* #27232: jni: added pjproject checkout as regular git content

We will remove it once the next release of pjsip (with Android support)
comes out and is merged into SFLphone.
diff --git a/jni/pjproject-android/third_party/ilbc/lsf.c b/jni/pjproject-android/third_party/ilbc/lsf.c
new file mode 100644
index 0000000..b4fe0ed
--- /dev/null
+++ b/jni/pjproject-android/third_party/ilbc/lsf.c
@@ -0,0 +1,283 @@
+
+   /******************************************************************
+
+       iLBC Speech Coder ANSI-C Source Code
+
+       lsf.c
+
+       Copyright (C) The Internet Society (2004).
+       All Rights Reserved.
+
+   ******************************************************************/
+
+   #include <string.h>
+
+
+
+
+
+   #include <math.h>
+
+   #include "iLBC_define.h"
+
+   /*----------------------------------------------------------------*
+    *  conversion from lpc coefficients to lsf coefficients
+    *---------------------------------------------------------------*/
+
+   void a2lsf(
+       float *freq,/* (o) lsf coefficients */
+       float *a    /* (i) lpc coefficients */
+   ){
+       float steps[LSF_NUMBER_OF_STEPS] =
+           {(float)0.00635, (float)0.003175, (float)0.0015875,
+           (float)0.00079375};
+       float step;
+       int step_idx;
+       int lsp_index;
+       float p[LPC_HALFORDER];
+       float q[LPC_HALFORDER];
+       float p_pre[LPC_HALFORDER];
+       float q_pre[LPC_HALFORDER];
+       float old_p, old_q, *old;
+       float *pq_coef;
+       float omega, old_omega;
+       int i;
+       float hlp, hlp1, hlp2, hlp3, hlp4, hlp5;
+
+       for (i=0; i<LPC_HALFORDER; i++) {
+           p[i] = (float)-1.0 * (a[i + 1] + a[LPC_FILTERORDER - i]);
+           q[i] = a[LPC_FILTERORDER - i] - a[i + 1];
+       }
+
+       p_pre[0] = (float)-1.0 - p[0];
+       p_pre[1] = - p_pre[0] - p[1];
+       p_pre[2] = - p_pre[1] - p[2];
+       p_pre[3] = - p_pre[2] - p[3];
+       p_pre[4] = - p_pre[3] - p[4];
+       p_pre[4] = p_pre[4] / 2;
+
+       q_pre[0] = (float)1.0 - q[0];
+       q_pre[1] = q_pre[0] - q[1];
+       q_pre[2] = q_pre[1] - q[2];
+       q_pre[3] = q_pre[2] - q[3];
+       q_pre[4] = q_pre[3] - q[4];
+       q_pre[4] = q_pre[4] / 2;
+
+       omega = 0.0;
+
+
+
+
+
+       old_omega = 0.0;
+
+       old_p = FLOAT_MAX;
+       old_q = FLOAT_MAX;
+
+       /* Here we loop through lsp_index to find all the
+          LPC_FILTERORDER roots for omega. */
+
+       for (lsp_index = 0; lsp_index<LPC_FILTERORDER; lsp_index++) {
+
+           /* Depending on lsp_index being even or odd, we
+           alternatively solve the roots for the two LSP equations. */
+
+
+           if ((lsp_index & 0x1) == 0) {
+               pq_coef = p_pre;
+               old = &old_p;
+           } else {
+               pq_coef = q_pre;
+               old = &old_q;
+           }
+
+           /* Start with low resolution grid */
+
+           for (step_idx = 0, step = steps[step_idx];
+               step_idx < LSF_NUMBER_OF_STEPS;){
+
+               /*  cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) +
+               pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) */
+
+               hlp = (float)cos(omega * TWO_PI);
+               hlp1 = (float)2.0 * hlp + pq_coef[0];
+               hlp2 = (float)2.0 * hlp * hlp1 - (float)1.0 +
+                   pq_coef[1];
+               hlp3 = (float)2.0 * hlp * hlp2 - hlp1 + pq_coef[2];
+               hlp4 = (float)2.0 * hlp * hlp3 - hlp2 + pq_coef[3];
+               hlp5 = hlp * hlp4 - hlp3 + pq_coef[4];
+
+
+               if (((hlp5 * (*old)) <= 0.0) || (omega >= 0.5)){
+
+                   if (step_idx == (LSF_NUMBER_OF_STEPS - 1)){
+
+                       if (fabs(hlp5) >= fabs(*old)) {
+                           freq[lsp_index] = omega - step;
+                       } else {
+                           freq[lsp_index] = omega;
+                       }
+
+
+
+
+
+
+
+                       if ((*old) >= 0.0){
+                           *old = (float)-1.0 * FLOAT_MAX;
+                       } else {
+                           *old = FLOAT_MAX;
+                       }
+
+                       omega = old_omega;
+                       step_idx = 0;
+
+                       step_idx = LSF_NUMBER_OF_STEPS;
+                   } else {
+
+                       if (step_idx == 0) {
+                           old_omega = omega;
+                       }
+
+                       step_idx++;
+                       omega -= steps[step_idx];
+
+                       /* Go back one grid step */
+
+                       step = steps[step_idx];
+                   }
+               } else {
+
+               /* increment omega until they are of different sign,
+               and we know there is at least one root between omega
+               and old_omega */
+                   *old = hlp5;
+                   omega += step;
+               }
+           }
+       }
+
+       for (i = 0; i<LPC_FILTERORDER; i++) {
+           freq[i] = freq[i] * TWO_PI;
+       }
+   }
+
+   /*----------------------------------------------------------------*
+    *  conversion from lsf coefficients to lpc coefficients
+    *---------------------------------------------------------------*/
+
+   void lsf2a(
+       float *a_coef,  /* (o) lpc coefficients */
+       float *freq     /* (i) lsf coefficients */
+
+
+
+
+
+   ){
+       int i, j;
+       float hlp;
+       float p[LPC_HALFORDER], q[LPC_HALFORDER];
+       float a[LPC_HALFORDER + 1], a1[LPC_HALFORDER],
+           a2[LPC_HALFORDER];
+       float b[LPC_HALFORDER + 1], b1[LPC_HALFORDER],
+           b2[LPC_HALFORDER];
+
+       for (i=0; i<LPC_FILTERORDER; i++) {
+           freq[i] = freq[i] * PI2;
+       }
+
+       /* Check input for ill-conditioned cases.  This part is not
+       found in the TIA standard.  It involves the following 2 IF
+       blocks.  If "freq" is judged ill-conditioned, then we first
+       modify freq[0] and freq[LPC_HALFORDER-1] (normally
+       LPC_HALFORDER = 10 for LPC applications), then we adjust
+       the other "freq" values slightly */
+
+
+       if ((freq[0] <= 0.0) || (freq[LPC_FILTERORDER - 1] >= 0.5)){
+
+
+           if (freq[0] <= 0.0) {
+               freq[0] = (float)0.022;
+           }
+
+
+           if (freq[LPC_FILTERORDER - 1] >= 0.5) {
+               freq[LPC_FILTERORDER - 1] = (float)0.499;
+           }
+
+           hlp = (freq[LPC_FILTERORDER - 1] - freq[0]) /
+               (float) (LPC_FILTERORDER - 1);
+
+           for (i=1; i<LPC_FILTERORDER; i++) {
+               freq[i] = freq[i - 1] + hlp;
+           }
+       }
+
+       memset(a1, 0, LPC_HALFORDER*sizeof(float));
+       memset(a2, 0, LPC_HALFORDER*sizeof(float));
+       memset(b1, 0, LPC_HALFORDER*sizeof(float));
+       memset(b2, 0, LPC_HALFORDER*sizeof(float));
+       memset(a, 0, (LPC_HALFORDER+1)*sizeof(float));
+       memset(b, 0, (LPC_HALFORDER+1)*sizeof(float));
+
+
+
+
+
+
+       /* p[i] and q[i] compute cos(2*pi*omega_{2j}) and
+       cos(2*pi*omega_{2j-1} in eqs. 4.2.2.2-1 and 4.2.2.2-2.
+       Note that for this code p[i] specifies the coefficients
+       used in .Q_A(z) while q[i] specifies the coefficients used
+       in .P_A(z) */
+
+       for (i=0; i<LPC_HALFORDER; i++) {
+           p[i] = (float)cos(TWO_PI * freq[2 * i]);
+           q[i] = (float)cos(TWO_PI * freq[2 * i + 1]);
+       }
+
+       a[0] = 0.25;
+       b[0] = 0.25;
+
+       for (i= 0; i<LPC_HALFORDER; i++) {
+           a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];
+           b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];
+           a2[i] = a1[i];
+           a1[i] = a[i];
+           b2[i] = b1[i];
+           b1[i] = b[i];
+       }
+
+       for (j=0; j<LPC_FILTERORDER; j++) {
+
+           if (j == 0) {
+               a[0] = 0.25;
+               b[0] = -0.25;
+           } else {
+               a[0] = b[0] = 0.0;
+           }
+
+           for (i=0; i<LPC_HALFORDER; i++) {
+               a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];
+               b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];
+               a2[i] = a1[i];
+               a1[i] = a[i];
+               b2[i] = b1[i];
+               b1[i] = b[i];
+           }
+
+           a_coef[j + 1] = 2 * (a[LPC_HALFORDER] + b[LPC_HALFORDER]);
+       }
+
+       a_coef[0] = 1.0;
+   }
+
+
+
+
+
+
+