16_t)mono_frm_sz_in,
(char)resample->large_filter, (char)PJ_TRUE);
} else {
res_SrcLinear( resample->in_buffer[i],
resample->tmp_buffer,
resample->factor,
(pj_uint16_t)mono_frm_sz_in);
}
/* Update history */
dst_buf = resample->in_buffer[i];
src_buf = resample->in_buffer[i] + mono_frm_sz_in;
pjmedia_copy_samples(dst_buf, src_buf, resample->xoff * 2);
/* Reinterleave output */
dst_buf = output + i;
src_buf = resample->tmp_buffer;
for (j = 0; j < mono_frm_sz_out; ++j) {
*dst_buf = *src_buf++;
dst_buf += resample->channel_cnt;
}
}
}
}
PJ_DEF(unsigned) pjmedia_resample_get_input_size(pjmedia_resample *resample)
{
PJ_ASSERT_RETURN(resample != NULL, 0);
return resample->frame_size;
}
PJ_DEF(void) pjmedia_resample_destroy(pjmedia_resample *resample)
{
PJ_UNUSED_ARG(resample);
}
#elif PJMEDIA_RESAMPLE_IMP==PJMEDIA_RESAMPLE_NONE
/*
* This is the configuration when sample rate conversion is disabled.
*/
PJ_DEF(pj_status_t) pjmedia_resample_create( pj_pool_t *pool,
pj_bool_t high_quality,
pj_bool_t large_filter,
unsigned channel_count,
unsigned rate_in,
unsigned rate_out,
unsigned samples_per_frame,
pjmedia_resample **p_resample)
{
PJ_UNUSED_ARG(pool);
PJ_UNUSED_ARG(high_quality);
PJ_UNUSED_ARG(large_filter);
PJ_UNUSED_ARG(channel_count);
PJ_UNUSED_ARG(rate_in);
PJ_UNUSED_ARG(rate_out);
PJ_UNUSED_ARG(samples_per_frame);
PJ_UNUSED_ARG(p_resample);
return PJ_EINVALIDOP;
}
PJ_DEF(void) pjmedia_resample_run( pjmedia_resample *resample,
const pj_int16_t *input,
pj_int16_t *output )
{
PJ_UNUSED_ARG(resample);
PJ_UNUSED_ARG(input);
PJ_UNUSED_ARG(output);
}
PJ_DEF(unsigned) pjmedia_resample_get_input_size(pjmedia_resample *resample)
{
PJ_UNUSED_ARG(resample);
return 0;
}
PJ_DEF(void) pjmedia_resample_destroy(pjmedia_resample *resample)
{
PJ_UNUSED_ARG(resample);
}
#endif /* PJMEDIA_RESAMPLE_IMP */