* #34826: android: add SDES support and pcre
diff --git a/jni/libpcre/doc/html/index.html b/jni/libpcre/doc/html/index.html
new file mode 100644
index 0000000..75361fd
--- /dev/null
+++ b/jni/libpcre/doc/html/index.html
@@ -0,0 +1,164 @@
+<html>
+<!-- This is a manually maintained file that is the root of the HTML version of
+     the PCRE documentation. When the HTML documents are built from the man
+     page versions, the entire doc/html directory is emptied, this file is then
+     copied into doc/html/index.html, and the remaining files therein are
+     created by the 132html script.
+-->
+<head>
+<title>PCRE specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>Perl-compatible Regular Expressions (PCRE)</h1>
+<p>
+The HTML documentation for PCRE comprises the following pages:
+</p>
+
+<table>
+<tr><td><a href="pcre.html">pcre</a></td>
+    <td>&nbsp;&nbsp;Introductory page</td></tr>
+
+<tr><td><a href="pcre-config.html">pcre-config</a></td>
+    <td>&nbsp;&nbsp;Information about the installation configuration</td></tr>
+
+<tr><td><a href="pcreapi.html">pcreapi</a></td>
+    <td>&nbsp;&nbsp;PCRE's native API</td></tr>
+
+<tr><td><a href="pcrebuild.html">pcrebuild</a></td>
+    <td>&nbsp;&nbsp;Options for building PCRE</td></tr>
+
+<tr><td><a href="pcrecallout.html">pcrecallout</a></td>
+    <td>&nbsp;&nbsp;The <i>callout</i> facility</td></tr>
+
+<tr><td><a href="pcrecompat.html">pcrecompat</a></td>
+    <td>&nbsp;&nbsp;Compability with Perl</td></tr>
+
+<tr><td><a href="pcrecpp.html">pcrecpp</a></td>
+    <td>&nbsp;&nbsp;The C++ wrapper for the PCRE library</td></tr>
+
+<tr><td><a href="pcredemo.html">pcredemo</a></td>
+    <td>&nbsp;&nbsp;A demonstration C program that uses the PCRE library</td></tr>
+
+<tr><td><a href="pcregrep.html">pcregrep</a></td>
+    <td>&nbsp;&nbsp;The <b>pcregrep</b> command</td></tr>
+
+<tr><td><a href="pcrejit.html">pcrejit</a></td>
+    <td>&nbsp;&nbsp;Discussion of the just-in-time optimization support</td></tr>
+
+<tr><td><a href="pcrelimits.html">pcrelimits</a></td>
+    <td>&nbsp;&nbsp;Details of size and other limits</td></tr>
+
+<tr><td><a href="pcrematching.html">pcrematching</a></td>
+    <td>&nbsp;&nbsp;Discussion of the two matching algorithms</td></tr>
+
+<tr><td><a href="pcrepartial.html">pcrepartial</a></td>
+    <td>&nbsp;&nbsp;Using PCRE for partial matching</td></tr>
+
+<tr><td><a href="pcrepattern.html">pcrepattern</a></td>
+    <td>&nbsp;&nbsp;Specification of the regular expressions supported by PCRE</td></tr>
+
+<tr><td><a href="pcreperform.html">pcreperform</a></td>
+    <td>&nbsp;&nbsp;Some comments on performance</td></tr>
+
+<tr><td><a href="pcreposix.html">pcreposix</a></td>
+    <td>&nbsp;&nbsp;The POSIX API to the PCRE library</td></tr>
+
+<tr><td><a href="pcreprecompile.html">pcreprecompile</a></td>
+    <td>&nbsp;&nbsp;How to save and re-use compiled patterns</td></tr>
+
+<tr><td><a href="pcresample.html">pcresample</a></td>
+    <td>&nbsp;&nbsp;Discussion of the pcredemo program</td></tr>
+
+<tr><td><a href="pcrestack.html">pcrestack</a></td>
+    <td>&nbsp;&nbsp;Discussion of PCRE's stack usage</td></tr>
+
+<tr><td><a href="pcresyntax.html">pcresyntax</a></td>
+    <td>&nbsp;&nbsp;Syntax quick-reference summary</td></tr>
+
+<tr><td><a href="pcretest.html">pcretest</a></td>
+    <td>&nbsp;&nbsp;The <b>pcretest</b> command for testing PCRE</td></tr>
+
+<tr><td><a href="pcreunicode.html">pcreunicode</a></td>
+    <td>&nbsp;&nbsp;Discussion of Unicode and UTF-8 support</td></tr>
+</table>
+
+<p>
+There are also individual pages that summarize the interface for each function
+in the library:
+</p>
+
+<table>
+
+<tr><td><a href="pcre_assign_jit_stack.html">pcre_assign_jit_stack</a></td>
+    <td>&nbsp;&nbsp;Assign stack for JIT matching</td></tr>
+
+<tr><td><a href="pcre_compile.html">pcre_compile</a></td>
+    <td>&nbsp;&nbsp;Compile a regular expression</td></tr>
+
+<tr><td><a href="pcre_compile2.html">pcre_compile2</a></td>
+    <td>&nbsp;&nbsp;Compile a regular expression (alternate interface)</td></tr>
+
+<tr><td><a href="pcre_config.html">pcre_config</a></td>
+    <td>&nbsp;&nbsp;Show build-time configuration options</td></tr>
+
+<tr><td><a href="pcre_copy_named_substring.html">pcre_copy_named_substring</a></td>
+    <td>&nbsp;&nbsp;Extract named substring into given buffer</td></tr>
+
+<tr><td><a href="pcre_copy_substring.html">pcre_copy_substring</a></td>
+    <td>&nbsp;&nbsp;Extract numbered substring into given buffer</td></tr>
+
+<tr><td><a href="pcre_dfa_exec.html">pcre_dfa_exec</a></td>
+    <td>&nbsp;&nbsp;Match a compiled pattern to a subject string
+    (DFA algorithm; <i>not</i> Perl compatible)</td></tr>
+
+<tr><td><a href="pcre_free_study.html">pcre_free_study</a></td>
+    <td>&nbsp;&nbsp;Free study data</td></tr>
+
+<tr><td><a href="pcre_exec.html">pcre_exec</a></td>
+    <td>&nbsp;&nbsp;Match a compiled pattern to a subject string
+    (Perl compatible)</td></tr>
+
+<tr><td><a href="pcre_free_substring.html">pcre_free_substring</a></td>
+    <td>&nbsp;&nbsp;Free extracted substring</td></tr>
+
+<tr><td><a href="pcre_free_substring_list.html">pcre_free_substring_list</a></td>
+    <td>&nbsp;&nbsp;Free list of extracted substrings</td></tr>
+
+<tr><td><a href="pcre_fullinfo.html">pcre_fullinfo</a></td>
+    <td>&nbsp;&nbsp;Extract information about a pattern</td></tr>
+
+<tr><td><a href="pcre_get_named_substring.html">pcre_get_named_substring</a></td>
+    <td>&nbsp;&nbsp;Extract named substring into new memory</td></tr>
+
+<tr><td><a href="pcre_get_stringnumber.html">pcre_get_stringnumber</a></td>
+    <td>&nbsp;&nbsp;Convert captured string name to number</td></tr>
+
+<tr><td><a href="pcre_get_substring.html">pcre_get_substring</a></td>
+    <td>&nbsp;&nbsp;Extract numbered substring into new memory</td></tr>
+
+<tr><td><a href="pcre_get_substring_list.html">pcre_get_substring_list</a></td>
+    <td>&nbsp;&nbsp;Extract all substrings into new memory</td></tr>
+
+<tr><td><a href="pcre_info.html">pcre_info</a></td>
+    <td>&nbsp;&nbsp;Obsolete information extraction function</td></tr>
+
+<tr><td><a href="pcre_jit_stack_alloc.html">pcre_jit_stack_alloc</a></td>
+    <td>&nbsp;&nbsp;Create a stack for JIT matching</td></tr>
+
+<tr><td><a href="pcre_jit_stack_free.html">pcre_jit_stack_free</a></td>
+    <td>&nbsp;&nbsp;Free a JIT matching stack</td></tr>
+
+<tr><td><a href="pcre_maketables.html">pcre_maketables</a></td>
+    <td>&nbsp;&nbsp;Build character tables in current locale</td></tr>
+
+<tr><td><a href="pcre_refcount.html">pcre_refcount</a></td>
+    <td>&nbsp;&nbsp;Maintain reference count in compiled pattern</td></tr>
+
+<tr><td><a href="pcre_study.html">pcre_study</a></td>
+    <td>&nbsp;&nbsp;Study a compiled pattern</td></tr>
+
+<tr><td><a href="pcre_version.html">pcre_version</a></td>
+    <td>&nbsp;&nbsp;Return PCRE version and release date</td></tr>
+</table>
+
+</html>
diff --git a/jni/libpcre/doc/html/pcre-config.html b/jni/libpcre/doc/html/pcre-config.html
new file mode 100644
index 0000000..0987745
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre-config.html
@@ -0,0 +1,88 @@
+<html>
+<head>
+<title>pcre-config specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre-config man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">SYNOPSIS</a>
+<li><a name="TOC2" href="#SEC2">DESCRIPTION</a>
+<li><a name="TOC3" href="#SEC3">OPTIONS</a>
+<li><a name="TOC4" href="#SEC4">SEE ALSO</a>
+<li><a name="TOC5" href="#SEC5">AUTHOR</a>
+<li><a name="TOC6" href="#SEC6">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">SYNOPSIS</a><br>
+<P>
+<b>pcre-config  [--prefix] [--exec-prefix] [--version] [--libs]</b>
+<b>[--libs-posix] [--cflags] [--cflags-posix]</b>
+</P>
+<br><a name="SEC2" href="#TOC1">DESCRIPTION</a><br>
+<P>
+<b>pcre-config</b> returns the configuration of the installed PCRE
+libraries and the options required to compile a program to use them.
+</P>
+<br><a name="SEC3" href="#TOC1">OPTIONS</a><br>
+<P>
+<b>--prefix</b>
+Writes the directory prefix used in the PCRE installation for architecture
+independent files (<i>/usr</i> on many systems, <i>/usr/local</i> on some
+systems) to the standard output.
+</P>
+<P>
+<b>--exec-prefix</b>
+Writes the directory prefix used in the PCRE installation for architecture
+dependent files (normally the same as <b>--prefix</b>) to the standard output.
+</P>
+<P>
+<b>--version</b>
+Writes the version number of the installed PCRE libraries to the standard
+output.
+</P>
+<P>
+<b>--libs</b>
+Writes to the standard output the command line options required to link
+with PCRE (<b>-lpcre</b> on many systems).
+</P>
+<P>
+<b>--libs-posix</b>
+Writes to the standard output the command line options required to link with
+the PCRE posix emulation library (<b>-lpcreposix</b> <b>-lpcre</b> on many
+systems).
+</P>
+<P>
+<b>--cflags</b>
+Writes to the standard output the command line options required to compile
+files that use PCRE (this may include some <b>-I</b> options, but is blank on
+many systems).
+</P>
+<P>
+<b>--cflags-posix</b>
+Writes to the standard output the command line options required to compile
+files that use the PCRE posix emulation library (this may include some <b>-I</b>
+options, but is blank on many systems).
+</P>
+<br><a name="SEC4" href="#TOC1">SEE ALSO</a><br>
+<P>
+<b>pcre(3)</b>
+</P>
+<br><a name="SEC5" href="#TOC1">AUTHOR</a><br>
+<P>
+This manual page was originally written by Mark Baker for the Debian GNU/Linux
+system. It has been slightly revised as a generic PCRE man page.
+</P>
+<br><a name="SEC6" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 18 April 2007
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre.html b/jni/libpcre/doc/html/pcre.html
new file mode 100644
index 0000000..9078f2d
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre.html
@@ -0,0 +1,140 @@
+<html>
+<head>
+<title>pcre specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">INTRODUCTION</a>
+<li><a name="TOC2" href="#SEC2">USER DOCUMENTATION</a>
+<li><a name="TOC3" href="#SEC3">AUTHOR</a>
+<li><a name="TOC4" href="#SEC4">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">INTRODUCTION</a><br>
+<P>
+The PCRE library is a set of functions that implement regular expression
+pattern matching using the same syntax and semantics as Perl, with just a few
+differences. Some features that appeared in Python and PCRE before they
+appeared in Perl are also available using the Python syntax, there is some
+support for one or two .NET and Oniguruma syntax items, and there is an option
+for requesting some minor changes that give better JavaScript compatibility.
+</P>
+<P>
+The current implementation of PCRE corresponds approximately with Perl 5.12,
+including support for UTF-8 encoded strings and Unicode general category
+properties. However, UTF-8 and Unicode support has to be explicitly enabled; it
+is not the default. The Unicode tables correspond to Unicode release 6.0.0.
+</P>
+<P>
+In addition to the Perl-compatible matching function, PCRE contains an
+alternative function that matches the same compiled patterns in a different
+way. In certain circumstances, the alternative function has some advantages.
+For a discussion of the two matching algorithms, see the
+<a href="pcrematching.html"><b>pcrematching</b></a>
+page.
+</P>
+<P>
+PCRE is written in C and released as a C library. A number of people have
+written wrappers and interfaces of various kinds. In particular, Google Inc.
+have provided a comprehensive C++ wrapper. This is now included as part of the
+PCRE distribution. The
+<a href="pcrecpp.html"><b>pcrecpp</b></a>
+page has details of this interface. Other people's contributions can be found
+in the <i>Contrib</i> directory at the primary FTP site, which is:
+<a href="ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre">ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre</a>
+</P>
+<P>
+Details of exactly which Perl regular expression features are and are not
+supported by PCRE are given in separate documents. See the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+and
+<a href="pcrecompat.html"><b>pcrecompat</b></a>
+pages. There is a syntax summary in the
+<a href="pcresyntax.html"><b>pcresyntax</b></a>
+page.
+</P>
+<P>
+Some features of PCRE can be included, excluded, or changed when the library is
+built. The
+<a href="pcre_config.html"><b>pcre_config()</b></a>
+function makes it possible for a client to discover which features are
+available. The features themselves are described in the
+<a href="pcrebuild.html"><b>pcrebuild</b></a>
+page. Documentation about building PCRE for various operating systems can be
+found in the <b>README</b> and <b>NON-UNIX-USE</b> files in the source
+distribution.
+</P>
+<P>
+The library contains a number of undocumented internal functions and data
+tables that are used by more than one of the exported external functions, but
+which are not intended for use by external callers. Their names all begin with
+"_pcre_", which hopefully will not provoke any name clashes. In some
+environments, it is possible to control which external symbols are exported
+when a shared library is built, and in these cases the undocumented symbols are
+not exported.
+</P>
+<br><a name="SEC2" href="#TOC1">USER DOCUMENTATION</a><br>
+<P>
+The user documentation for PCRE comprises a number of different sections. In
+the "man" format, each of these is a separate "man page". In the HTML format,
+each is a separate page, linked from the index page. In the plain text format,
+all the sections, except the <b>pcredemo</b> section, are concatenated, for ease
+of searching. The sections are as follows:
+<pre>
+  pcre              this document
+  pcre-config       show PCRE installation configuration information
+  pcreapi           details of PCRE's native C API
+  pcrebuild         options for building PCRE
+  pcrecallout       details of the callout feature
+  pcrecompat        discussion of Perl compatibility
+  pcrecpp           details of the C++ wrapper
+  pcredemo          a demonstration C program that uses PCRE
+  pcregrep          description of the <b>pcregrep</b> command
+  pcrejit           discussion of the just-in-time optimization support
+  pcrelimits        details of size and other limits
+  pcrematching      discussion of the two matching algorithms
+  pcrepartial       details of the partial matching facility
+  pcrepattern       syntax and semantics of supported regular expressions
+  pcreperform       discussion of performance issues
+  pcreposix         the POSIX-compatible C API
+  pcreprecompile    details of saving and re-using precompiled patterns
+  pcresample        discussion of the pcredemo program
+  pcrestack         discussion of stack usage
+  pcresyntax        quick syntax reference
+  pcretest          description of the <b>pcretest</b> testing command
+  pcreunicode       discussion of Unicode and UTF-8 support
+</pre>
+In addition, in the "man" and HTML formats, there is a short page for each
+C library function, listing its arguments and results.
+</P>
+<br><a name="SEC3" href="#TOC1">AUTHOR</a><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<P>
+Putting an actual email address here seems to have been a spam magnet, so I've
+taken it away. If you want to email me, use my two initials, followed by the
+two digits 10, at the domain cam.ac.uk.
+</P>
+<br><a name="SEC4" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 24 August 2011
+<br>
+Copyright &copy; 1997-2011 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_assign_jit_stack.html b/jni/libpcre/doc/html/pcre_assign_jit_stack.html
new file mode 100644
index 0000000..bbf5ebd
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_assign_jit_stack.html
@@ -0,0 +1,68 @@
+<html>
+<head>
+<title>pcre_assign_jit_stack specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_assign_jit_stack man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>void pcre_assign_jit_stack(pcre_extra *<i>extra</i>,</b>
+<b>pcre_jit_callback <i>callback</i>, void *<i>data</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This function provides control over the memory used as a stack at runtime by a
+call to <b>pcre_exec()</b> with a pattern that has been successfully compiled
+with JIT optimization. The arguments are:
+<pre>
+  extra     the data pointer returned by <b>pcre_study()</b>
+  callback  a callback function
+  data      a JIT stack or a value to be passed to the callback
+              function
+</PRE>
+</P>
+<P>
+If <i>callback</i> is NULL and <i>data</i> is NULL, an internal 32K block on
+the machine stack is used.
+</P>
+<P>
+If <i>callback</i> is NULL and <i>data</i> is not NULL, <i>data</i> must
+be a valid JIT stack, the result of calling <b>pcre_jit_stack_alloc()</b>.
+</P>
+<P>
+If <i>callback</i> not NULL, it is called with <i>data</i> as an argument at
+the start of matching, in order to set up a JIT stack. If the result is NULL,
+the internal 32K stack is used; otherwise the return value must be a valid JIT
+stack, the result of calling <b>pcre_jit_stack_alloc()</b>.
+</P>
+<P>
+You may safely assign the same JIT stack to multiple patterns, as long as they
+are all matched in the same thread. In a multithread application, each thread
+must use its own JIT stack. For more details, see the
+<a href="pcrejit.html"><b>pcrejit</b></a>
+page.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_compile.html b/jni/libpcre/doc/html/pcre_compile.html
new file mode 100644
index 0000000..221351b
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_compile.html
@@ -0,0 +1,90 @@
+<html>
+<head>
+<title>pcre_compile specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_compile man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>pcre *pcre_compile(const char *<i>pattern</i>, int <i>options</i>,</b>
+<b>const char **<i>errptr</i>, int *<i>erroffset</i>,</b>
+<b>const unsigned char *<i>tableptr</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This function compiles a regular expression into an internal form. It is the
+same as <b>pcre_compile2()</b>, except for the absence of the <i>errorcodeptr</i>
+argument. Its arguments are:
+<pre>
+  <i>pattern</i>       A zero-terminated string containing the
+                  regular expression to be compiled
+  <i>options</i>       Zero or more option bits
+  <i>errptr</i>        Where to put an error message
+  <i>erroffset</i>     Offset in pattern where error was found
+  <i>tableptr</i>      Pointer to character tables, or NULL to
+                  use the built-in default
+</pre>
+The option bits are:
+<pre>
+  PCRE_ANCHORED           Force pattern anchoring
+  PCRE_AUTO_CALLOUT       Compile automatic callouts
+  PCRE_BSR_ANYCRLF        \R matches only CR, LF, or CRLF
+  PCRE_BSR_UNICODE        \R matches all Unicode line endings
+  PCRE_CASELESS           Do caseless matching
+  PCRE_DOLLAR_ENDONLY     $ not to match newline at end
+  PCRE_DOTALL             . matches anything including NL
+  PCRE_DUPNAMES           Allow duplicate names for subpatterns
+  PCRE_EXTENDED           Ignore whitespace and # comments
+  PCRE_EXTRA              PCRE extra features
+                            (not much use currently)
+  PCRE_FIRSTLINE          Force matching to be before newline
+  PCRE_JAVASCRIPT_COMPAT  JavaScript compatibility
+  PCRE_MULTILINE          ^ and $ match newlines within data
+  PCRE_NEWLINE_ANY        Recognize any Unicode newline sequence
+  PCRE_NEWLINE_ANYCRLF    Recognize CR, LF, and CRLF as newline
+                            sequences
+  PCRE_NEWLINE_CR         Set CR as the newline sequence
+  PCRE_NEWLINE_CRLF       Set CRLF as the newline sequence
+  PCRE_NEWLINE_LF         Set LF as the newline sequence
+  PCRE_NO_AUTO_CAPTURE    Disable numbered capturing paren-
+                            theses (named ones available)
+  PCRE_NO_UTF8_CHECK      Do not check the pattern for UTF-8
+                            validity (only relevant if
+                            PCRE_UTF8 is set)
+  PCRE_UCP                Use Unicode properties for \d, \w, etc.
+  PCRE_UNGREEDY           Invert greediness of quantifiers
+  PCRE_UTF8               Run in UTF-8 mode
+</pre>
+PCRE must be built with UTF-8 support in order to use PCRE_UTF8 and
+PCRE_NO_UTF8_CHECK, and with UCP support if PCRE_UCP is used.
+</P>
+<P>
+The yield of the function is a pointer to a private data structure that
+contains the compiled pattern, or NULL if an error was detected. Note that
+compiling regular expressions with one version of PCRE for use with a different
+version is not guaranteed to work and may cause crashes.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_compile2.html b/jni/libpcre/doc/html/pcre_compile2.html
new file mode 100644
index 0000000..f27fffd
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_compile2.html
@@ -0,0 +1,92 @@
+<html>
+<head>
+<title>pcre_compile2 specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_compile2 man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>pcre *pcre_compile2(const char *<i>pattern</i>, int <i>options</i>,</b>
+<b>int *<i>errorcodeptr</i>,</b>
+<b>const char **<i>errptr</i>, int *<i>erroffset</i>,</b>
+<b>const unsigned char *<i>tableptr</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This function compiles a regular expression into an internal form. It is the
+same as <b>pcre_compile()</b>, except for the addition of the <i>errorcodeptr</i>
+argument. The arguments are:
+<pre>
+  <i>pattern</i>       A zero-terminated string containing the
+                  regular expression to be compiled
+  <i>options</i>       Zero or more option bits
+  <i>errorcodeptr</i>  Where to put an error code
+  <i>errptr</i>        Where to put an error message
+  <i>erroffset</i>     Offset in pattern where error was found
+  <i>tableptr</i>      Pointer to character tables, or NULL to
+                  use the built-in default
+</pre>
+The option bits are:
+<pre>
+  PCRE_ANCHORED           Force pattern anchoring
+  PCRE_AUTO_CALLOUT       Compile automatic callouts
+  PCRE_BSR_ANYCRLF        \R matches only CR, LF, or CRLF
+  PCRE_BSR_UNICODE        \R matches all Unicode line endings
+  PCRE_CASELESS           Do caseless matching
+  PCRE_DOLLAR_ENDONLY     $ not to match newline at end
+  PCRE_DOTALL             . matches anything including NL
+  PCRE_DUPNAMES           Allow duplicate names for subpatterns
+  PCRE_EXTENDED           Ignore whitespace and # comments
+  PCRE_EXTRA              PCRE extra features
+                            (not much use currently)
+  PCRE_FIRSTLINE          Force matching to be before newline
+  PCRE_JAVASCRIPT_COMPAT  JavaScript compatibility
+  PCRE_MULTILINE          ^ and $ match newlines within data
+  PCRE_NEWLINE_ANY        Recognize any Unicode newline sequence
+  PCRE_NEWLINE_ANYCRLF    Recognize CR, LF, and CRLF as newline
+                            sequences
+  PCRE_NEWLINE_CR         Set CR as the newline sequence
+  PCRE_NEWLINE_CRLF       Set CRLF as the newline sequence
+  PCRE_NEWLINE_LF         Set LF as the newline sequence
+  PCRE_NO_AUTO_CAPTURE    Disable numbered capturing paren-
+                            theses (named ones available)
+  PCRE_NO_UTF8_CHECK      Do not check the pattern for UTF-8
+                            validity (only relevant if
+                            PCRE_UTF8 is set)
+  PCRE_UCP                Use Unicode properties for \d, \w, etc.
+  PCRE_UNGREEDY           Invert greediness of quantifiers
+  PCRE_UTF8               Run in UTF-8 mode
+</pre>
+PCRE must be built with UTF-8 support in order to use PCRE_UTF8 and
+PCRE_NO_UTF8_CHECK, and with UCP support if PCRE_UCP is used.
+</P>
+<P>
+The yield of the function is a pointer to a private data structure that
+contains the compiled pattern, or NULL if an error was detected. Note that
+compiling regular expressions with one version of PCRE for use with a different
+version is not guaranteed to work and may cause crashes.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_config.html b/jni/libpcre/doc/html/pcre_config.html
new file mode 100644
index 0000000..a18a2e0
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_config.html
@@ -0,0 +1,73 @@
+<html>
+<head>
+<title>pcre_config specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_config man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>int pcre_config(int <i>what</i>, void *<i>where</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This function makes it possible for a client program to find out which optional
+features are available in the version of the PCRE library it is using. The
+arguments are as follows:
+<pre>
+  <i>what</i>     A code specifying what information is required
+  <i>where</i>    Points to where to put the data
+</pre>
+The <i>where</i> argument must point to an integer variable, except for
+PCRE_CONFIG_MATCH_LIMIT and PCRE_CONFIG_MATCH_LIMIT_RECURSION, when it must
+point to an unsigned long integer. The available codes are:
+<pre>
+  PCRE_CONFIG_JIT           Availability of just-in-time compiler
+                              support (1=yes 0=no)
+  PCRE_CONFIG_LINK_SIZE     Internal link size: 2, 3, or 4
+  PCRE_CONFIG_MATCH_LIMIT   Internal resource limit
+  PCRE_CONFIG_MATCH_LIMIT_RECURSION
+                            Internal recursion depth limit
+  PCRE_CONFIG_NEWLINE       Value of the default newline sequence:
+                                13 (0x000d)    for CR
+                                10 (0x000a)    for LF
+                              3338 (0x0d0a)    for CRLF
+                                -2             for ANYCRLF
+                                -1             for ANY
+  PCRE_CONFIG_BSR           Indicates what \R matches by default:
+                                 0             all Unicode line endings
+                                 1             CR, LF, or CRLF only
+  PCRE_CONFIG_POSIX_MALLOC_THRESHOLD
+                            Threshold of return slots, above which
+                              <b>malloc()</b> is used by the POSIX API
+  PCRE_CONFIG_STACKRECURSE  Recursion implementation (1=stack 0=heap)
+  PCRE_CONFIG_UTF8          Availability of UTF-8 support (1=yes 0=no)
+  PCRE_CONFIG_UNICODE_PROPERTIES
+                            Availability of Unicode property support
+                              (1=yes 0=no)
+</pre>
+The function yields 0 on success or PCRE_ERROR_BADOPTION otherwise.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_copy_named_substring.html b/jni/libpcre/doc/html/pcre_copy_named_substring.html
new file mode 100644
index 0000000..2185518
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_copy_named_substring.html
@@ -0,0 +1,53 @@
+<html>
+<head>
+<title>pcre_copy_named_substring specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_copy_named_substring man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>int pcre_copy_named_substring(const pcre *<i>code</i>,</b>
+<b>const char *<i>subject</i>, int *<i>ovector</i>,</b>
+<b>int <i>stringcount</i>, const char *<i>stringname</i>,</b>
+<b>char *<i>buffer</i>, int <i>buffersize</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This is a convenience function for extracting a captured substring, identified
+by name, into a given buffer. The arguments are:
+<pre>
+  <i>code</i>          Pattern that was successfully matched
+  <i>subject</i>       Subject that has been successfully matched
+  <i>ovector</i>       Offset vector that <b>pcre_exec()</b> used
+  <i>stringcount</i>   Value returned by <b>pcre_exec()</b>
+  <i>stringname</i>    Name of the required substring
+  <i>buffer</i>        Buffer to receive the string
+  <i>buffersize</i>    Size of buffer
+</pre>
+The yield is the length of the substring, PCRE_ERROR_NOMEMORY if the buffer was
+too small, or PCRE_ERROR_NOSUBSTRING if the string name is invalid.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_copy_substring.html b/jni/libpcre/doc/html/pcre_copy_substring.html
new file mode 100644
index 0000000..b7d2341
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_copy_substring.html
@@ -0,0 +1,51 @@
+<html>
+<head>
+<title>pcre_copy_substring specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_copy_substring man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>int pcre_copy_substring(const char *<i>subject</i>, int *<i>ovector</i>,</b>
+<b>int <i>stringcount</i>, int <i>stringnumber</i>, char *<i>buffer</i>,</b>
+<b>int <i>buffersize</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This is a convenience function for extracting a captured substring into a given
+buffer. The arguments are:
+<pre>
+  <i>subject</i>       Subject that has been successfully matched
+  <i>ovector</i>       Offset vector that <b>pcre_exec()</b> used
+  <i>stringcount</i>   Value returned by <b>pcre_exec()</b>
+  <i>stringnumber</i>  Number of the required substring
+  <i>buffer</i>        Buffer to receive the string
+  <i>buffersize</i>    Size of buffer
+</pre>
+The yield is the length of the string, PCRE_ERROR_NOMEMORY if the buffer was
+too small, or PCRE_ERROR_NOSUBSTRING if the string number is invalid.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_dfa_exec.html b/jni/libpcre/doc/html/pcre_dfa_exec.html
new file mode 100644
index 0000000..d0ec360
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_dfa_exec.html
@@ -0,0 +1,109 @@
+<html>
+<head>
+<title>pcre_dfa_exec specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_dfa_exec man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>int pcre_dfa_exec(const pcre *<i>code</i>, const pcre_extra *<i>extra</i>,</b>
+<b>const char *<i>subject</i>, int <i>length</i>, int <i>startoffset</i>,</b>
+<b>int <i>options</i>, int *<i>ovector</i>, int <i>ovecsize</i>,</b>
+<b>int *<i>workspace</i>, int <i>wscount</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This function matches a compiled regular expression against a given subject
+string, using an alternative matching algorithm that scans the subject string
+just once (<i>not</i> Perl-compatible). Note that the main, Perl-compatible,
+matching function is <b>pcre_exec()</b>. The arguments for this function are:
+<pre>
+  <i>code</i>         Points to the compiled pattern
+  <i>extra</i>        Points to an associated <b>pcre_extra</b> structure,
+                 or is NULL
+  <i>subject</i>      Points to the subject string
+  <i>length</i>       Length of the subject string, in bytes
+  <i>startoffset</i>  Offset in bytes in the subject at which to
+                 start matching
+  <i>options</i>      Option bits
+  <i>ovector</i>      Points to a vector of ints for result offsets
+  <i>ovecsize</i>     Number of elements in the vector
+  <i>workspace</i>    Points to a vector of ints used as working space
+  <i>wscount</i>      Number of elements in the vector
+</pre>
+The options are:
+<pre>
+  PCRE_ANCHORED          Match only at the first position
+  PCRE_BSR_ANYCRLF       \R matches only CR, LF, or CRLF
+  PCRE_BSR_UNICODE       \R matches all Unicode line endings
+  PCRE_NEWLINE_ANY       Recognize any Unicode newline sequence
+  PCRE_NEWLINE_ANYCRLF   Recognize CR, LF, & CRLF as newline sequences
+  PCRE_NEWLINE_CR        Recognize CR as the only newline sequence
+  PCRE_NEWLINE_CRLF      Recognize CRLF as the only newline sequence
+  PCRE_NEWLINE_LF        Recognize LF as the only newline sequence
+  PCRE_NOTBOL            Subject is not the beginning of a line
+  PCRE_NOTEOL            Subject is not the end of a line
+  PCRE_NOTEMPTY          An empty string is not a valid match
+  PCRE_NOTEMPTY_ATSTART  An empty string at the start of the subject
+                           is not a valid match
+  PCRE_NO_START_OPTIMIZE Do not do "start-match" optimizations
+  PCRE_NO_UTF8_CHECK     Do not check the subject for UTF-8
+                           validity (only relevant if PCRE_UTF8
+                           was set at compile time)
+  PCRE_PARTIAL           ) Return PCRE_ERROR_PARTIAL for a partial
+  PCRE_PARTIAL_SOFT      )   match if no full matches are found
+  PCRE_PARTIAL_HARD      Return PCRE_ERROR_PARTIAL for a partial match
+                           even if there is a full match as well
+  PCRE_DFA_SHORTEST      Return only the shortest match
+  PCRE_DFA_RESTART       Restart after a partial match
+</pre>
+There are restrictions on what may appear in a pattern when using this matching
+function. Details are given in the
+<a href="pcrematching.html"><b>pcrematching</b></a>
+documentation. For details of partial matching, see the
+<a href="pcrepartial.html"><b>pcrepartial</b></a>
+page.
+</P>
+<P>
+A <b>pcre_extra</b> structure contains the following fields:
+<pre>
+  <i>flags</i>            Bits indicating which fields are set
+  <i>study_data</i>       Opaque data from <b>pcre_study()</b>
+  <i>match_limit</i>      Limit on internal resource use
+  <i>match_limit_recursion</i>  Limit on internal recursion depth
+  <i>callout_data</i>     Opaque data passed back to callouts
+  <i>tables</i>           Points to character tables or is NULL
+  <i>mark</i>             For passing back a *MARK pointer
+  <i>executable_jit</i>   Opaque data from JIT compilation
+</pre>
+The flag bits are PCRE_EXTRA_STUDY_DATA, PCRE_EXTRA_MATCH_LIMIT,
+PCRE_EXTRA_MATCH_LIMIT_RECURSION, PCRE_EXTRA_CALLOUT_DATA,
+PCRE_EXTRA_TABLES, PCRE_EXTRA_MARK and PCRE_EXTRA_EXECUTABLE_JIT. For this
+matching function, the <i>match_limit</i> and <i>match_limit_recursion</i> fields
+are not used, and must not be set. The PCRE_EXTRA_EXECUTABLE_JIT flag and
+the corresponding variable are ignored.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_exec.html b/jni/libpcre/doc/html/pcre_exec.html
new file mode 100644
index 0000000..e5a0b62
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_exec.html
@@ -0,0 +1,94 @@
+<html>
+<head>
+<title>pcre_exec specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_exec man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>int pcre_exec(const pcre *<i>code</i>, const pcre_extra *<i>extra</i>,</b>
+<b>const char *<i>subject</i>, int <i>length</i>, int <i>startoffset</i>,</b>
+<b>int <i>options</i>, int *<i>ovector</i>, int <i>ovecsize</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This function matches a compiled regular expression against a given subject
+string, using a matching algorithm that is similar to Perl's. It returns
+offsets to captured substrings. Its arguments are:
+<pre>
+  <i>code</i>         Points to the compiled pattern
+  <i>extra</i>        Points to an associated <b>pcre_extra</b> structure,
+                 or is NULL
+  <i>subject</i>      Points to the subject string
+  <i>length</i>       Length of the subject string, in bytes
+  <i>startoffset</i>  Offset in bytes in the subject at which to
+                 start matching
+  <i>options</i>      Option bits
+  <i>ovector</i>      Points to a vector of ints for result offsets
+  <i>ovecsize</i>     Number of elements in the vector (a multiple of 3)
+</pre>
+The options are:
+<pre>
+  PCRE_ANCHORED          Match only at the first position
+  PCRE_BSR_ANYCRLF       \R matches only CR, LF, or CRLF
+  PCRE_BSR_UNICODE       \R matches all Unicode line endings
+  PCRE_NEWLINE_ANY       Recognize any Unicode newline sequence
+  PCRE_NEWLINE_ANYCRLF   Recognize CR, LF, & CRLF as newline sequences
+  PCRE_NEWLINE_CR        Recognize CR as the only newline sequence
+  PCRE_NEWLINE_CRLF      Recognize CRLF as the only newline sequence
+  PCRE_NEWLINE_LF        Recognize LF as the only newline sequence
+  PCRE_NOTBOL            Subject string is not the beginning of a line
+  PCRE_NOTEOL            Subject string is not the end of a line
+  PCRE_NOTEMPTY          An empty string is not a valid match
+  PCRE_NOTEMPTY_ATSTART  An empty string at the start of the subject
+                           is not a valid match
+  PCRE_NO_START_OPTIMIZE Do not do "start-match" optimizations
+  PCRE_NO_UTF8_CHECK     Do not check the subject for UTF-8
+                           validity (only relevant if PCRE_UTF8
+                           was set at compile time)
+  PCRE_PARTIAL           ) Return PCRE_ERROR_PARTIAL for a partial
+  PCRE_PARTIAL_SOFT      )   match if no full matches are found
+  PCRE_PARTIAL_HARD      Return PCRE_ERROR_PARTIAL for a partial match
+                           if that is found before a full match
+</pre>
+For details of partial matching, see the
+<a href="pcrepartial.html"><b>pcrepartial</b></a>
+page. A <b>pcre_extra</b> structure contains the following fields:
+<pre>
+  <i>flags</i>            Bits indicating which fields are set
+  <i>study_data</i>       Opaque data from <b>pcre_study()</b>
+  <i>match_limit</i>      Limit on internal resource use
+  <i>match_limit_recursion</i>  Limit on internal recursion depth
+  <i>callout_data</i>     Opaque data passed back to callouts
+  <i>tables</i>           Points to character tables or is NULL
+  <i>mark</i>             For passing back a *MARK pointer
+  <i>executable_jit</i>   Opaque data from JIT compilation
+</pre>
+The flag bits are PCRE_EXTRA_STUDY_DATA, PCRE_EXTRA_MATCH_LIMIT,
+PCRE_EXTRA_MATCH_LIMIT_RECURSION, PCRE_EXTRA_CALLOUT_DATA,
+PCRE_EXTRA_TABLES, PCRE_EXTRA_MARK and PCRE_EXTRA_EXECUTABLE_JIT.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_free_study.html b/jni/libpcre/doc/html/pcre_free_study.html
new file mode 100644
index 0000000..8319a48
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_free_study.html
@@ -0,0 +1,40 @@
+<html>
+<head>
+<title>pcre_free_study specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_free_study man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>void pcre_free_study(pcre_extra *<i>extra</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This function is used to free the memory used for the data generated by a call
+to <b>pcre_study()</b> when it is no longer needed. The argument must be the
+result of such a call.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_free_substring.html b/jni/libpcre/doc/html/pcre_free_substring.html
new file mode 100644
index 0000000..fe62614
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_free_substring.html
@@ -0,0 +1,40 @@
+<html>
+<head>
+<title>pcre_free_substring specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_free_substring man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>void pcre_free_substring(const char *<i>stringptr</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This is a convenience function for freeing the store obtained by a previous
+call to <b>pcre_get_substring()</b> or <b>pcre_get_named_substring()</b>. Its
+only argument is a pointer to the string.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_free_substring_list.html b/jni/libpcre/doc/html/pcre_free_substring_list.html
new file mode 100644
index 0000000..a92c960
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_free_substring_list.html
@@ -0,0 +1,40 @@
+<html>
+<head>
+<title>pcre_free_substring_list specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_free_substring_list man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>void pcre_free_substring_list(const char **<i>stringptr</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This is a convenience function for freeing the store obtained by a previous
+call to <b>pcre_get_substring_list()</b>. Its only argument is a pointer to the
+list of string pointers.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_fullinfo.html b/jni/libpcre/doc/html/pcre_fullinfo.html
new file mode 100644
index 0000000..33cfef4
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_fullinfo.html
@@ -0,0 +1,85 @@
+<html>
+<head>
+<title>pcre_fullinfo specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_fullinfo man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>int pcre_fullinfo(const pcre *<i>code</i>, const pcre_extra *<i>extra</i>,</b>
+<b>int <i>what</i>, void *<i>where</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This function returns information about a compiled pattern. Its arguments are:
+<pre>
+  <i>code</i>                      Compiled regular expression
+  <i>extra</i>                     Result of <b>pcre_study()</b> or NULL
+  <i>what</i>                      What information is required
+  <i>where</i>                     Where to put the information
+</pre>
+The following information is available:
+<pre>
+  PCRE_INFO_BACKREFMAX      Number of highest back reference
+  PCRE_INFO_CAPTURECOUNT    Number of capturing subpatterns
+  PCRE_INFO_DEFAULT_TABLES  Pointer to default tables
+  PCRE_INFO_FIRSTBYTE       Fixed first byte for a match, or
+                              -1 for start of string
+                                 or after newline, or
+                              -2 otherwise
+  PCRE_INFO_FIRSTTABLE      Table of first bytes (after studying)
+  PCRE_INFO_HASCRORLF       Return 1 if explicit CR or LF matches exist
+  PCRE_INFO_JCHANGED        Return 1 if (?J) or (?-J) was used
+  PCRE_INFO_JIT             Return 1 after successful JIT compilation
+  PCRE_INFO_LASTLITERAL     Literal last byte required
+  PCRE_INFO_MINLENGTH       Lower bound length of matching strings
+  PCRE_INFO_NAMECOUNT       Number of named subpatterns
+  PCRE_INFO_NAMEENTRYSIZE   Size of name table entry
+  PCRE_INFO_NAMETABLE       Pointer to name table
+  PCRE_INFO_OKPARTIAL       Return 1 if partial matching can be tried
+                              (always returns 1 after release 8.00)
+  PCRE_INFO_OPTIONS         Option bits used for compilation
+  PCRE_INFO_SIZE            Size of compiled pattern
+  PCRE_INFO_STUDYSIZE       Size of study data
+</pre>
+The <i>where</i> argument must point to an integer variable, except for the
+following <i>what</i> values:
+<pre>
+  PCRE_INFO_DEFAULT_TABLES  const unsigned char *
+  PCRE_INFO_FIRSTTABLE      const unsigned char *
+  PCRE_INFO_NAMETABLE       const unsigned char *
+  PCRE_INFO_OPTIONS         unsigned long int
+  PCRE_INFO_SIZE            size_t
+</pre>
+The yield of the function is zero on success or:
+<pre>
+  PCRE_ERROR_NULL           the argument <i>code</i> was NULL
+                            the argument <i>where</i> was NULL
+  PCRE_ERROR_BADMAGIC       the "magic number" was not found
+  PCRE_ERROR_BADOPTION      the value of <i>what</i> was invalid
+</PRE>
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_get_named_substring.html b/jni/libpcre/doc/html/pcre_get_named_substring.html
new file mode 100644
index 0000000..24dc058
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_get_named_substring.html
@@ -0,0 +1,55 @@
+<html>
+<head>
+<title>pcre_get_named_substring specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_get_named_substring man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>int pcre_get_named_substring(const pcre *<i>code</i>,</b>
+<b>const char *<i>subject</i>, int *<i>ovector</i>,</b>
+<b>int <i>stringcount</i>, const char *<i>stringname</i>,</b>
+<b>const char **<i>stringptr</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This is a convenience function for extracting a captured substring by name. The
+arguments are:
+<pre>
+  <i>code</i>          Compiled pattern
+  <i>subject</i>       Subject that has been successfully matched
+  <i>ovector</i>       Offset vector that <b>pcre_exec()</b> used
+  <i>stringcount</i>   Value returned by <b>pcre_exec()</b>
+  <i>stringname</i>    Name of the required substring
+  <i>stringptr</i>     Where to put the string pointer
+</pre>
+The memory in which the substring is placed is obtained by calling
+<b>pcre_malloc()</b>. The convenience function <b>pcre_free_substring()</b> can
+be used to free it when it is no longer needed. The yield of the function is
+the length of the extracted substring, PCRE_ERROR_NOMEMORY if sufficient memory
+could not be obtained, or PCRE_ERROR_NOSUBSTRING if the string name is invalid.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_get_stringnumber.html b/jni/libpcre/doc/html/pcre_get_stringnumber.html
new file mode 100644
index 0000000..43af3aa
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_get_stringnumber.html
@@ -0,0 +1,49 @@
+<html>
+<head>
+<title>pcre_get_stringnumber specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_get_stringnumber man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>int pcre_get_stringnumber(const pcre *<i>code</i>,</b>
+<b>const char *<i>name</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This convenience function finds the number of a named substring capturing
+parenthesis in a compiled pattern. Its arguments are:
+<pre>
+  <i>code</i>    Compiled regular expression
+  <i>name</i>    Name whose number is required
+</pre>
+The yield of the function is the number of the parenthesis if the name is
+found, or PCRE_ERROR_NOSUBSTRING otherwise. When duplicate names are allowed
+(PCRE_DUPNAMES is set), it is not defined which of the numbers is returned by
+<b>pcre_get_stringnumber()</b>. You can obtain the complete list by calling
+<b>pcre_get_stringtable_entries()</b>.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_get_stringtable_entries.html b/jni/libpcre/doc/html/pcre_get_stringtable_entries.html
new file mode 100644
index 0000000..dc20ffd
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_get_stringtable_entries.html
@@ -0,0 +1,52 @@
+<html>
+<head>
+<title>pcre_get_stringtable_entries specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_get_stringtable_entries man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>int pcre_get_stringtable_entries(const pcre *<i>code</i>,</b>
+<b>const char *<i>name</i>, char **<i>first</i>, char **<i>last</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This convenience function finds, for a compiled pattern, the first and last
+entries for a given name in the table that translates capturing parenthesis
+names into numbers. When names are required to be unique (PCRE_DUPNAMES is
+<i>not</i> set), it is usually easier to use <b>pcre_get_stringnumber()</b>
+instead.
+<pre>
+  <i>code</i>    Compiled regular expression
+  <i>name</i>    Name whose entries required
+  <i>first</i>   Where to return a pointer to the first entry
+  <i>last</i>    Where to return a pointer to the last entry
+</pre>
+The yield of the function is the length of each entry, or
+PCRE_ERROR_NOSUBSTRING if none are found.
+</P>
+<P>
+There is a complete description of the PCRE native API, including the format of
+the table entries, in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page, and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_get_substring.html b/jni/libpcre/doc/html/pcre_get_substring.html
new file mode 100644
index 0000000..9b40e4d
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_get_substring.html
@@ -0,0 +1,53 @@
+<html>
+<head>
+<title>pcre_get_substring specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_get_substring man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>int pcre_get_substring(const char *<i>subject</i>, int *<i>ovector</i>,</b>
+<b>int <i>stringcount</i>, int <i>stringnumber</i>,</b>
+<b>const char **<i>stringptr</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This is a convenience function for extracting a captured substring. The
+arguments are:
+<pre>
+  <i>subject</i>       Subject that has been successfully matched
+  <i>ovector</i>       Offset vector that <b>pcre_exec()</b> used
+  <i>stringcount</i>   Value returned by <b>pcre_exec()</b>
+  <i>stringnumber</i>  Number of the required substring
+  <i>stringptr</i>     Where to put the string pointer
+</pre>
+The memory in which the substring is placed is obtained by calling
+<b>pcre_malloc()</b>. The convenience function <b>pcre_free_substring()</b> can
+be used to free it when it is no longer needed. The yield of the function is
+the length of the substring, PCRE_ERROR_NOMEMORY if sufficient memory could not
+be obtained, or PCRE_ERROR_NOSUBSTRING if the string number is invalid.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_get_substring_list.html b/jni/libpcre/doc/html/pcre_get_substring_list.html
new file mode 100644
index 0000000..617a315
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_get_substring_list.html
@@ -0,0 +1,53 @@
+<html>
+<head>
+<title>pcre_get_substring_list specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_get_substring_list man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>int pcre_get_substring_list(const char *<i>subject</i>,</b>
+<b>int *<i>ovector</i>, int <i>stringcount</i>, const char ***<i>listptr</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This is a convenience function for extracting a list of all the captured
+substrings. The arguments are:
+<pre>
+  <i>subject</i>       Subject that has been successfully matched
+  <i>ovector</i>       Offset vector that <b>pcre_exec</b> used
+  <i>stringcount</i>   Value returned by <b>pcre_exec</b>
+  <i>listptr</i>       Where to put a pointer to the list
+</pre>
+The memory in which the substrings and the list are placed is obtained by
+calling <b>pcre_malloc()</b>. The convenience function
+<b>pcre_free_substring_list()</b> can be used to free it when it is no longer
+needed. A pointer to a list of pointers is put in the variable whose address is
+in <i>listptr</i>. The list is terminated by a NULL pointer. The yield of the
+function is zero on success or PCRE_ERROR_NOMEMORY if sufficient memory could
+not be obtained.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_info.html b/jni/libpcre/doc/html/pcre_info.html
new file mode 100644
index 0000000..6693ffe
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_info.html
@@ -0,0 +1,39 @@
+<html>
+<head>
+<title>pcre_info specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_info man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>int pcre_info(const pcre *<i>code</i>, int *<i>optptr</i>, int</b>
+<b>*<i>firstcharptr</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This function is obsolete. You should be using <b>pcre_fullinfo()</b> instead.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_jit_stack_alloc.html b/jni/libpcre/doc/html/pcre_jit_stack_alloc.html
new file mode 100644
index 0000000..60a6cf1
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_jit_stack_alloc.html
@@ -0,0 +1,47 @@
+<html>
+<head>
+<title>pcre_jit_stack_alloc specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_jit_stack_alloc man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>pcre_jit_stack *pcre_jit_stack_alloc(int <i>startsize</i>,</b>
+<b>int <i>maxsize</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This function is used to create a stack for use by the code compiled by the JIT
+optimization of <b>pcre_study()</b>. The arguments are a starting size for the
+stack, and a maximum size to which it is allowed to grow. The result can be
+passed to the JIT runtime code by <b>pcre_assign_jit_stack()</b>, or that
+function can set up a callback for obtaining a stack. A maximum stack size of
+512K to 1M should be more than enough for any pattern. For more details, see
+the
+<a href="pcrejit.html"><b>pcrejit</b></a>
+page.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_jit_stack_free.html b/jni/libpcre/doc/html/pcre_jit_stack_free.html
new file mode 100644
index 0000000..cce389f
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_jit_stack_free.html
@@ -0,0 +1,42 @@
+<html>
+<head>
+<title>pcre_jit_stack_free specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_jit_stack_free man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>void pcre_jit_stack_free(pcre_jit_stack *<i>stack</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This function is used to free a JIT stack that was created by
+<b>pcre_jit_stack_alloc()</b> when it is no longer needed. For more details, see
+the
+<a href="pcrejit.html"><b>pcrejit</b></a>
+page.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_maketables.html b/jni/libpcre/doc/html/pcre_maketables.html
new file mode 100644
index 0000000..cf8d69e
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_maketables.html
@@ -0,0 +1,42 @@
+<html>
+<head>
+<title>pcre_maketables specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_maketables man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>const unsigned char *pcre_maketables(void);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This function builds a set of character tables for character values less than
+256. These can be passed to <b>pcre_compile()</b> to override PCRE's internal,
+built-in tables (which were made by <b>pcre_maketables()</b> when PCRE was
+compiled). You might want to do this if you are using a non-standard locale.
+The function yields a pointer to the tables.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_refcount.html b/jni/libpcre/doc/html/pcre_refcount.html
new file mode 100644
index 0000000..b748df2
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_refcount.html
@@ -0,0 +1,45 @@
+<html>
+<head>
+<title>pcre_refcount specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_refcount man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>int pcre_refcount(pcre *<i>code</i>, int <i>adjust</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This function is used to maintain a reference count inside a data block that
+contains a compiled pattern. Its arguments are:
+<pre>
+  <i>code</i>                      Compiled regular expression
+  <i>adjust</i>                    Adjustment to reference value
+</pre>
+The yield of the function is the adjusted reference value, which is constrained
+to lie between 0 and 65535.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_study.html b/jni/libpcre/doc/html/pcre_study.html
new file mode 100644
index 0000000..3c1cbcc
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_study.html
@@ -0,0 +1,59 @@
+<html>
+<head>
+<title>pcre_study specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_study man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>pcre_extra *pcre_study(const pcre *<i>code</i>, int <i>options</i>,</b>
+<b>const char **<i>errptr</i>);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This function studies a compiled pattern, to see if additional information can
+be extracted that might speed up matching. Its arguments are:
+<pre>
+  <i>code</i>       A compiled regular expression
+  <i>options</i>    Options for <b>pcre_study()</b>
+  <i>errptr</i>     Where to put an error message
+</pre>
+If the function succeeds, it returns a value that can be passed to
+<b>pcre_exec()</b> or <b>pcre_dfa_exec()</b> via their <i>extra</i> arguments.
+</P>
+<P>
+If the function returns NULL, either it could not find any additional
+information, or there was an error. You can tell the difference by looking at
+the error value. It is NULL in first case.
+</P>
+<P>
+The only option is PCRE_STUDY_JIT_COMPILE. It requests just-in-time compilation
+if possible. If PCRE has been compiled without JIT support, this option is
+ignored. See the
+<a href="pcrejit.html"><b>pcrejit</b></a>
+page for further details.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcre_version.html b/jni/libpcre/doc/html/pcre_version.html
new file mode 100644
index 0000000..7bc8f86
--- /dev/null
+++ b/jni/libpcre/doc/html/pcre_version.html
@@ -0,0 +1,39 @@
+<html>
+<head>
+<title>pcre_version specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcre_version man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SYNOPSIS
+</b><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>char *pcre_version(void);</b>
+</P>
+<br><b>
+DESCRIPTION
+</b><br>
+<P>
+This function returns a character string that gives the version number of the
+PCRE library and the date of its release.
+</P>
+<P>
+There is a complete description of the PCRE native API in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page and a description of the POSIX API in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+page.
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcreapi.html b/jni/libpcre/doc/html/pcreapi.html
new file mode 100644
index 0000000..3cbb6be
--- /dev/null
+++ b/jni/libpcre/doc/html/pcreapi.html
@@ -0,0 +1,2521 @@
+<html>
+<head>
+<title>pcreapi specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcreapi man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">PCRE NATIVE API BASIC FUNCTIONS</a>
+<li><a name="TOC2" href="#SEC2">PCRE NATIVE API AUXILIARY FUNCTIONS</a>
+<li><a name="TOC3" href="#SEC3">PCRE NATIVE API INDIRECTED FUNCTIONS</a>
+<li><a name="TOC4" href="#SEC4">PCRE API OVERVIEW</a>
+<li><a name="TOC5" href="#SEC5">NEWLINES</a>
+<li><a name="TOC6" href="#SEC6">MULTITHREADING</a>
+<li><a name="TOC7" href="#SEC7">SAVING PRECOMPILED PATTERNS FOR LATER USE</a>
+<li><a name="TOC8" href="#SEC8">CHECKING BUILD-TIME OPTIONS</a>
+<li><a name="TOC9" href="#SEC9">COMPILING A PATTERN</a>
+<li><a name="TOC10" href="#SEC10">COMPILATION ERROR CODES</a>
+<li><a name="TOC11" href="#SEC11">STUDYING A PATTERN</a>
+<li><a name="TOC12" href="#SEC12">LOCALE SUPPORT</a>
+<li><a name="TOC13" href="#SEC13">INFORMATION ABOUT A PATTERN</a>
+<li><a name="TOC14" href="#SEC14">OBSOLETE INFO FUNCTION</a>
+<li><a name="TOC15" href="#SEC15">REFERENCE COUNTS</a>
+<li><a name="TOC16" href="#SEC16">MATCHING A PATTERN: THE TRADITIONAL FUNCTION</a>
+<li><a name="TOC17" href="#SEC17">EXTRACTING CAPTURED SUBSTRINGS BY NUMBER</a>
+<li><a name="TOC18" href="#SEC18">EXTRACTING CAPTURED SUBSTRINGS BY NAME</a>
+<li><a name="TOC19" href="#SEC19">DUPLICATE SUBPATTERN NAMES</a>
+<li><a name="TOC20" href="#SEC20">FINDING ALL POSSIBLE MATCHES</a>
+<li><a name="TOC21" href="#SEC21">MATCHING A PATTERN: THE ALTERNATIVE FUNCTION</a>
+<li><a name="TOC22" href="#SEC22">SEE ALSO</a>
+<li><a name="TOC23" href="#SEC23">AUTHOR</a>
+<li><a name="TOC24" href="#SEC24">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">PCRE NATIVE API BASIC FUNCTIONS</a><br>
+<P>
+<b>#include &#60;pcre.h&#62;</b>
+</P>
+<P>
+<b>pcre *pcre_compile(const char *<i>pattern</i>, int <i>options</i>,</b>
+<b>const char **<i>errptr</i>, int *<i>erroffset</i>,</b>
+<b>const unsigned char *<i>tableptr</i>);</b>
+</P>
+<P>
+<b>pcre *pcre_compile2(const char *<i>pattern</i>, int <i>options</i>,</b>
+<b>int *<i>errorcodeptr</i>,</b>
+<b>const char **<i>errptr</i>, int *<i>erroffset</i>,</b>
+<b>const unsigned char *<i>tableptr</i>);</b>
+</P>
+<P>
+<b>pcre_extra *pcre_study(const pcre *<i>code</i>, int <i>options</i>,</b>
+<b>const char **<i>errptr</i>);</b>
+</P>
+<P>
+<b>void pcre_free_study(pcre_extra *<i>extra</i>);</b>
+</P>
+<P>
+<b>int pcre_exec(const pcre *<i>code</i>, const pcre_extra *<i>extra</i>,</b>
+<b>const char *<i>subject</i>, int <i>length</i>, int <i>startoffset</i>,</b>
+<b>int <i>options</i>, int *<i>ovector</i>, int <i>ovecsize</i>);</b>
+</P>
+<br><a name="SEC2" href="#TOC1">PCRE NATIVE API AUXILIARY FUNCTIONS</a><br>
+<P>
+<b>pcre_jit_stack *pcre_jit_stack_alloc(int <i>startsize</i>, int <i>maxsize</i>);</b>
+</P>
+<P>
+<b>void pcre_jit_stack_free(pcre_jit_stack *<i>stack</i>);</b>
+</P>
+<P>
+<b>void pcre_assign_jit_stack(pcre_extra *<i>extra</i>,</b>
+<b>pcre_jit_callback <i>callback</i>, void *<i>data</i>);</b>
+</P>
+<P>
+<b>int pcre_dfa_exec(const pcre *<i>code</i>, const pcre_extra *<i>extra</i>,</b>
+<b>const char *<i>subject</i>, int <i>length</i>, int <i>startoffset</i>,</b>
+<b>int <i>options</i>, int *<i>ovector</i>, int <i>ovecsize</i>,</b>
+<b>int *<i>workspace</i>, int <i>wscount</i>);</b>
+</P>
+<P>
+<b>int pcre_copy_named_substring(const pcre *<i>code</i>,</b>
+<b>const char *<i>subject</i>, int *<i>ovector</i>,</b>
+<b>int <i>stringcount</i>, const char *<i>stringname</i>,</b>
+<b>char *<i>buffer</i>, int <i>buffersize</i>);</b>
+</P>
+<P>
+<b>int pcre_copy_substring(const char *<i>subject</i>, int *<i>ovector</i>,</b>
+<b>int <i>stringcount</i>, int <i>stringnumber</i>, char *<i>buffer</i>,</b>
+<b>int <i>buffersize</i>);</b>
+</P>
+<P>
+<b>int pcre_get_named_substring(const pcre *<i>code</i>,</b>
+<b>const char *<i>subject</i>, int *<i>ovector</i>,</b>
+<b>int <i>stringcount</i>, const char *<i>stringname</i>,</b>
+<b>const char **<i>stringptr</i>);</b>
+</P>
+<P>
+<b>int pcre_get_stringnumber(const pcre *<i>code</i>,</b>
+<b>const char *<i>name</i>);</b>
+</P>
+<P>
+<b>int pcre_get_stringtable_entries(const pcre *<i>code</i>,</b>
+<b>const char *<i>name</i>, char **<i>first</i>, char **<i>last</i>);</b>
+</P>
+<P>
+<b>int pcre_get_substring(const char *<i>subject</i>, int *<i>ovector</i>,</b>
+<b>int <i>stringcount</i>, int <i>stringnumber</i>,</b>
+<b>const char **<i>stringptr</i>);</b>
+</P>
+<P>
+<b>int pcre_get_substring_list(const char *<i>subject</i>,</b>
+<b>int *<i>ovector</i>, int <i>stringcount</i>, const char ***<i>listptr</i>);</b>
+</P>
+<P>
+<b>void pcre_free_substring(const char *<i>stringptr</i>);</b>
+</P>
+<P>
+<b>void pcre_free_substring_list(const char **<i>stringptr</i>);</b>
+</P>
+<P>
+<b>const unsigned char *pcre_maketables(void);</b>
+</P>
+<P>
+<b>int pcre_fullinfo(const pcre *<i>code</i>, const pcre_extra *<i>extra</i>,</b>
+<b>int <i>what</i>, void *<i>where</i>);</b>
+</P>
+<P>
+<b>int pcre_info(const pcre *<i>code</i>, int *<i>optptr</i>, int</b>
+<b>*<i>firstcharptr</i>);</b>
+</P>
+<P>
+<b>int pcre_refcount(pcre *<i>code</i>, int <i>adjust</i>);</b>
+</P>
+<P>
+<b>int pcre_config(int <i>what</i>, void *<i>where</i>);</b>
+</P>
+<P>
+<b>char *pcre_version(void);</b>
+</P>
+<br><a name="SEC3" href="#TOC1">PCRE NATIVE API INDIRECTED FUNCTIONS</a><br>
+<P>
+<b>void *(*pcre_malloc)(size_t);</b>
+</P>
+<P>
+<b>void (*pcre_free)(void *);</b>
+</P>
+<P>
+<b>void *(*pcre_stack_malloc)(size_t);</b>
+</P>
+<P>
+<b>void (*pcre_stack_free)(void *);</b>
+</P>
+<P>
+<b>int (*pcre_callout)(pcre_callout_block *);</b>
+</P>
+<br><a name="SEC4" href="#TOC1">PCRE API OVERVIEW</a><br>
+<P>
+PCRE has its own native API, which is described in this document. There are
+also some wrapper functions that correspond to the POSIX regular expression
+API, but they do not give access to all the functionality. They are described
+in the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+documentation. Both of these APIs define a set of C function calls. A C++
+wrapper is also distributed with PCRE. It is documented in the
+<a href="pcrecpp.html"><b>pcrecpp</b></a>
+page.
+</P>
+<P>
+The native API C function prototypes are defined in the header file
+<b>pcre.h</b>, and on Unix systems the library itself is called <b>libpcre</b>.
+It can normally be accessed by adding <b>-lpcre</b> to the command for linking
+an application that uses PCRE. The header file defines the macros PCRE_MAJOR
+and PCRE_MINOR to contain the major and minor release numbers for the library.
+Applications can use these to include support for different releases of PCRE.
+</P>
+<P>
+In a Windows environment, if you want to statically link an application program
+against a non-dll <b>pcre.a</b> file, you must define PCRE_STATIC before
+including <b>pcre.h</b> or <b>pcrecpp.h</b>, because otherwise the
+<b>pcre_malloc()</b> and <b>pcre_free()</b> exported functions will be declared
+<b>__declspec(dllimport)</b>, with unwanted results.
+</P>
+<P>
+The functions <b>pcre_compile()</b>, <b>pcre_compile2()</b>, <b>pcre_study()</b>,
+and <b>pcre_exec()</b> are used for compiling and matching regular expressions
+in a Perl-compatible manner. A sample program that demonstrates the simplest
+way of using them is provided in the file called <i>pcredemo.c</i> in the PCRE
+source distribution. A listing of this program is given in the
+<a href="pcredemo.html"><b>pcredemo</b></a>
+documentation, and the
+<a href="pcresample.html"><b>pcresample</b></a>
+documentation describes how to compile and run it.
+</P>
+<P>
+Just-in-time compiler support is an optional feature of PCRE that can be built
+in appropriate hardware environments. It greatly speeds up the matching
+performance of many patterns. Simple programs can easily request that it be
+used if available, by setting an option that is ignored when it is not
+relevant. More complicated programs might need to make use of the functions
+<b>pcre_jit_stack_alloc()</b>, <b>pcre_jit_stack_free()</b>, and
+<b>pcre_assign_jit_stack()</b> in order to control the JIT code's memory usage.
+These functions are discussed in the
+<a href="pcrejit.html"><b>pcrejit</b></a>
+documentation.
+</P>
+<P>
+A second matching function, <b>pcre_dfa_exec()</b>, which is not
+Perl-compatible, is also provided. This uses a different algorithm for the
+matching. The alternative algorithm finds all possible matches (at a given
+point in the subject), and scans the subject just once (unless there are
+lookbehind assertions). However, this algorithm does not return captured
+substrings. A description of the two matching algorithms and their advantages
+and disadvantages is given in the
+<a href="pcrematching.html"><b>pcrematching</b></a>
+documentation.
+</P>
+<P>
+In addition to the main compiling and matching functions, there are convenience
+functions for extracting captured substrings from a subject string that is
+matched by <b>pcre_exec()</b>. They are:
+<pre>
+  <b>pcre_copy_substring()</b>
+  <b>pcre_copy_named_substring()</b>
+  <b>pcre_get_substring()</b>
+  <b>pcre_get_named_substring()</b>
+  <b>pcre_get_substring_list()</b>
+  <b>pcre_get_stringnumber()</b>
+  <b>pcre_get_stringtable_entries()</b>
+</pre>
+<b>pcre_free_substring()</b> and <b>pcre_free_substring_list()</b> are also
+provided, to free the memory used for extracted strings.
+</P>
+<P>
+The function <b>pcre_maketables()</b> is used to build a set of character tables
+in the current locale for passing to <b>pcre_compile()</b>, <b>pcre_exec()</b>,
+or <b>pcre_dfa_exec()</b>. This is an optional facility that is provided for
+specialist use. Most commonly, no special tables are passed, in which case
+internal tables that are generated when PCRE is built are used.
+</P>
+<P>
+The function <b>pcre_fullinfo()</b> is used to find out information about a
+compiled pattern; <b>pcre_info()</b> is an obsolete version that returns only
+some of the available information, but is retained for backwards compatibility.
+The function <b>pcre_version()</b> returns a pointer to a string containing the
+version of PCRE and its date of release.
+</P>
+<P>
+The function <b>pcre_refcount()</b> maintains a reference count in a data block
+containing a compiled pattern. This is provided for the benefit of
+object-oriented applications.
+</P>
+<P>
+The global variables <b>pcre_malloc</b> and <b>pcre_free</b> initially contain
+the entry points of the standard <b>malloc()</b> and <b>free()</b> functions,
+respectively. PCRE calls the memory management functions via these variables,
+so a calling program can replace them if it wishes to intercept the calls. This
+should be done before calling any PCRE functions.
+</P>
+<P>
+The global variables <b>pcre_stack_malloc</b> and <b>pcre_stack_free</b> are also
+indirections to memory management functions. These special functions are used
+only when PCRE is compiled to use the heap for remembering data, instead of
+recursive function calls, when running the <b>pcre_exec()</b> function. See the
+<a href="pcrebuild.html"><b>pcrebuild</b></a>
+documentation for details of how to do this. It is a non-standard way of
+building PCRE, for use in environments that have limited stacks. Because of the
+greater use of memory management, it runs more slowly. Separate functions are
+provided so that special-purpose external code can be used for this case. When
+used, these functions are always called in a stack-like manner (last obtained,
+first freed), and always for memory blocks of the same size. There is a
+discussion about PCRE's stack usage in the
+<a href="pcrestack.html"><b>pcrestack</b></a>
+documentation.
+</P>
+<P>
+The global variable <b>pcre_callout</b> initially contains NULL. It can be set
+by the caller to a "callout" function, which PCRE will then call at specified
+points during a matching operation. Details are given in the
+<a href="pcrecallout.html"><b>pcrecallout</b></a>
+documentation.
+<a name="newlines"></a></P>
+<br><a name="SEC5" href="#TOC1">NEWLINES</a><br>
+<P>
+PCRE supports five different conventions for indicating line breaks in
+strings: a single CR (carriage return) character, a single LF (linefeed)
+character, the two-character sequence CRLF, any of the three preceding, or any
+Unicode newline sequence. The Unicode newline sequences are the three just
+mentioned, plus the single characters VT (vertical tab, U+000B), FF (formfeed,
+U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and PS
+(paragraph separator, U+2029).
+</P>
+<P>
+Each of the first three conventions is used by at least one operating system as
+its standard newline sequence. When PCRE is built, a default can be specified.
+The default default is LF, which is the Unix standard. When PCRE is run, the
+default can be overridden, either when a pattern is compiled, or when it is
+matched.
+</P>
+<P>
+At compile time, the newline convention can be specified by the <i>options</i>
+argument of <b>pcre_compile()</b>, or it can be specified by special text at the
+start of the pattern itself; this overrides any other settings. See the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+page for details of the special character sequences.
+</P>
+<P>
+In the PCRE documentation the word "newline" is used to mean "the character or
+pair of characters that indicate a line break". The choice of newline
+convention affects the handling of the dot, circumflex, and dollar
+metacharacters, the handling of #-comments in /x mode, and, when CRLF is a
+recognized line ending sequence, the match position advancement for a
+non-anchored pattern. There is more detail about this in the
+<a href="#execoptions">section on <b>pcre_exec()</b> options</a>
+below.
+</P>
+<P>
+The choice of newline convention does not affect the interpretation of
+the \n or \r escape sequences, nor does it affect what \R matches, which is
+controlled in a similar way, but by separate options.
+</P>
+<br><a name="SEC6" href="#TOC1">MULTITHREADING</a><br>
+<P>
+The PCRE functions can be used in multi-threading applications, with the
+proviso that the memory management functions pointed to by <b>pcre_malloc</b>,
+<b>pcre_free</b>, <b>pcre_stack_malloc</b>, and <b>pcre_stack_free</b>, and the
+callout function pointed to by <b>pcre_callout</b>, are shared by all threads.
+</P>
+<P>
+The compiled form of a regular expression is not altered during matching, so
+the same compiled pattern can safely be used by several threads at once.
+</P>
+<P>
+If the just-in-time optimization feature is being used, it needs separate
+memory stack areas for each thread. See the
+<a href="pcrejit.html"><b>pcrejit</b></a>
+documentation for more details.
+</P>
+<br><a name="SEC7" href="#TOC1">SAVING PRECOMPILED PATTERNS FOR LATER USE</a><br>
+<P>
+The compiled form of a regular expression can be saved and re-used at a later
+time, possibly by a different program, and even on a host other than the one on
+which it was compiled. Details are given in the
+<a href="pcreprecompile.html"><b>pcreprecompile</b></a>
+documentation. However, compiling a regular expression with one version of PCRE
+for use with a different version is not guaranteed to work and may cause
+crashes.
+</P>
+<br><a name="SEC8" href="#TOC1">CHECKING BUILD-TIME OPTIONS</a><br>
+<P>
+<b>int pcre_config(int <i>what</i>, void *<i>where</i>);</b>
+</P>
+<P>
+The function <b>pcre_config()</b> makes it possible for a PCRE client to
+discover which optional features have been compiled into the PCRE library. The
+<a href="pcrebuild.html"><b>pcrebuild</b></a>
+documentation has more details about these optional features.
+</P>
+<P>
+The first argument for <b>pcre_config()</b> is an integer, specifying which
+information is required; the second argument is a pointer to a variable into
+which the information is placed. The following information is available:
+<pre>
+  PCRE_CONFIG_UTF8
+</pre>
+The output is an integer that is set to one if UTF-8 support is available;
+otherwise it is set to zero.
+<pre>
+  PCRE_CONFIG_UNICODE_PROPERTIES
+</pre>
+The output is an integer that is set to one if support for Unicode character
+properties is available; otherwise it is set to zero.
+<pre>
+  PCRE_CONFIG_JIT
+</pre>
+The output is an integer that is set to one if support for just-in-time
+compiling is available; otherwise it is set to zero.
+<pre>
+  PCRE_CONFIG_NEWLINE
+</pre>
+The output is an integer whose value specifies the default character sequence
+that is recognized as meaning "newline". The four values that are supported
+are: 10 for LF, 13 for CR, 3338 for CRLF, -2 for ANYCRLF, and -1 for ANY.
+Though they are derived from ASCII, the same values are returned in EBCDIC
+environments. The default should normally correspond to the standard sequence
+for your operating system.
+<pre>
+  PCRE_CONFIG_BSR
+</pre>
+The output is an integer whose value indicates what character sequences the \R
+escape sequence matches by default. A value of 0 means that \R matches any
+Unicode line ending sequence; a value of 1 means that \R matches only CR, LF,
+or CRLF. The default can be overridden when a pattern is compiled or matched.
+<pre>
+  PCRE_CONFIG_LINK_SIZE
+</pre>
+The output is an integer that contains the number of bytes used for internal
+linkage in compiled regular expressions. The value is 2, 3, or 4. Larger values
+allow larger regular expressions to be compiled, at the expense of slower
+matching. The default value of 2 is sufficient for all but the most massive
+patterns, since it allows the compiled pattern to be up to 64K in size.
+<pre>
+  PCRE_CONFIG_POSIX_MALLOC_THRESHOLD
+</pre>
+The output is an integer that contains the threshold above which the POSIX
+interface uses <b>malloc()</b> for output vectors. Further details are given in
+the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+documentation.
+<pre>
+  PCRE_CONFIG_MATCH_LIMIT
+</pre>
+The output is a long integer that gives the default limit for the number of
+internal matching function calls in a <b>pcre_exec()</b> execution. Further
+details are given with <b>pcre_exec()</b> below.
+<pre>
+  PCRE_CONFIG_MATCH_LIMIT_RECURSION
+</pre>
+The output is a long integer that gives the default limit for the depth of
+recursion when calling the internal matching function in a <b>pcre_exec()</b>
+execution. Further details are given with <b>pcre_exec()</b> below.
+<pre>
+  PCRE_CONFIG_STACKRECURSE
+</pre>
+The output is an integer that is set to one if internal recursion when running
+<b>pcre_exec()</b> is implemented by recursive function calls that use the stack
+to remember their state. This is the usual way that PCRE is compiled. The
+output is zero if PCRE was compiled to use blocks of data on the heap instead
+of recursive function calls. In this case, <b>pcre_stack_malloc</b> and
+<b>pcre_stack_free</b> are called to manage memory blocks on the heap, thus
+avoiding the use of the stack.
+</P>
+<br><a name="SEC9" href="#TOC1">COMPILING A PATTERN</a><br>
+<P>
+<b>pcre *pcre_compile(const char *<i>pattern</i>, int <i>options</i>,</b>
+<b>const char **<i>errptr</i>, int *<i>erroffset</i>,</b>
+<b>const unsigned char *<i>tableptr</i>);</b>
+<b>pcre *pcre_compile2(const char *<i>pattern</i>, int <i>options</i>,</b>
+<b>int *<i>errorcodeptr</i>,</b>
+<b>const char **<i>errptr</i>, int *<i>erroffset</i>,</b>
+<b>const unsigned char *<i>tableptr</i>);</b>
+</P>
+<P>
+Either of the functions <b>pcre_compile()</b> or <b>pcre_compile2()</b> can be
+called to compile a pattern into an internal form. The only difference between
+the two interfaces is that <b>pcre_compile2()</b> has an additional argument,
+<i>errorcodeptr</i>, via which a numerical error code can be returned. To avoid
+too much repetition, we refer just to <b>pcre_compile()</b> below, but the
+information applies equally to <b>pcre_compile2()</b>.
+</P>
+<P>
+The pattern is a C string terminated by a binary zero, and is passed in the
+<i>pattern</i> argument. A pointer to a single block of memory that is obtained
+via <b>pcre_malloc</b> is returned. This contains the compiled code and related
+data. The <b>pcre</b> type is defined for the returned block; this is a typedef
+for a structure whose contents are not externally defined. It is up to the
+caller to free the memory (via <b>pcre_free</b>) when it is no longer required.
+</P>
+<P>
+Although the compiled code of a PCRE regex is relocatable, that is, it does not
+depend on memory location, the complete <b>pcre</b> data block is not
+fully relocatable, because it may contain a copy of the <i>tableptr</i>
+argument, which is an address (see below).
+</P>
+<P>
+The <i>options</i> argument contains various bit settings that affect the
+compilation. It should be zero if no options are required. The available
+options are described below. Some of them (in particular, those that are
+compatible with Perl, but some others as well) can also be set and unset from
+within the pattern (see the detailed description in the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+documentation). For those options that can be different in different parts of
+the pattern, the contents of the <i>options</i> argument specifies their
+settings at the start of compilation and execution. The PCRE_ANCHORED,
+PCRE_BSR_<i>xxx</i>, PCRE_NEWLINE_<i>xxx</i>, PCRE_NO_UTF8_CHECK, and
+PCRE_NO_START_OPT options can be set at the time of matching as well as at
+compile time.
+</P>
+<P>
+If <i>errptr</i> is NULL, <b>pcre_compile()</b> returns NULL immediately.
+Otherwise, if compilation of a pattern fails, <b>pcre_compile()</b> returns
+NULL, and sets the variable pointed to by <i>errptr</i> to point to a textual
+error message. This is a static string that is part of the library. You must
+not try to free it. Normally, the offset from the start of the pattern to the
+byte that was being processed when the error was discovered is placed in the
+variable pointed to by <i>erroffset</i>, which must not be NULL (if it is, an
+immediate error is given). However, for an invalid UTF-8 string, the offset is
+that of the first byte of the failing character. Also, some errors are not
+detected until checks are carried out when the whole pattern has been scanned;
+in these cases the offset passed back is the length of the pattern.
+</P>
+<P>
+Note that the offset is in bytes, not characters, even in UTF-8 mode. It may
+sometimes point into the middle of a UTF-8 character.
+</P>
+<P>
+If <b>pcre_compile2()</b> is used instead of <b>pcre_compile()</b>, and the
+<i>errorcodeptr</i> argument is not NULL, a non-zero error code number is
+returned via this argument in the event of an error. This is in addition to the
+textual error message. Error codes and messages are listed below.
+</P>
+<P>
+If the final argument, <i>tableptr</i>, is NULL, PCRE uses a default set of
+character tables that are built when PCRE is compiled, using the default C
+locale. Otherwise, <i>tableptr</i> must be an address that is the result of a
+call to <b>pcre_maketables()</b>. This value is stored with the compiled
+pattern, and used again by <b>pcre_exec()</b>, unless another table pointer is
+passed to it. For more discussion, see the section on locale support below.
+</P>
+<P>
+This code fragment shows a typical straightforward call to <b>pcre_compile()</b>:
+<pre>
+  pcre *re;
+  const char *error;
+  int erroffset;
+  re = pcre_compile(
+    "^A.*Z",          /* the pattern */
+    0,                /* default options */
+    &error,           /* for error message */
+    &erroffset,       /* for error offset */
+    NULL);            /* use default character tables */
+</pre>
+The following names for option bits are defined in the <b>pcre.h</b> header
+file:
+<pre>
+  PCRE_ANCHORED
+</pre>
+If this bit is set, the pattern is forced to be "anchored", that is, it is
+constrained to match only at the first matching point in the string that is
+being searched (the "subject string"). This effect can also be achieved by
+appropriate constructs in the pattern itself, which is the only way to do it in
+Perl.
+<pre>
+  PCRE_AUTO_CALLOUT
+</pre>
+If this bit is set, <b>pcre_compile()</b> automatically inserts callout items,
+all with number 255, before each pattern item. For discussion of the callout
+facility, see the
+<a href="pcrecallout.html"><b>pcrecallout</b></a>
+documentation.
+<pre>
+  PCRE_BSR_ANYCRLF
+  PCRE_BSR_UNICODE
+</pre>
+These options (which are mutually exclusive) control what the \R escape
+sequence matches. The choice is either to match only CR, LF, or CRLF, or to
+match any Unicode newline sequence. The default is specified when PCRE is
+built. It can be overridden from within the pattern, or by setting an option
+when a compiled pattern is matched.
+<pre>
+  PCRE_CASELESS
+</pre>
+If this bit is set, letters in the pattern match both upper and lower case
+letters. It is equivalent to Perl's /i option, and it can be changed within a
+pattern by a (?i) option setting. In UTF-8 mode, PCRE always understands the
+concept of case for characters whose values are less than 128, so caseless
+matching is always possible. For characters with higher values, the concept of
+case is supported if PCRE is compiled with Unicode property support, but not
+otherwise. If you want to use caseless matching for characters 128 and above,
+you must ensure that PCRE is compiled with Unicode property support as well as
+with UTF-8 support.
+<pre>
+  PCRE_DOLLAR_ENDONLY
+</pre>
+If this bit is set, a dollar metacharacter in the pattern matches only at the
+end of the subject string. Without this option, a dollar also matches
+immediately before a newline at the end of the string (but not before any other
+newlines). The PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE is set.
+There is no equivalent to this option in Perl, and no way to set it within a
+pattern.
+<pre>
+  PCRE_DOTALL
+</pre>
+If this bit is set, a dot metacharacter in the pattern matches a character of
+any value, including one that indicates a newline. However, it only ever
+matches one character, even if newlines are coded as CRLF. Without this option,
+a dot does not match when the current position is at a newline. This option is
+equivalent to Perl's /s option, and it can be changed within a pattern by a
+(?s) option setting. A negative class such as [^a] always matches newline
+characters, independent of the setting of this option.
+<pre>
+  PCRE_DUPNAMES
+</pre>
+If this bit is set, names used to identify capturing subpatterns need not be
+unique. This can be helpful for certain types of pattern when it is known that
+only one instance of the named subpattern can ever be matched. There are more
+details of named subpatterns below; see also the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+documentation.
+<pre>
+  PCRE_EXTENDED
+</pre>
+If this bit is set, whitespace data characters in the pattern are totally
+ignored except when escaped or inside a character class. Whitespace does not
+include the VT character (code 11). In addition, characters between an
+unescaped # outside a character class and the next newline, inclusive, are also
+ignored. This is equivalent to Perl's /x option, and it can be changed within a
+pattern by a (?x) option setting.
+</P>
+<P>
+Which characters are interpreted as newlines is controlled by the options
+passed to <b>pcre_compile()</b> or by a special sequence at the start of the
+pattern, as described in the section entitled
+<a href="pcrepattern.html#newlines">"Newline conventions"</a>
+in the <b>pcrepattern</b> documentation. Note that the end of this type of
+comment is a literal newline sequence in the pattern; escape sequences that
+happen to represent a newline do not count.
+</P>
+<P>
+This option makes it possible to include comments inside complicated patterns.
+Note, however, that this applies only to data characters. Whitespace characters
+may never appear within special character sequences in a pattern, for example
+within the sequence (?( that introduces a conditional subpattern.
+<pre>
+  PCRE_EXTRA
+</pre>
+This option was invented in order to turn on additional functionality of PCRE
+that is incompatible with Perl, but it is currently of very little use. When
+set, any backslash in a pattern that is followed by a letter that has no
+special meaning causes an error, thus reserving these combinations for future
+expansion. By default, as in Perl, a backslash followed by a letter with no
+special meaning is treated as a literal. (Perl can, however, be persuaded to
+give an error for this, by running it with the -w option.) There are at present
+no other features controlled by this option. It can also be set by a (?X)
+option setting within a pattern.
+<pre>
+  PCRE_FIRSTLINE
+</pre>
+If this option is set, an unanchored pattern is required to match before or at
+the first newline in the subject string, though the matched text may continue
+over the newline.
+<pre>
+  PCRE_JAVASCRIPT_COMPAT
+</pre>
+If this option is set, PCRE's behaviour is changed in some ways so that it is
+compatible with JavaScript rather than Perl. The changes are as follows:
+</P>
+<P>
+(1) A lone closing square bracket in a pattern causes a compile-time error,
+because this is illegal in JavaScript (by default it is treated as a data
+character). Thus, the pattern AB]CD becomes illegal when this option is set.
+</P>
+<P>
+(2) At run time, a back reference to an unset subpattern group matches an empty
+string (by default this causes the current matching alternative to fail). A
+pattern such as (\1)(a) succeeds when this option is set (assuming it can find
+an "a" in the subject), whereas it fails by default, for Perl compatibility.
+</P>
+<P>
+(3) \U matches an upper case "U" character; by default \U causes a compile
+time error (Perl uses \U to upper case subsequent characters).
+</P>
+<P>
+(4) \u matches a lower case "u" character unless it is followed by four
+hexadecimal digits, in which case the hexadecimal number defines the code point
+to match. By default, \u causes a compile time error (Perl uses it to upper
+case the following character).
+</P>
+<P>
+(5) \x matches a lower case "x" character unless it is followed by two
+hexadecimal digits, in which case the hexadecimal number defines the code point
+to match. By default, as in Perl, a hexadecimal number is always expected after
+\x, but it may have zero, one, or two digits (so, for example, \xz matches a
+binary zero character followed by z).
+<pre>
+  PCRE_MULTILINE
+</pre>
+By default, PCRE treats the subject string as consisting of a single line of
+characters (even if it actually contains newlines). The "start of line"
+metacharacter (^) matches only at the start of the string, while the "end of
+line" metacharacter ($) matches only at the end of the string, or before a
+terminating newline (unless PCRE_DOLLAR_ENDONLY is set). This is the same as
+Perl.
+</P>
+<P>
+When PCRE_MULTILINE it is set, the "start of line" and "end of line" constructs
+match immediately following or immediately before internal newlines in the
+subject string, respectively, as well as at the very start and end. This is
+equivalent to Perl's /m option, and it can be changed within a pattern by a
+(?m) option setting. If there are no newlines in a subject string, or no
+occurrences of ^ or $ in a pattern, setting PCRE_MULTILINE has no effect.
+<pre>
+  PCRE_NEWLINE_CR
+  PCRE_NEWLINE_LF
+  PCRE_NEWLINE_CRLF
+  PCRE_NEWLINE_ANYCRLF
+  PCRE_NEWLINE_ANY
+</pre>
+These options override the default newline definition that was chosen when PCRE
+was built. Setting the first or the second specifies that a newline is
+indicated by a single character (CR or LF, respectively). Setting
+PCRE_NEWLINE_CRLF specifies that a newline is indicated by the two-character
+CRLF sequence. Setting PCRE_NEWLINE_ANYCRLF specifies that any of the three
+preceding sequences should be recognized. Setting PCRE_NEWLINE_ANY specifies
+that any Unicode newline sequence should be recognized. The Unicode newline
+sequences are the three just mentioned, plus the single characters VT (vertical
+tab, U+000B), FF (formfeed, U+000C), NEL (next line, U+0085), LS (line
+separator, U+2028), and PS (paragraph separator, U+2029). The last two are
+recognized only in UTF-8 mode.
+</P>
+<P>
+The newline setting in the options word uses three bits that are treated
+as a number, giving eight possibilities. Currently only six are used (default
+plus the five values above). This means that if you set more than one newline
+option, the combination may or may not be sensible. For example,
+PCRE_NEWLINE_CR with PCRE_NEWLINE_LF is equivalent to PCRE_NEWLINE_CRLF, but
+other combinations may yield unused numbers and cause an error.
+</P>
+<P>
+The only time that a line break in a pattern is specially recognized when
+compiling is when PCRE_EXTENDED is set. CR and LF are whitespace characters,
+and so are ignored in this mode. Also, an unescaped # outside a character class
+indicates a comment that lasts until after the next line break sequence. In
+other circumstances, line break sequences in patterns are treated as literal
+data.
+</P>
+<P>
+The newline option that is set at compile time becomes the default that is used
+for <b>pcre_exec()</b> and <b>pcre_dfa_exec()</b>, but it can be overridden.
+<pre>
+  PCRE_NO_AUTO_CAPTURE
+</pre>
+If this option is set, it disables the use of numbered capturing parentheses in
+the pattern. Any opening parenthesis that is not followed by ? behaves as if it
+were followed by ?: but named parentheses can still be used for capturing (and
+they acquire numbers in the usual way). There is no equivalent of this option
+in Perl.
+<pre>
+  NO_START_OPTIMIZE
+</pre>
+This is an option that acts at matching time; that is, it is really an option
+for <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>. If it is set at compile time,
+it is remembered with the compiled pattern and assumed at matching time. For
+details see the discussion of PCRE_NO_START_OPTIMIZE
+<a href="#execoptions">below.</a>
+<pre>
+  PCRE_UCP
+</pre>
+This option changes the way PCRE processes \B, \b, \D, \d, \S, \s, \W,
+\w, and some of the POSIX character classes. By default, only ASCII characters
+are recognized, but if PCRE_UCP is set, Unicode properties are used instead to
+classify characters. More details are given in the section on
+<a href="pcre.html#genericchartypes">generic character types</a>
+in the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+page. If you set PCRE_UCP, matching one of the items it affects takes much
+longer. The option is available only if PCRE has been compiled with Unicode
+property support.
+<pre>
+  PCRE_UNGREEDY
+</pre>
+This option inverts the "greediness" of the quantifiers so that they are not
+greedy by default, but become greedy if followed by "?". It is not compatible
+with Perl. It can also be set by a (?U) option setting within the pattern.
+<pre>
+  PCRE_UTF8
+</pre>
+This option causes PCRE to regard both the pattern and the subject as strings
+of UTF-8 characters instead of single-byte character strings. However, it is
+available only when PCRE is built to include UTF-8 support. If not, the use
+of this option provokes an error. Details of how this option changes the
+behaviour of PCRE are given in the
+<a href="pcreunicode.html"><b>pcreunicode</b></a>
+page.
+<pre>
+  PCRE_NO_UTF8_CHECK
+</pre>
+When PCRE_UTF8 is set, the validity of the pattern as a UTF-8 string is
+automatically checked. There is a discussion about the
+<a href="pcre.html#utf8strings">validity of UTF-8 strings</a>
+in the main
+<a href="pcre.html"><b>pcre</b></a>
+page. If an invalid UTF-8 sequence of bytes is found, <b>pcre_compile()</b>
+returns an error. If you already know that your pattern is valid, and you want
+to skip this check for performance reasons, you can set the PCRE_NO_UTF8_CHECK
+option. When it is set, the effect of passing an invalid UTF-8 string as a
+pattern is undefined. It may cause your program to crash. Note that this option
+can also be passed to <b>pcre_exec()</b> and <b>pcre_dfa_exec()</b>, to suppress
+the UTF-8 validity checking of subject strings.
+</P>
+<br><a name="SEC10" href="#TOC1">COMPILATION ERROR CODES</a><br>
+<P>
+The following table lists the error codes than may be returned by
+<b>pcre_compile2()</b>, along with the error messages that may be returned by
+both compiling functions. As PCRE has developed, some error codes have fallen
+out of use. To avoid confusion, they have not been re-used.
+<pre>
+   0  no error
+   1  \ at end of pattern
+   2  \c at end of pattern
+   3  unrecognized character follows \
+   4  numbers out of order in {} quantifier
+   5  number too big in {} quantifier
+   6  missing terminating ] for character class
+   7  invalid escape sequence in character class
+   8  range out of order in character class
+   9  nothing to repeat
+  10  [this code is not in use]
+  11  internal error: unexpected repeat
+  12  unrecognized character after (? or (?-
+  13  POSIX named classes are supported only within a class
+  14  missing )
+  15  reference to non-existent subpattern
+  16  erroffset passed as NULL
+  17  unknown option bit(s) set
+  18  missing ) after comment
+  19  [this code is not in use]
+  20  regular expression is too large
+  21  failed to get memory
+  22  unmatched parentheses
+  23  internal error: code overflow
+  24  unrecognized character after (?&#60;
+  25  lookbehind assertion is not fixed length
+  26  malformed number or name after (?(
+  27  conditional group contains more than two branches
+  28  assertion expected after (?(
+  29  (?R or (?[+-]digits must be followed by )
+  30  unknown POSIX class name
+  31  POSIX collating elements are not supported
+  32  this version of PCRE is not compiled with PCRE_UTF8 support
+  33  [this code is not in use]
+  34  character value in \x{...} sequence is too large
+  35  invalid condition (?(0)
+  36  \C not allowed in lookbehind assertion
+  37  PCRE does not support \L, \l, \N{name}, \U, or \u
+  38  number after (?C is &#62; 255
+  39  closing ) for (?C expected
+  40  recursive call could loop indefinitely
+  41  unrecognized character after (?P
+  42  syntax error in subpattern name (missing terminator)
+  43  two named subpatterns have the same name
+  44  invalid UTF-8 string
+  45  support for \P, \p, and \X has not been compiled
+  46  malformed \P or \p sequence
+  47  unknown property name after \P or \p
+  48  subpattern name is too long (maximum 32 characters)
+  49  too many named subpatterns (maximum 10000)
+  50  [this code is not in use]
+  51  octal value is greater than \377 (not in UTF-8 mode)
+  52  internal error: overran compiling workspace
+  53  internal error: previously-checked referenced subpattern
+        not found
+  54  DEFINE group contains more than one branch
+  55  repeating a DEFINE group is not allowed
+  56  inconsistent NEWLINE options
+  57  \g is not followed by a braced, angle-bracketed, or quoted
+        name/number or by a plain number
+  58  a numbered reference must not be zero
+  59  an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)
+  60  (*VERB) not recognized
+  61  number is too big
+  62  subpattern name expected
+  63  digit expected after (?+
+  64  ] is an invalid data character in JavaScript compatibility mode
+  65  different names for subpatterns of the same number are
+        not allowed
+  66  (*MARK) must have an argument
+  67  this version of PCRE is not compiled with PCRE_UCP support
+  68  \c must be followed by an ASCII character
+  69  \k is not followed by a braced, angle-bracketed, or quoted name
+</pre>
+The numbers 32 and 10000 in errors 48 and 49 are defaults; different values may
+be used if the limits were changed when PCRE was built.
+<a name="studyingapattern"></a></P>
+<br><a name="SEC11" href="#TOC1">STUDYING A PATTERN</a><br>
+<P>
+<b>pcre_extra *pcre_study(const pcre *<i>code</i>, int <i>options</i></b>
+<b>const char **<i>errptr</i>);</b>
+</P>
+<P>
+If a compiled pattern is going to be used several times, it is worth spending
+more time analyzing it in order to speed up the time taken for matching. The
+function <b>pcre_study()</b> takes a pointer to a compiled pattern as its first
+argument. If studying the pattern produces additional information that will
+help speed up matching, <b>pcre_study()</b> returns a pointer to a
+<b>pcre_extra</b> block, in which the <i>study_data</i> field points to the
+results of the study.
+</P>
+<P>
+The returned value from <b>pcre_study()</b> can be passed directly to
+<b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>. However, a <b>pcre_extra</b> block
+also contains other fields that can be set by the caller before the block is
+passed; these are described
+<a href="#extradata">below</a>
+in the section on matching a pattern.
+</P>
+<P>
+If studying the pattern does not produce any useful information,
+<b>pcre_study()</b> returns NULL. In that circumstance, if the calling program
+wants to pass any of the other fields to <b>pcre_exec()</b> or
+<b>pcre_dfa_exec()</b>, it must set up its own <b>pcre_extra</b> block.
+</P>
+<P>
+The second argument of <b>pcre_study()</b> contains option bits. There is only
+one option: PCRE_STUDY_JIT_COMPILE. If this is set, and the just-in-time
+compiler is available, the pattern is further compiled into machine code that
+executes much faster than the <b>pcre_exec()</b> matching function. If
+the just-in-time compiler is not available, this option is ignored. All other
+bits in the <i>options</i> argument must be zero.
+</P>
+<P>
+JIT compilation is a heavyweight optimization. It can take some time for
+patterns to be analyzed, and for one-off matches and simple patterns the
+benefit of faster execution might be offset by a much slower study time.
+Not all patterns can be optimized by the JIT compiler. For those that cannot be
+handled, matching automatically falls back to the <b>pcre_exec()</b>
+interpreter. For more details, see the
+<a href="pcrejit.html"><b>pcrejit</b></a>
+documentation.
+</P>
+<P>
+The third argument for <b>pcre_study()</b> is a pointer for an error message. If
+studying succeeds (even if no data is returned), the variable it points to is
+set to NULL. Otherwise it is set to point to a textual error message. This is a
+static string that is part of the library. You must not try to free it. You
+should test the error pointer for NULL after calling <b>pcre_study()</b>, to be
+sure that it has run successfully.
+</P>
+<P>
+When you are finished with a pattern, you can free the memory used for the
+study data by calling <b>pcre_free_study()</b>. This function was added to the
+API for release 8.20. For earlier versions, the memory could be freed with
+<b>pcre_free()</b>, just like the pattern itself. This will still work in cases
+where PCRE_STUDY_JIT_COMPILE is not used, but it is advisable to change to the
+new function when convenient.
+</P>
+<P>
+This is a typical way in which <b>pcre_study</b>() is used (except that in a
+real application there should be tests for errors):
+<pre>
+  int rc;
+  pcre *re;
+  pcre_extra *sd;
+  re = pcre_compile("pattern", 0, &error, &erroroffset, NULL);
+  sd = pcre_study(
+    re,             /* result of pcre_compile() */
+    0,              /* no options */
+    &error);        /* set to NULL or points to a message */
+  rc = pcre_exec(   /* see below for details of pcre_exec() options */
+    re, sd, "subject", 7, 0, 0, ovector, 30);
+  ...
+  pcre_free_study(sd);
+  pcre_free(re);
+</pre>
+Studying a pattern does two things: first, a lower bound for the length of
+subject string that is needed to match the pattern is computed. This does not
+mean that there are any strings of that length that match, but it does
+guarantee that no shorter strings match. The value is used by
+<b>pcre_exec()</b> and <b>pcre_dfa_exec()</b> to avoid wasting time by trying to
+match strings that are shorter than the lower bound. You can find out the value
+in a calling program via the <b>pcre_fullinfo()</b> function.
+</P>
+<P>
+Studying a pattern is also useful for non-anchored patterns that do not have a
+single fixed starting character. A bitmap of possible starting bytes is
+created. This speeds up finding a position in the subject at which to start
+matching.
+</P>
+<P>
+These two optimizations apply to both <b>pcre_exec()</b> and
+<b>pcre_dfa_exec()</b>. However, they are not used by <b>pcre_exec()</b> if
+<b>pcre_study()</b> is called with the PCRE_STUDY_JIT_COMPILE option, and
+just-in-time compiling is successful. The optimizations can be disabled by
+setting the PCRE_NO_START_OPTIMIZE option when calling <b>pcre_exec()</b> or
+<b>pcre_dfa_exec()</b>. You might want to do this if your pattern contains
+callouts or (*MARK) (which cannot be handled by the JIT compiler), and you want
+to make use of these facilities in cases where matching fails. See the
+discussion of PCRE_NO_START_OPTIMIZE
+<a href="#execoptions">below.</a>
+<a name="localesupport"></a></P>
+<br><a name="SEC12" href="#TOC1">LOCALE SUPPORT</a><br>
+<P>
+PCRE handles caseless matching, and determines whether characters are letters,
+digits, or whatever, by reference to a set of tables, indexed by character
+value. When running in UTF-8 mode, this applies only to characters with codes
+less than 128. By default, higher-valued codes never match escapes such as \w
+or \d, but they can be tested with \p if PCRE is built with Unicode character
+property support. Alternatively, the PCRE_UCP option can be set at compile
+time; this causes \w and friends to use Unicode property support instead of
+built-in tables. The use of locales with Unicode is discouraged. If you are
+handling characters with codes greater than 128, you should either use UTF-8
+and Unicode, or use locales, but not try to mix the two.
+</P>
+<P>
+PCRE contains an internal set of tables that are used when the final argument
+of <b>pcre_compile()</b> is NULL. These are sufficient for many applications.
+Normally, the internal tables recognize only ASCII characters. However, when
+PCRE is built, it is possible to cause the internal tables to be rebuilt in the
+default "C" locale of the local system, which may cause them to be different.
+</P>
+<P>
+The internal tables can always be overridden by tables supplied by the
+application that calls PCRE. These may be created in a different locale from
+the default. As more and more applications change to using Unicode, the need
+for this locale support is expected to die away.
+</P>
+<P>
+External tables are built by calling the <b>pcre_maketables()</b> function,
+which has no arguments, in the relevant locale. The result can then be passed
+to <b>pcre_compile()</b> or <b>pcre_exec()</b> as often as necessary. For
+example, to build and use tables that are appropriate for the French locale
+(where accented characters with values greater than 128 are treated as letters),
+the following code could be used:
+<pre>
+  setlocale(LC_CTYPE, "fr_FR");
+  tables = pcre_maketables();
+  re = pcre_compile(..., tables);
+</pre>
+The locale name "fr_FR" is used on Linux and other Unix-like systems; if you
+are using Windows, the name for the French locale is "french".
+</P>
+<P>
+When <b>pcre_maketables()</b> runs, the tables are built in memory that is
+obtained via <b>pcre_malloc</b>. It is the caller's responsibility to ensure
+that the memory containing the tables remains available for as long as it is
+needed.
+</P>
+<P>
+The pointer that is passed to <b>pcre_compile()</b> is saved with the compiled
+pattern, and the same tables are used via this pointer by <b>pcre_study()</b>
+and normally also by <b>pcre_exec()</b>. Thus, by default, for any single
+pattern, compilation, studying and matching all happen in the same locale, but
+different patterns can be compiled in different locales.
+</P>
+<P>
+It is possible to pass a table pointer or NULL (indicating the use of the
+internal tables) to <b>pcre_exec()</b>. Although not intended for this purpose,
+this facility could be used to match a pattern in a different locale from the
+one in which it was compiled. Passing table pointers at run time is discussed
+below in the section on matching a pattern.
+<a name="infoaboutpattern"></a></P>
+<br><a name="SEC13" href="#TOC1">INFORMATION ABOUT A PATTERN</a><br>
+<P>
+<b>int pcre_fullinfo(const pcre *<i>code</i>, const pcre_extra *<i>extra</i>,</b>
+<b>int <i>what</i>, void *<i>where</i>);</b>
+</P>
+<P>
+The <b>pcre_fullinfo()</b> function returns information about a compiled
+pattern. It replaces the obsolete <b>pcre_info()</b> function, which is
+nevertheless retained for backwards compability (and is documented below).
+</P>
+<P>
+The first argument for <b>pcre_fullinfo()</b> is a pointer to the compiled
+pattern. The second argument is the result of <b>pcre_study()</b>, or NULL if
+the pattern was not studied. The third argument specifies which piece of
+information is required, and the fourth argument is a pointer to a variable
+to receive the data. The yield of the function is zero for success, or one of
+the following negative numbers:
+<pre>
+  PCRE_ERROR_NULL       the argument <i>code</i> was NULL
+                        the argument <i>where</i> was NULL
+  PCRE_ERROR_BADMAGIC   the "magic number" was not found
+  PCRE_ERROR_BADOPTION  the value of <i>what</i> was invalid
+</pre>
+The "magic number" is placed at the start of each compiled pattern as an simple
+check against passing an arbitrary memory pointer. Here is a typical call of
+<b>pcre_fullinfo()</b>, to obtain the length of the compiled pattern:
+<pre>
+  int rc;
+  size_t length;
+  rc = pcre_fullinfo(
+    re,               /* result of pcre_compile() */
+    sd,               /* result of pcre_study(), or NULL */
+    PCRE_INFO_SIZE,   /* what is required */
+    &length);         /* where to put the data */
+</pre>
+The possible values for the third argument are defined in <b>pcre.h</b>, and are
+as follows:
+<pre>
+  PCRE_INFO_BACKREFMAX
+</pre>
+Return the number of the highest back reference in the pattern. The fourth
+argument should point to an <b>int</b> variable. Zero is returned if there are
+no back references.
+<pre>
+  PCRE_INFO_CAPTURECOUNT
+</pre>
+Return the number of capturing subpatterns in the pattern. The fourth argument
+should point to an <b>int</b> variable.
+<pre>
+  PCRE_INFO_DEFAULT_TABLES
+</pre>
+Return a pointer to the internal default character tables within PCRE. The
+fourth argument should point to an <b>unsigned char *</b> variable. This
+information call is provided for internal use by the <b>pcre_study()</b>
+function. External callers can cause PCRE to use its internal tables by passing
+a NULL table pointer.
+<pre>
+  PCRE_INFO_FIRSTBYTE
+</pre>
+Return information about the first byte of any matched string, for a
+non-anchored pattern. The fourth argument should point to an <b>int</b>
+variable. (This option used to be called PCRE_INFO_FIRSTCHAR; the old name is
+still recognized for backwards compatibility.)
+</P>
+<P>
+If there is a fixed first byte, for example, from a pattern such as
+(cat|cow|coyote), its value is returned. Otherwise, if either
+<br>
+<br>
+(a) the pattern was compiled with the PCRE_MULTILINE option, and every branch
+starts with "^", or
+<br>
+<br>
+(b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not set
+(if it were set, the pattern would be anchored),
+<br>
+<br>
+-1 is returned, indicating that the pattern matches only at the start of a
+subject string or after any newline within the string. Otherwise -2 is
+returned. For anchored patterns, -2 is returned.
+<pre>
+  PCRE_INFO_FIRSTTABLE
+</pre>
+If the pattern was studied, and this resulted in the construction of a 256-bit
+table indicating a fixed set of bytes for the first byte in any matching
+string, a pointer to the table is returned. Otherwise NULL is returned. The
+fourth argument should point to an <b>unsigned char *</b> variable.
+<pre>
+  PCRE_INFO_HASCRORLF
+</pre>
+Return 1 if the pattern contains any explicit matches for CR or LF characters,
+otherwise 0. The fourth argument should point to an <b>int</b> variable. An
+explicit match is either a literal CR or LF character, or \r or \n.
+<pre>
+  PCRE_INFO_JCHANGED
+</pre>
+Return 1 if the (?J) or (?-J) option setting is used in the pattern, otherwise
+0. The fourth argument should point to an <b>int</b> variable. (?J) and
+(?-J) set and unset the local PCRE_DUPNAMES option, respectively.
+<pre>
+  PCRE_INFO_JIT
+</pre>
+Return 1 if the pattern was studied with the PCRE_STUDY_JIT_COMPILE option, and
+just-in-time compiling was successful. The fourth argument should point to an
+<b>int</b> variable. A return value of 0 means that JIT support is not available
+in this version of PCRE, or that the pattern was not studied with the
+PCRE_STUDY_JIT_COMPILE option, or that the JIT compiler could not handle this
+particular pattern. See the
+<a href="pcrejit.html"><b>pcrejit</b></a>
+documentation for details of what can and cannot be handled.
+<pre>
+  PCRE_INFO_JITSIZE
+</pre>
+If the pattern was successfully studied with the PCRE_STUDY_JIT_COMPILE option,
+return the size of the JIT compiled code, otherwise return zero. The fourth
+argument should point to a <b>size_t</b> variable.
+<pre>
+  PCRE_INFO_LASTLITERAL
+</pre>
+Return the value of the rightmost literal byte that must exist in any matched
+string, other than at its start, if such a byte has been recorded. The fourth
+argument should point to an <b>int</b> variable. If there is no such byte, -1 is
+returned. For anchored patterns, a last literal byte is recorded only if it
+follows something of variable length. For example, for the pattern
+/^a\d+z\d+/ the returned value is "z", but for /^a\dz\d/ the returned value
+is -1.
+<pre>
+  PCRE_INFO_MINLENGTH
+</pre>
+If the pattern was studied and a minimum length for matching subject strings
+was computed, its value is returned. Otherwise the returned value is -1. The
+value is a number of characters, not bytes (this may be relevant in UTF-8
+mode). The fourth argument should point to an <b>int</b> variable. A
+non-negative value is a lower bound to the length of any matching string. There
+may not be any strings of that length that do actually match, but every string
+that does match is at least that long.
+<pre>
+  PCRE_INFO_NAMECOUNT
+  PCRE_INFO_NAMEENTRYSIZE
+  PCRE_INFO_NAMETABLE
+</pre>
+PCRE supports the use of named as well as numbered capturing parentheses. The
+names are just an additional way of identifying the parentheses, which still
+acquire numbers. Several convenience functions such as
+<b>pcre_get_named_substring()</b> are provided for extracting captured
+substrings by name. It is also possible to extract the data directly, by first
+converting the name to a number in order to access the correct pointers in the
+output vector (described with <b>pcre_exec()</b> below). To do the conversion,
+you need to use the name-to-number map, which is described by these three
+values.
+</P>
+<P>
+The map consists of a number of fixed-size entries. PCRE_INFO_NAMECOUNT gives
+the number of entries, and PCRE_INFO_NAMEENTRYSIZE gives the size of each
+entry; both of these return an <b>int</b> value. The entry size depends on the
+length of the longest name. PCRE_INFO_NAMETABLE returns a pointer to the first
+entry of the table (a pointer to <b>char</b>). The first two bytes of each entry
+are the number of the capturing parenthesis, most significant byte first. The
+rest of the entry is the corresponding name, zero terminated.
+</P>
+<P>
+The names are in alphabetical order. Duplicate names may appear if (?| is used
+to create multiple groups with the same number, as described in the
+<a href="pcrepattern.html#dupsubpatternnumber">section on duplicate subpattern numbers</a>
+in the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+page. Duplicate names for subpatterns with different numbers are permitted only
+if PCRE_DUPNAMES is set. In all cases of duplicate names, they appear in the
+table in the order in which they were found in the pattern. In the absence of
+(?| this is the order of increasing number; when (?| is used this is not
+necessarily the case because later subpatterns may have lower numbers.
+</P>
+<P>
+As a simple example of the name/number table, consider the following pattern
+(assume PCRE_EXTENDED is set, so white space - including newlines - is
+ignored):
+<pre>
+  (?&#60;date&#62; (?&#60;year&#62;(\d\d)?\d\d) - (?&#60;month&#62;\d\d) - (?&#60;day&#62;\d\d) )
+</pre>
+There are four named subpatterns, so the table has four entries, and each entry
+in the table is eight bytes long. The table is as follows, with non-printing
+bytes shows in hexadecimal, and undefined bytes shown as ??:
+<pre>
+  00 01 d  a  t  e  00 ??
+  00 05 d  a  y  00 ?? ??
+  00 04 m  o  n  t  h  00
+  00 02 y  e  a  r  00 ??
+</pre>
+When writing code to extract data from named subpatterns using the
+name-to-number map, remember that the length of the entries is likely to be
+different for each compiled pattern.
+<pre>
+  PCRE_INFO_OKPARTIAL
+</pre>
+Return 1 if the pattern can be used for partial matching with
+<b>pcre_exec()</b>, otherwise 0. The fourth argument should point to an
+<b>int</b> variable. From release 8.00, this always returns 1, because the
+restrictions that previously applied to partial matching have been lifted. The
+<a href="pcrepartial.html"><b>pcrepartial</b></a>
+documentation gives details of partial matching.
+<pre>
+  PCRE_INFO_OPTIONS
+</pre>
+Return a copy of the options with which the pattern was compiled. The fourth
+argument should point to an <b>unsigned long int</b> variable. These option bits
+are those specified in the call to <b>pcre_compile()</b>, modified by any
+top-level option settings at the start of the pattern itself. In other words,
+they are the options that will be in force when matching starts. For example,
+if the pattern /(?im)abc(?-i)d/ is compiled with the PCRE_EXTENDED option, the
+result is PCRE_CASELESS, PCRE_MULTILINE, and PCRE_EXTENDED.
+</P>
+<P>
+A pattern is automatically anchored by PCRE if all of its top-level
+alternatives begin with one of the following:
+<pre>
+  ^     unless PCRE_MULTILINE is set
+  \A    always
+  \G    always
+  .*    if PCRE_DOTALL is set and there are no back references to the subpattern in which .* appears
+</pre>
+For such patterns, the PCRE_ANCHORED bit is set in the options returned by
+<b>pcre_fullinfo()</b>.
+<pre>
+  PCRE_INFO_SIZE
+</pre>
+Return the size of the compiled pattern. The fourth argument should point to a
+<b>size_t</b> variable. This value does not include the size of the <b>pcre</b>
+structure that is returned by <b>pcre_compile()</b>. The value that is passed as
+the argument to <b>pcre_malloc()</b> when <b>pcre_compile()</b> is getting memory
+in which to place the compiled data is the value returned by this option plus
+the size of the <b>pcre</b> structure. Studying a compiled pattern, with or
+without JIT, does not alter the value returned by this option.
+<pre>
+  PCRE_INFO_STUDYSIZE
+</pre>
+Return the size of the data block pointed to by the <i>study_data</i> field in a
+<b>pcre_extra</b> block. If <b>pcre_extra</b> is NULL, or there is no study data,
+zero is returned. The fourth argument should point to a <b>size_t</b> variable.
+The <i>study_data</i> field is set by <b>pcre_study()</b> to record information
+that will speed up matching (see the section entitled
+<a href="#studyingapattern">"Studying a pattern"</a>
+above). The format of the <i>study_data</i> block is private, but its length
+is made available via this option so that it can be saved and restored (see the
+<a href="pcreprecompile.html"><b>pcreprecompile</b></a>
+documentation for details).
+</P>
+<br><a name="SEC14" href="#TOC1">OBSOLETE INFO FUNCTION</a><br>
+<P>
+<b>int pcre_info(const pcre *<i>code</i>, int *<i>optptr</i>, int</b>
+<b>*<i>firstcharptr</i>);</b>
+</P>
+<P>
+The <b>pcre_info()</b> function is now obsolete because its interface is too
+restrictive to return all the available data about a compiled pattern. New
+programs should use <b>pcre_fullinfo()</b> instead. The yield of
+<b>pcre_info()</b> is the number of capturing subpatterns, or one of the
+following negative numbers:
+<pre>
+  PCRE_ERROR_NULL       the argument <i>code</i> was NULL
+  PCRE_ERROR_BADMAGIC   the "magic number" was not found
+</pre>
+If the <i>optptr</i> argument is not NULL, a copy of the options with which the
+pattern was compiled is placed in the integer it points to (see
+PCRE_INFO_OPTIONS above).
+</P>
+<P>
+If the pattern is not anchored and the <i>firstcharptr</i> argument is not NULL,
+it is used to pass back information about the first character of any matched
+string (see PCRE_INFO_FIRSTBYTE above).
+</P>
+<br><a name="SEC15" href="#TOC1">REFERENCE COUNTS</a><br>
+<P>
+<b>int pcre_refcount(pcre *<i>code</i>, int <i>adjust</i>);</b>
+</P>
+<P>
+The <b>pcre_refcount()</b> function is used to maintain a reference count in the
+data block that contains a compiled pattern. It is provided for the benefit of
+applications that operate in an object-oriented manner, where different parts
+of the application may be using the same compiled pattern, but you want to free
+the block when they are all done.
+</P>
+<P>
+When a pattern is compiled, the reference count field is initialized to zero.
+It is changed only by calling this function, whose action is to add the
+<i>adjust</i> value (which may be positive or negative) to it. The yield of the
+function is the new value. However, the value of the count is constrained to
+lie between 0 and 65535, inclusive. If the new value is outside these limits,
+it is forced to the appropriate limit value.
+</P>
+<P>
+Except when it is zero, the reference count is not correctly preserved if a
+pattern is compiled on one host and then transferred to a host whose byte-order
+is different. (This seems a highly unlikely scenario.)
+</P>
+<br><a name="SEC16" href="#TOC1">MATCHING A PATTERN: THE TRADITIONAL FUNCTION</a><br>
+<P>
+<b>int pcre_exec(const pcre *<i>code</i>, const pcre_extra *<i>extra</i>,</b>
+<b>const char *<i>subject</i>, int <i>length</i>, int <i>startoffset</i>,</b>
+<b>int <i>options</i>, int *<i>ovector</i>, int <i>ovecsize</i>);</b>
+</P>
+<P>
+The function <b>pcre_exec()</b> is called to match a subject string against a
+compiled pattern, which is passed in the <i>code</i> argument. If the
+pattern was studied, the result of the study should be passed in the
+<i>extra</i> argument. You can call <b>pcre_exec()</b> with the same <i>code</i>
+and <i>extra</i> arguments as many times as you like, in order to match
+different subject strings with the same pattern.
+</P>
+<P>
+This function is the main matching facility of the library, and it operates in
+a Perl-like manner. For specialist use there is also an alternative matching
+function, which is described
+<a href="#dfamatch">below</a>
+in the section about the <b>pcre_dfa_exec()</b> function.
+</P>
+<P>
+In most applications, the pattern will have been compiled (and optionally
+studied) in the same process that calls <b>pcre_exec()</b>. However, it is
+possible to save compiled patterns and study data, and then use them later
+in different processes, possibly even on different hosts. For a discussion
+about this, see the
+<a href="pcreprecompile.html"><b>pcreprecompile</b></a>
+documentation.
+</P>
+<P>
+Here is an example of a simple call to <b>pcre_exec()</b>:
+<pre>
+  int rc;
+  int ovector[30];
+  rc = pcre_exec(
+    re,             /* result of pcre_compile() */
+    NULL,           /* we didn't study the pattern */
+    "some string",  /* the subject string */
+    11,             /* the length of the subject string */
+    0,              /* start at offset 0 in the subject */
+    0,              /* default options */
+    ovector,        /* vector of integers for substring information */
+    30);            /* number of elements (NOT size in bytes) */
+<a name="extradata"></a></PRE>
+</P>
+<br><b>
+Extra data for <b>pcre_exec()</b>
+</b><br>
+<P>
+If the <i>extra</i> argument is not NULL, it must point to a <b>pcre_extra</b>
+data block. The <b>pcre_study()</b> function returns such a block (when it
+doesn't return NULL), but you can also create one for yourself, and pass
+additional information in it. The <b>pcre_extra</b> block contains the following
+fields (not necessarily in this order):
+<pre>
+  unsigned long int <i>flags</i>;
+  void *<i>study_data</i>;
+  void *<i>executable_jit</i>;
+  unsigned long int <i>match_limit</i>;
+  unsigned long int <i>match_limit_recursion</i>;
+  void *<i>callout_data</i>;
+  const unsigned char *<i>tables</i>;
+  unsigned char **<i>mark</i>;
+</pre>
+The <i>flags</i> field is a bitmap that specifies which of the other fields
+are set. The flag bits are:
+<pre>
+  PCRE_EXTRA_STUDY_DATA
+  PCRE_EXTRA_EXECUTABLE_JIT
+  PCRE_EXTRA_MATCH_LIMIT
+  PCRE_EXTRA_MATCH_LIMIT_RECURSION
+  PCRE_EXTRA_CALLOUT_DATA
+  PCRE_EXTRA_TABLES
+  PCRE_EXTRA_MARK
+</pre>
+Other flag bits should be set to zero. The <i>study_data</i> field and sometimes
+the <i>executable_jit</i> field are set in the <b>pcre_extra</b> block that is
+returned by <b>pcre_study()</b>, together with the appropriate flag bits. You
+should not set these yourself, but you may add to the block by setting the
+other fields and their corresponding flag bits.
+</P>
+<P>
+The <i>match_limit</i> field provides a means of preventing PCRE from using up a
+vast amount of resources when running patterns that are not going to match,
+but which have a very large number of possibilities in their search trees. The
+classic example is a pattern that uses nested unlimited repeats.
+</P>
+<P>
+Internally, <b>pcre_exec()</b> uses a function called <b>match()</b>, which it
+calls repeatedly (sometimes recursively). The limit set by <i>match_limit</i> is
+imposed on the number of times this function is called during a match, which
+has the effect of limiting the amount of backtracking that can take place. For
+patterns that are not anchored, the count restarts from zero for each position
+in the subject string.
+</P>
+<P>
+When <b>pcre_exec()</b> is called with a pattern that was successfully studied
+with the PCRE_STUDY_JIT_COMPILE option, the way that the matching is executed
+is entirely different. However, there is still the possibility of runaway
+matching that goes on for a very long time, and so the <i>match_limit</i> value
+is also used in this case (but in a different way) to limit how long the
+matching can continue.
+</P>
+<P>
+The default value for the limit can be set when PCRE is built; the default
+default is 10 million, which handles all but the most extreme cases. You can
+override the default by suppling <b>pcre_exec()</b> with a <b>pcre_extra</b>
+block in which <i>match_limit</i> is set, and PCRE_EXTRA_MATCH_LIMIT is set in
+the <i>flags</i> field. If the limit is exceeded, <b>pcre_exec()</b> returns
+PCRE_ERROR_MATCHLIMIT.
+</P>
+<P>
+The <i>match_limit_recursion</i> field is similar to <i>match_limit</i>, but
+instead of limiting the total number of times that <b>match()</b> is called, it
+limits the depth of recursion. The recursion depth is a smaller number than the
+total number of calls, because not all calls to <b>match()</b> are recursive.
+This limit is of use only if it is set smaller than <i>match_limit</i>.
+</P>
+<P>
+Limiting the recursion depth limits the amount of machine stack that can be
+used, or, when PCRE has been compiled to use memory on the heap instead of the
+stack, the amount of heap memory that can be used. This limit is not relevant,
+and is ignored, if the pattern was successfully studied with
+PCRE_STUDY_JIT_COMPILE.
+</P>
+<P>
+The default value for <i>match_limit_recursion</i> can be set when PCRE is
+built; the default default is the same value as the default for
+<i>match_limit</i>. You can override the default by suppling <b>pcre_exec()</b>
+with a <b>pcre_extra</b> block in which <i>match_limit_recursion</i> is set, and
+PCRE_EXTRA_MATCH_LIMIT_RECURSION is set in the <i>flags</i> field. If the limit
+is exceeded, <b>pcre_exec()</b> returns PCRE_ERROR_RECURSIONLIMIT.
+</P>
+<P>
+The <i>callout_data</i> field is used in conjunction with the "callout" feature,
+and is described in the
+<a href="pcrecallout.html"><b>pcrecallout</b></a>
+documentation.
+</P>
+<P>
+The <i>tables</i> field is used to pass a character tables pointer to
+<b>pcre_exec()</b>; this overrides the value that is stored with the compiled
+pattern. A non-NULL value is stored with the compiled pattern only if custom
+tables were supplied to <b>pcre_compile()</b> via its <i>tableptr</i> argument.
+If NULL is passed to <b>pcre_exec()</b> using this mechanism, it forces PCRE's
+internal tables to be used. This facility is helpful when re-using patterns
+that have been saved after compiling with an external set of tables, because
+the external tables might be at a different address when <b>pcre_exec()</b> is
+called. See the
+<a href="pcreprecompile.html"><b>pcreprecompile</b></a>
+documentation for a discussion of saving compiled patterns for later use.
+</P>
+<P>
+If PCRE_EXTRA_MARK is set in the <i>flags</i> field, the <i>mark</i> field must
+be set to point to a <b>char *</b> variable. If the pattern contains any
+backtracking control verbs such as (*MARK:NAME), and the execution ends up with
+a name to pass back, a pointer to the name string (zero terminated) is placed
+in the variable pointed to by the <i>mark</i> field. The names are within the
+compiled pattern; if you wish to retain such a name you must copy it before
+freeing the memory of a compiled pattern. If there is no name to pass back, the
+variable pointed to by the <i>mark</i> field set to NULL. For details of the
+backtracking control verbs, see the section entitled
+<a href="pcrepattern#backtrackcontrol">"Backtracking control"</a>
+in the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+documentation.
+<a name="execoptions"></a></P>
+<br><b>
+Option bits for <b>pcre_exec()</b>
+</b><br>
+<P>
+The unused bits of the <i>options</i> argument for <b>pcre_exec()</b> must be
+zero. The only bits that may be set are PCRE_ANCHORED, PCRE_NEWLINE_<i>xxx</i>,
+PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART,
+PCRE_NO_START_OPTIMIZE, PCRE_NO_UTF8_CHECK, PCRE_PARTIAL_SOFT, and
+PCRE_PARTIAL_HARD.
+</P>
+<P>
+If the pattern was successfully studied with the PCRE_STUDY_JIT_COMPILE option,
+the only supported options for JIT execution are PCRE_NO_UTF8_CHECK,
+PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, and PCRE_NOTEMPTY_ATSTART. Note in
+particular that partial matching is not supported. If an unsupported option is
+used, JIT execution is disabled and the normal interpretive code in
+<b>pcre_exec()</b> is run.
+<pre>
+  PCRE_ANCHORED
+</pre>
+The PCRE_ANCHORED option limits <b>pcre_exec()</b> to matching at the first
+matching position. If a pattern was compiled with PCRE_ANCHORED, or turned out
+to be anchored by virtue of its contents, it cannot be made unachored at
+matching time.
+<pre>
+  PCRE_BSR_ANYCRLF
+  PCRE_BSR_UNICODE
+</pre>
+These options (which are mutually exclusive) control what the \R escape
+sequence matches. The choice is either to match only CR, LF, or CRLF, or to
+match any Unicode newline sequence. These options override the choice that was
+made or defaulted when the pattern was compiled.
+<pre>
+  PCRE_NEWLINE_CR
+  PCRE_NEWLINE_LF
+  PCRE_NEWLINE_CRLF
+  PCRE_NEWLINE_ANYCRLF
+  PCRE_NEWLINE_ANY
+</pre>
+These options override the newline definition that was chosen or defaulted when
+the pattern was compiled. For details, see the description of
+<b>pcre_compile()</b> above. During matching, the newline choice affects the
+behaviour of the dot, circumflex, and dollar metacharacters. It may also alter
+the way the match position is advanced after a match failure for an unanchored
+pattern.
+</P>
+<P>
+When PCRE_NEWLINE_CRLF, PCRE_NEWLINE_ANYCRLF, or PCRE_NEWLINE_ANY is set, and a
+match attempt for an unanchored pattern fails when the current position is at a
+CRLF sequence, and the pattern contains no explicit matches for CR or LF
+characters, the match position is advanced by two characters instead of one, in
+other words, to after the CRLF.
+</P>
+<P>
+The above rule is a compromise that makes the most common cases work as
+expected. For example, if the pattern is .+A (and the PCRE_DOTALL option is not
+set), it does not match the string "\r\nA" because, after failing at the
+start, it skips both the CR and the LF before retrying. However, the pattern
+[\r\n]A does match that string, because it contains an explicit CR or LF
+reference, and so advances only by one character after the first failure.
+</P>
+<P>
+An explicit match for CR of LF is either a literal appearance of one of those
+characters, or one of the \r or \n escape sequences. Implicit matches such as
+[^X] do not count, nor does \s (which includes CR and LF in the characters
+that it matches).
+</P>
+<P>
+Notwithstanding the above, anomalous effects may still occur when CRLF is a
+valid newline sequence and explicit \r or \n escapes appear in the pattern.
+<pre>
+  PCRE_NOTBOL
+</pre>
+This option specifies that first character of the subject string is not the
+beginning of a line, so the circumflex metacharacter should not match before
+it. Setting this without PCRE_MULTILINE (at compile time) causes circumflex
+never to match. This option affects only the behaviour of the circumflex
+metacharacter. It does not affect \A.
+<pre>
+  PCRE_NOTEOL
+</pre>
+This option specifies that the end of the subject string is not the end of a
+line, so the dollar metacharacter should not match it nor (except in multiline
+mode) a newline immediately before it. Setting this without PCRE_MULTILINE (at
+compile time) causes dollar never to match. This option affects only the
+behaviour of the dollar metacharacter. It does not affect \Z or \z.
+<pre>
+  PCRE_NOTEMPTY
+</pre>
+An empty string is not considered to be a valid match if this option is set. If
+there are alternatives in the pattern, they are tried. If all the alternatives
+match the empty string, the entire match fails. For example, if the pattern
+<pre>
+  a?b?
+</pre>
+is applied to a string not beginning with "a" or "b", it matches an empty
+string at the start of the subject. With PCRE_NOTEMPTY set, this match is not
+valid, so PCRE searches further into the string for occurrences of "a" or "b".
+<pre>
+  PCRE_NOTEMPTY_ATSTART
+</pre>
+This is like PCRE_NOTEMPTY, except that an empty string match that is not at
+the start of the subject is permitted. If the pattern is anchored, such a match
+can occur only if the pattern contains \K.
+</P>
+<P>
+Perl has no direct equivalent of PCRE_NOTEMPTY or PCRE_NOTEMPTY_ATSTART, but it
+does make a special case of a pattern match of the empty string within its
+<b>split()</b> function, and when using the /g modifier. It is possible to
+emulate Perl's behaviour after matching a null string by first trying the match
+again at the same offset with PCRE_NOTEMPTY_ATSTART and PCRE_ANCHORED, and then
+if that fails, by advancing the starting offset (see below) and trying an
+ordinary match again. There is some code that demonstrates how to do this in
+the
+<a href="pcredemo.html"><b>pcredemo</b></a>
+sample program. In the most general case, you have to check to see if the
+newline convention recognizes CRLF as a newline, and if so, and the current
+character is CR followed by LF, advance the starting offset by two characters
+instead of one.
+<pre>
+  PCRE_NO_START_OPTIMIZE
+</pre>
+There are a number of optimizations that <b>pcre_exec()</b> uses at the start of
+a match, in order to speed up the process. For example, if it is known that an
+unanchored match must start with a specific character, it searches the subject
+for that character, and fails immediately if it cannot find it, without
+actually running the main matching function. This means that a special item
+such as (*COMMIT) at the start of a pattern is not considered until after a
+suitable starting point for the match has been found. When callouts or (*MARK)
+items are in use, these "start-up" optimizations can cause them to be skipped
+if the pattern is never actually used. The start-up optimizations are in effect
+a pre-scan of the subject that takes place before the pattern is run.
+</P>
+<P>
+The PCRE_NO_START_OPTIMIZE option disables the start-up optimizations, possibly
+causing performance to suffer, but ensuring that in cases where the result is
+"no match", the callouts do occur, and that items such as (*COMMIT) and (*MARK)
+are considered at every possible starting position in the subject string. If
+PCRE_NO_START_OPTIMIZE is set at compile time, it cannot be unset at matching
+time.
+</P>
+<P>
+Setting PCRE_NO_START_OPTIMIZE can change the outcome of a matching operation.
+Consider the pattern
+<pre>
+  (*COMMIT)ABC
+</pre>
+When this is compiled, PCRE records the fact that a match must start with the
+character "A". Suppose the subject string is "DEFABC". The start-up
+optimization scans along the subject, finds "A" and runs the first match
+attempt from there. The (*COMMIT) item means that the pattern must match the
+current starting position, which in this case, it does. However, if the same
+match is run with PCRE_NO_START_OPTIMIZE set, the initial scan along the
+subject string does not happen. The first match attempt is run starting from
+"D" and when this fails, (*COMMIT) prevents any further matches being tried, so
+the overall result is "no match". If the pattern is studied, more start-up
+optimizations may be used. For example, a minimum length for the subject may be
+recorded. Consider the pattern
+<pre>
+  (*MARK:A)(X|Y)
+</pre>
+The minimum length for a match is one character. If the subject is "ABC", there
+will be attempts to match "ABC", "BC", "C", and then finally an empty string.
+If the pattern is studied, the final attempt does not take place, because PCRE
+knows that the subject is too short, and so the (*MARK) is never encountered.
+In this case, studying the pattern does not affect the overall match result,
+which is still "no match", but it does affect the auxiliary information that is
+returned.
+<pre>
+  PCRE_NO_UTF8_CHECK
+</pre>
+When PCRE_UTF8 is set at compile time, the validity of the subject as a UTF-8
+string is automatically checked when <b>pcre_exec()</b> is subsequently called.
+The value of <i>startoffset</i> is also checked to ensure that it points to the
+start of a UTF-8 character. There is a discussion about the validity of UTF-8
+strings in the
+<a href="pcre.html#utf8strings">section on UTF-8 support</a>
+in the main
+<a href="pcre.html"><b>pcre</b></a>
+page. If an invalid UTF-8 sequence of bytes is found, <b>pcre_exec()</b> returns
+the error PCRE_ERROR_BADUTF8 or, if PCRE_PARTIAL_HARD is set and the problem is
+a truncated UTF-8 character at the end of the subject, PCRE_ERROR_SHORTUTF8. In
+both cases, information about the precise nature of the error may also be
+returned (see the descriptions of these errors in the section entitled \fIError
+return values from\fP <b>pcre_exec()</b>
+<a href="#errorlist">below).</a>
+If <i>startoffset</i> contains a value that does not point to the start of a
+UTF-8 character (or to the end of the subject), PCRE_ERROR_BADUTF8_OFFSET is
+returned.
+</P>
+<P>
+If you already know that your subject is valid, and you want to skip these
+checks for performance reasons, you can set the PCRE_NO_UTF8_CHECK option when
+calling <b>pcre_exec()</b>. You might want to do this for the second and
+subsequent calls to <b>pcre_exec()</b> if you are making repeated calls to find
+all the matches in a single subject string. However, you should be sure that
+the value of <i>startoffset</i> points to the start of a UTF-8 character (or the
+end of the subject). When PCRE_NO_UTF8_CHECK is set, the effect of passing an
+invalid UTF-8 string as a subject or an invalid value of <i>startoffset</i> is
+undefined. Your program may crash.
+<pre>
+  PCRE_PARTIAL_HARD
+  PCRE_PARTIAL_SOFT
+</pre>
+These options turn on the partial matching feature. For backwards
+compatibility, PCRE_PARTIAL is a synonym for PCRE_PARTIAL_SOFT. A partial match
+occurs if the end of the subject string is reached successfully, but there are
+not enough subject characters to complete the match. If this happens when
+PCRE_PARTIAL_SOFT (but not PCRE_PARTIAL_HARD) is set, matching continues by
+testing any remaining alternatives. Only if no complete match can be found is
+PCRE_ERROR_PARTIAL returned instead of PCRE_ERROR_NOMATCH. In other words,
+PCRE_PARTIAL_SOFT says that the caller is prepared to handle a partial match,
+but only if no complete match can be found.
+</P>
+<P>
+If PCRE_PARTIAL_HARD is set, it overrides PCRE_PARTIAL_SOFT. In this case, if a
+partial match is found, <b>pcre_exec()</b> immediately returns
+PCRE_ERROR_PARTIAL, without considering any other alternatives. In other words,
+when PCRE_PARTIAL_HARD is set, a partial match is considered to be more
+important that an alternative complete match.
+</P>
+<P>
+In both cases, the portion of the string that was inspected when the partial
+match was found is set as the first matching string. There is a more detailed
+discussion of partial and multi-segment matching, with examples, in the
+<a href="pcrepartial.html"><b>pcrepartial</b></a>
+documentation.
+</P>
+<br><b>
+The string to be matched by <b>pcre_exec()</b>
+</b><br>
+<P>
+The subject string is passed to <b>pcre_exec()</b> as a pointer in
+<i>subject</i>, a length (in bytes) in <i>length</i>, and a starting byte offset
+in <i>startoffset</i>. If this is negative or greater than the length of the
+subject, <b>pcre_exec()</b> returns PCRE_ERROR_BADOFFSET. When the starting
+offset is zero, the search for a match starts at the beginning of the subject,
+and this is by far the most common case. In UTF-8 mode, the byte offset must
+point to the start of a UTF-8 character (or the end of the subject). Unlike the
+pattern string, the subject may contain binary zero bytes.
+</P>
+<P>
+A non-zero starting offset is useful when searching for another match in the
+same subject by calling <b>pcre_exec()</b> again after a previous success.
+Setting <i>startoffset</i> differs from just passing over a shortened string and
+setting PCRE_NOTBOL in the case of a pattern that begins with any kind of
+lookbehind. For example, consider the pattern
+<pre>
+  \Biss\B
+</pre>
+which finds occurrences of "iss" in the middle of words. (\B matches only if
+the current position in the subject is not a word boundary.) When applied to
+the string "Mississipi" the first call to <b>pcre_exec()</b> finds the first
+occurrence. If <b>pcre_exec()</b> is called again with just the remainder of the
+subject, namely "issipi", it does not match, because \B is always false at the
+start of the subject, which is deemed to be a word boundary. However, if
+<b>pcre_exec()</b> is passed the entire string again, but with <i>startoffset</i>
+set to 4, it finds the second occurrence of "iss" because it is able to look
+behind the starting point to discover that it is preceded by a letter.
+</P>
+<P>
+Finding all the matches in a subject is tricky when the pattern can match an
+empty string. It is possible to emulate Perl's /g behaviour by first trying the
+match again at the same offset, with the PCRE_NOTEMPTY_ATSTART and
+PCRE_ANCHORED options, and then if that fails, advancing the starting offset
+and trying an ordinary match again. There is some code that demonstrates how to
+do this in the
+<a href="pcredemo.html"><b>pcredemo</b></a>
+sample program. In the most general case, you have to check to see if the
+newline convention recognizes CRLF as a newline, and if so, and the current
+character is CR followed by LF, advance the starting offset by two characters
+instead of one.
+</P>
+<P>
+If a non-zero starting offset is passed when the pattern is anchored, one
+attempt to match at the given offset is made. This can only succeed if the
+pattern does not require the match to be at the start of the subject.
+</P>
+<br><b>
+How <b>pcre_exec()</b> returns captured substrings
+</b><br>
+<P>
+In general, a pattern matches a certain portion of the subject, and in
+addition, further substrings from the subject may be picked out by parts of the
+pattern. Following the usage in Jeffrey Friedl's book, this is called
+"capturing" in what follows, and the phrase "capturing subpattern" is used for
+a fragment of a pattern that picks out a substring. PCRE supports several other
+kinds of parenthesized subpattern that do not cause substrings to be captured.
+</P>
+<P>
+Captured substrings are returned to the caller via a vector of integers whose
+address is passed in <i>ovector</i>. The number of elements in the vector is
+passed in <i>ovecsize</i>, which must be a non-negative number. <b>Note</b>: this
+argument is NOT the size of <i>ovector</i> in bytes.
+</P>
+<P>
+The first two-thirds of the vector is used to pass back captured substrings,
+each substring using a pair of integers. The remaining third of the vector is
+used as workspace by <b>pcre_exec()</b> while matching capturing subpatterns,
+and is not available for passing back information. The number passed in
+<i>ovecsize</i> should always be a multiple of three. If it is not, it is
+rounded down.
+</P>
+<P>
+When a match is successful, information about captured substrings is returned
+in pairs of integers, starting at the beginning of <i>ovector</i>, and
+continuing up to two-thirds of its length at the most. The first element of
+each pair is set to the byte offset of the first character in a substring, and
+the second is set to the byte offset of the first character after the end of a
+substring. <b>Note</b>: these values are always byte offsets, even in UTF-8
+mode. They are not character counts.
+</P>
+<P>
+The first pair of integers, <i>ovector[0]</i> and <i>ovector[1]</i>, identify the
+portion of the subject string matched by the entire pattern. The next pair is
+used for the first capturing subpattern, and so on. The value returned by
+<b>pcre_exec()</b> is one more than the highest numbered pair that has been set.
+For example, if two substrings have been captured, the returned value is 3. If
+there are no capturing subpatterns, the return value from a successful match is
+1, indicating that just the first pair of offsets has been set.
+</P>
+<P>
+If a capturing subpattern is matched repeatedly, it is the last portion of the
+string that it matched that is returned.
+</P>
+<P>
+If the vector is too small to hold all the captured substring offsets, it is
+used as far as possible (up to two-thirds of its length), and the function
+returns a value of zero. If neither the actual string matched not any captured
+substrings are of interest, <b>pcre_exec()</b> may be called with <i>ovector</i>
+passed as NULL and <i>ovecsize</i> as zero. However, if the pattern contains
+back references and the <i>ovector</i> is not big enough to remember the related
+substrings, PCRE has to get additional memory for use during matching. Thus it
+is usually advisable to supply an <i>ovector</i> of reasonable size.
+</P>
+<P>
+There are some cases where zero is returned (indicating vector overflow) when
+in fact the vector is exactly the right size for the final match. For example,
+consider the pattern
+<pre>
+  (a)(?:(b)c|bd)
+</pre>
+If a vector of 6 elements (allowing for only 1 captured substring) is given
+with subject string "abd", <b>pcre_exec()</b> will try to set the second
+captured string, thereby recording a vector overflow, before failing to match
+"c" and backing up to try the second alternative. The zero return, however,
+does correctly indicate that the maximum number of slots (namely 2) have been
+filled. In similar cases where there is temporary overflow, but the final
+number of used slots is actually less than the maximum, a non-zero value is
+returned.
+</P>
+<P>
+The <b>pcre_fullinfo()</b> function can be used to find out how many capturing
+subpatterns there are in a compiled pattern. The smallest size for
+<i>ovector</i> that will allow for <i>n</i> captured substrings, in addition to
+the offsets of the substring matched by the whole pattern, is (<i>n</i>+1)*3.
+</P>
+<P>
+It is possible for capturing subpattern number <i>n+1</i> to match some part of
+the subject when subpattern <i>n</i> has not been used at all. For example, if
+the string "abc" is matched against the pattern (a|(z))(bc) the return from the
+function is 4, and subpatterns 1 and 3 are matched, but 2 is not. When this
+happens, both values in the offset pairs corresponding to unused subpatterns
+are set to -1.
+</P>
+<P>
+Offset values that correspond to unused subpatterns at the end of the
+expression are also set to -1. For example, if the string "abc" is matched
+against the pattern (abc)(x(yz)?)? subpatterns 2 and 3 are not matched. The
+return from the function is 2, because the highest used capturing subpattern
+number is 1, and the offsets for for the second and third capturing subpatterns
+(assuming the vector is large enough, of course) are set to -1.
+</P>
+<P>
+<b>Note</b>: Elements in the first two-thirds of <i>ovector</i> that do not
+correspond to capturing parentheses in the pattern are never changed. That is,
+if a pattern contains <i>n</i> capturing parentheses, no more than
+<i>ovector[0]</i> to <i>ovector[2n+1]</i> are set by <b>pcre_exec()</b>. The other
+elements (in the first two-thirds) retain whatever values they previously had.
+</P>
+<P>
+Some convenience functions are provided for extracting the captured substrings
+as separate strings. These are described below.
+<a name="errorlist"></a></P>
+<br><b>
+Error return values from <b>pcre_exec()</b>
+</b><br>
+<P>
+If <b>pcre_exec()</b> fails, it returns a negative number. The following are
+defined in the header file:
+<pre>
+  PCRE_ERROR_NOMATCH        (-1)
+</pre>
+The subject string did not match the pattern.
+<pre>
+  PCRE_ERROR_NULL           (-2)
+</pre>
+Either <i>code</i> or <i>subject</i> was passed as NULL, or <i>ovector</i> was
+NULL and <i>ovecsize</i> was not zero.
+<pre>
+  PCRE_ERROR_BADOPTION      (-3)
+</pre>
+An unrecognized bit was set in the <i>options</i> argument.
+<pre>
+  PCRE_ERROR_BADMAGIC       (-4)
+</pre>
+PCRE stores a 4-byte "magic number" at the start of the compiled code, to catch
+the case when it is passed a junk pointer and to detect when a pattern that was
+compiled in an environment of one endianness is run in an environment with the
+other endianness. This is the error that PCRE gives when the magic number is
+not present.
+<pre>
+  PCRE_ERROR_UNKNOWN_OPCODE (-5)
+</pre>
+While running the pattern match, an unknown item was encountered in the
+compiled pattern. This error could be caused by a bug in PCRE or by overwriting
+of the compiled pattern.
+<pre>
+  PCRE_ERROR_NOMEMORY       (-6)
+</pre>
+If a pattern contains back references, but the <i>ovector</i> that is passed to
+<b>pcre_exec()</b> is not big enough to remember the referenced substrings, PCRE
+gets a block of memory at the start of matching to use for this purpose. If the
+call via <b>pcre_malloc()</b> fails, this error is given. The memory is
+automatically freed at the end of matching.
+</P>
+<P>
+This error is also given if <b>pcre_stack_malloc()</b> fails in
+<b>pcre_exec()</b>. This can happen only when PCRE has been compiled with
+<b>--disable-stack-for-recursion</b>.
+<pre>
+  PCRE_ERROR_NOSUBSTRING    (-7)
+</pre>
+This error is used by the <b>pcre_copy_substring()</b>,
+<b>pcre_get_substring()</b>, and <b>pcre_get_substring_list()</b> functions (see
+below). It is never returned by <b>pcre_exec()</b>.
+<pre>
+  PCRE_ERROR_MATCHLIMIT     (-8)
+</pre>
+The backtracking limit, as specified by the <i>match_limit</i> field in a
+<b>pcre_extra</b> structure (or defaulted) was reached. See the description
+above.
+<pre>
+  PCRE_ERROR_CALLOUT        (-9)
+</pre>
+This error is never generated by <b>pcre_exec()</b> itself. It is provided for
+use by callout functions that want to yield a distinctive error code. See the
+<a href="pcrecallout.html"><b>pcrecallout</b></a>
+documentation for details.
+<pre>
+  PCRE_ERROR_BADUTF8        (-10)
+</pre>
+A string that contains an invalid UTF-8 byte sequence was passed as a subject,
+and the PCRE_NO_UTF8_CHECK option was not set. If the size of the output vector
+(<i>ovecsize</i>) is at least 2, the byte offset to the start of the the invalid
+UTF-8 character is placed in the first element, and a reason code is placed in
+the second element. The reason codes are listed in the
+<a href="#badutf8reasons">following section.</a>
+For backward compatibility, if PCRE_PARTIAL_HARD is set and the problem is a
+truncated UTF-8 character at the end of the subject (reason codes 1 to 5),
+PCRE_ERROR_SHORTUTF8 is returned instead of PCRE_ERROR_BADUTF8.
+<pre>
+  PCRE_ERROR_BADUTF8_OFFSET (-11)
+</pre>
+The UTF-8 byte sequence that was passed as a subject was checked and found to
+be valid (the PCRE_NO_UTF8_CHECK option was not set), but the value of
+<i>startoffset</i> did not point to the beginning of a UTF-8 character or the
+end of the subject.
+<pre>
+  PCRE_ERROR_PARTIAL        (-12)
+</pre>
+The subject string did not match, but it did match partially. See the
+<a href="pcrepartial.html"><b>pcrepartial</b></a>
+documentation for details of partial matching.
+<pre>
+  PCRE_ERROR_BADPARTIAL     (-13)
+</pre>
+This code is no longer in use. It was formerly returned when the PCRE_PARTIAL
+option was used with a compiled pattern containing items that were not
+supported for partial matching. From release 8.00 onwards, there are no
+restrictions on partial matching.
+<pre>
+  PCRE_ERROR_INTERNAL       (-14)
+</pre>
+An unexpected internal error has occurred. This error could be caused by a bug
+in PCRE or by overwriting of the compiled pattern.
+<pre>
+  PCRE_ERROR_BADCOUNT       (-15)
+</pre>
+This error is given if the value of the <i>ovecsize</i> argument is negative.
+<pre>
+  PCRE_ERROR_RECURSIONLIMIT (-21)
+</pre>
+The internal recursion limit, as specified by the <i>match_limit_recursion</i>
+field in a <b>pcre_extra</b> structure (or defaulted) was reached. See the
+description above.
+<pre>
+  PCRE_ERROR_BADNEWLINE     (-23)
+</pre>
+An invalid combination of PCRE_NEWLINE_<i>xxx</i> options was given.
+<pre>
+  PCRE_ERROR_BADOFFSET      (-24)
+</pre>
+The value of <i>startoffset</i> was negative or greater than the length of the
+subject, that is, the value in <i>length</i>.
+<pre>
+  PCRE_ERROR_SHORTUTF8      (-25)
+</pre>
+This error is returned instead of PCRE_ERROR_BADUTF8 when the subject string
+ends with a truncated UTF-8 character and the PCRE_PARTIAL_HARD option is set.
+Information about the failure is returned as for PCRE_ERROR_BADUTF8. It is in
+fact sufficient to detect this case, but this special error code for
+PCRE_PARTIAL_HARD precedes the implementation of returned information; it is
+retained for backwards compatibility.
+<pre>
+  PCRE_ERROR_RECURSELOOP    (-26)
+</pre>
+This error is returned when <b>pcre_exec()</b> detects a recursion loop within
+the pattern. Specifically, it means that either the whole pattern or a
+subpattern has been called recursively for the second time at the same position
+in the subject string. Some simple patterns that might do this are detected and
+faulted at compile time, but more complicated cases, in particular mutual
+recursions between two different subpatterns, cannot be detected until run
+time.
+<pre>
+  PCRE_ERROR_JIT_STACKLIMIT (-27)
+</pre>
+This error is returned when a pattern that was successfully studied using the
+PCRE_STUDY_JIT_COMPILE option is being matched, but the memory available for
+the just-in-time processing stack is not large enough. See the
+<a href="pcrejit.html"><b>pcrejit</b></a>
+documentation for more details.
+</P>
+<P>
+Error numbers -16 to -20 and -22 are not used by <b>pcre_exec()</b>.
+<a name="badutf8reasons"></a></P>
+<br><b>
+Reason codes for invalid UTF-8 strings
+</b><br>
+<P>
+When <b>pcre_exec()</b> returns either PCRE_ERROR_BADUTF8 or
+PCRE_ERROR_SHORTUTF8, and the size of the output vector (<i>ovecsize</i>) is at
+least 2, the offset of the start of the invalid UTF-8 character is placed in
+the first output vector element (<i>ovector[0]</i>) and a reason code is placed
+in the second element (<i>ovector[1]</i>). The reason codes are given names in
+the <b>pcre.h</b> header file:
+<pre>
+  PCRE_UTF8_ERR1
+  PCRE_UTF8_ERR2
+  PCRE_UTF8_ERR3
+  PCRE_UTF8_ERR4
+  PCRE_UTF8_ERR5
+</pre>
+The string ends with a truncated UTF-8 character; the code specifies how many
+bytes are missing (1 to 5). Although RFC 3629 restricts UTF-8 characters to be
+no longer than 4 bytes, the encoding scheme (originally defined by RFC 2279)
+allows for up to 6 bytes, and this is checked first; hence the possibility of
+4 or 5 missing bytes.
+<pre>
+  PCRE_UTF8_ERR6
+  PCRE_UTF8_ERR7
+  PCRE_UTF8_ERR8
+  PCRE_UTF8_ERR9
+  PCRE_UTF8_ERR10
+</pre>
+The two most significant bits of the 2nd, 3rd, 4th, 5th, or 6th byte of the
+character do not have the binary value 0b10 (that is, either the most
+significant bit is 0, or the next bit is 1).
+<pre>
+  PCRE_UTF8_ERR11
+  PCRE_UTF8_ERR12
+</pre>
+A character that is valid by the RFC 2279 rules is either 5 or 6 bytes long;
+these code points are excluded by RFC 3629.
+<pre>
+  PCRE_UTF8_ERR13
+</pre>
+A 4-byte character has a value greater than 0x10fff; these code points are
+excluded by RFC 3629.
+<pre>
+  PCRE_UTF8_ERR14
+</pre>
+A 3-byte character has a value in the range 0xd800 to 0xdfff; this range of
+code points are reserved by RFC 3629 for use with UTF-16, and so are excluded
+from UTF-8.
+<pre>
+  PCRE_UTF8_ERR15
+  PCRE_UTF8_ERR16
+  PCRE_UTF8_ERR17
+  PCRE_UTF8_ERR18
+  PCRE_UTF8_ERR19
+</pre>
+A 2-, 3-, 4-, 5-, or 6-byte character is "overlong", that is, it codes for a
+value that can be represented by fewer bytes, which is invalid. For example,
+the two bytes 0xc0, 0xae give the value 0x2e, whose correct coding uses just
+one byte.
+<pre>
+  PCRE_UTF8_ERR20
+</pre>
+The two most significant bits of the first byte of a character have the binary
+value 0b10 (that is, the most significant bit is 1 and the second is 0). Such a
+byte can only validly occur as the second or subsequent byte of a multi-byte
+character.
+<pre>
+  PCRE_UTF8_ERR21
+</pre>
+The first byte of a character has the value 0xfe or 0xff. These values can
+never occur in a valid UTF-8 string.
+</P>
+<br><a name="SEC17" href="#TOC1">EXTRACTING CAPTURED SUBSTRINGS BY NUMBER</a><br>
+<P>
+<b>int pcre_copy_substring(const char *<i>subject</i>, int *<i>ovector</i>,</b>
+<b>int <i>stringcount</i>, int <i>stringnumber</i>, char *<i>buffer</i>,</b>
+<b>int <i>buffersize</i>);</b>
+</P>
+<P>
+<b>int pcre_get_substring(const char *<i>subject</i>, int *<i>ovector</i>,</b>
+<b>int <i>stringcount</i>, int <i>stringnumber</i>,</b>
+<b>const char **<i>stringptr</i>);</b>
+</P>
+<P>
+<b>int pcre_get_substring_list(const char *<i>subject</i>,</b>
+<b>int *<i>ovector</i>, int <i>stringcount</i>, const char ***<i>listptr</i>);</b>
+</P>
+<P>
+Captured substrings can be accessed directly by using the offsets returned by
+<b>pcre_exec()</b> in <i>ovector</i>. For convenience, the functions
+<b>pcre_copy_substring()</b>, <b>pcre_get_substring()</b>, and
+<b>pcre_get_substring_list()</b> are provided for extracting captured substrings
+as new, separate, zero-terminated strings. These functions identify substrings
+by number. The next section describes functions for extracting named
+substrings.
+</P>
+<P>
+A substring that contains a binary zero is correctly extracted and has a
+further zero added on the end, but the result is not, of course, a C string.
+However, you can process such a string by referring to the length that is
+returned by <b>pcre_copy_substring()</b> and <b>pcre_get_substring()</b>.
+Unfortunately, the interface to <b>pcre_get_substring_list()</b> is not adequate
+for handling strings containing binary zeros, because the end of the final
+string is not independently indicated.
+</P>
+<P>
+The first three arguments are the same for all three of these functions:
+<i>subject</i> is the subject string that has just been successfully matched,
+<i>ovector</i> is a pointer to the vector of integer offsets that was passed to
+<b>pcre_exec()</b>, and <i>stringcount</i> is the number of substrings that were
+captured by the match, including the substring that matched the entire regular
+expression. This is the value returned by <b>pcre_exec()</b> if it is greater
+than zero. If <b>pcre_exec()</b> returned zero, indicating that it ran out of
+space in <i>ovector</i>, the value passed as <i>stringcount</i> should be the
+number of elements in the vector divided by three.
+</P>
+<P>
+The functions <b>pcre_copy_substring()</b> and <b>pcre_get_substring()</b>
+extract a single substring, whose number is given as <i>stringnumber</i>. A
+value of zero extracts the substring that matched the entire pattern, whereas
+higher values extract the captured substrings. For <b>pcre_copy_substring()</b>,
+the string is placed in <i>buffer</i>, whose length is given by
+<i>buffersize</i>, while for <b>pcre_get_substring()</b> a new block of memory is
+obtained via <b>pcre_malloc</b>, and its address is returned via
+<i>stringptr</i>. The yield of the function is the length of the string, not
+including the terminating zero, or one of these error codes:
+<pre>
+  PCRE_ERROR_NOMEMORY       (-6)
+</pre>
+The buffer was too small for <b>pcre_copy_substring()</b>, or the attempt to get
+memory failed for <b>pcre_get_substring()</b>.
+<pre>
+  PCRE_ERROR_NOSUBSTRING    (-7)
+</pre>
+There is no substring whose number is <i>stringnumber</i>.
+</P>
+<P>
+The <b>pcre_get_substring_list()</b> function extracts all available substrings
+and builds a list of pointers to them. All this is done in a single block of
+memory that is obtained via <b>pcre_malloc</b>. The address of the memory block
+is returned via <i>listptr</i>, which is also the start of the list of string
+pointers. The end of the list is marked by a NULL pointer. The yield of the
+function is zero if all went well, or the error code
+<pre>
+  PCRE_ERROR_NOMEMORY       (-6)
+</pre>
+if the attempt to get the memory block failed.
+</P>
+<P>
+When any of these functions encounter a substring that is unset, which can
+happen when capturing subpattern number <i>n+1</i> matches some part of the
+subject, but subpattern <i>n</i> has not been used at all, they return an empty
+string. This can be distinguished from a genuine zero-length substring by
+inspecting the appropriate offset in <i>ovector</i>, which is negative for unset
+substrings.
+</P>
+<P>
+The two convenience functions <b>pcre_free_substring()</b> and
+<b>pcre_free_substring_list()</b> can be used to free the memory returned by
+a previous call of <b>pcre_get_substring()</b> or
+<b>pcre_get_substring_list()</b>, respectively. They do nothing more than call
+the function pointed to by <b>pcre_free</b>, which of course could be called
+directly from a C program. However, PCRE is used in some situations where it is
+linked via a special interface to another programming language that cannot use
+<b>pcre_free</b> directly; it is for these cases that the functions are
+provided.
+</P>
+<br><a name="SEC18" href="#TOC1">EXTRACTING CAPTURED SUBSTRINGS BY NAME</a><br>
+<P>
+<b>int pcre_get_stringnumber(const pcre *<i>code</i>,</b>
+<b>const char *<i>name</i>);</b>
+</P>
+<P>
+<b>int pcre_copy_named_substring(const pcre *<i>code</i>,</b>
+<b>const char *<i>subject</i>, int *<i>ovector</i>,</b>
+<b>int <i>stringcount</i>, const char *<i>stringname</i>,</b>
+<b>char *<i>buffer</i>, int <i>buffersize</i>);</b>
+</P>
+<P>
+<b>int pcre_get_named_substring(const pcre *<i>code</i>,</b>
+<b>const char *<i>subject</i>, int *<i>ovector</i>,</b>
+<b>int <i>stringcount</i>, const char *<i>stringname</i>,</b>
+<b>const char **<i>stringptr</i>);</b>
+</P>
+<P>
+To extract a substring by name, you first have to find associated number.
+For example, for this pattern
+<pre>
+  (a+)b(?&#60;xxx&#62;\d+)...
+</pre>
+the number of the subpattern called "xxx" is 2. If the name is known to be
+unique (PCRE_DUPNAMES was not set), you can find the number from the name by
+calling <b>pcre_get_stringnumber()</b>. The first argument is the compiled
+pattern, and the second is the name. The yield of the function is the
+subpattern number, or PCRE_ERROR_NOSUBSTRING (-7) if there is no subpattern of
+that name.
+</P>
+<P>
+Given the number, you can extract the substring directly, or use one of the
+functions described in the previous section. For convenience, there are also
+two functions that do the whole job.
+</P>
+<P>
+Most of the arguments of <b>pcre_copy_named_substring()</b> and
+<b>pcre_get_named_substring()</b> are the same as those for the similarly named
+functions that extract by number. As these are described in the previous
+section, they are not re-described here. There are just two differences:
+</P>
+<P>
+First, instead of a substring number, a substring name is given. Second, there
+is an extra argument, given at the start, which is a pointer to the compiled
+pattern. This is needed in order to gain access to the name-to-number
+translation table.
+</P>
+<P>
+These functions call <b>pcre_get_stringnumber()</b>, and if it succeeds, they
+then call <b>pcre_copy_substring()</b> or <b>pcre_get_substring()</b>, as
+appropriate. <b>NOTE:</b> If PCRE_DUPNAMES is set and there are duplicate names,
+the behaviour may not be what you want (see the next section).
+</P>
+<P>
+<b>Warning:</b> If the pattern uses the (?| feature to set up multiple
+subpatterns with the same number, as described in the
+<a href="pcrepattern.html#dupsubpatternnumber">section on duplicate subpattern numbers</a>
+in the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+page, you cannot use names to distinguish the different subpatterns, because
+names are not included in the compiled code. The matching process uses only
+numbers. For this reason, the use of different names for subpatterns of the
+same number causes an error at compile time.
+</P>
+<br><a name="SEC19" href="#TOC1">DUPLICATE SUBPATTERN NAMES</a><br>
+<P>
+<b>int pcre_get_stringtable_entries(const pcre *<i>code</i>,</b>
+<b>const char *<i>name</i>, char **<i>first</i>, char **<i>last</i>);</b>
+</P>
+<P>
+When a pattern is compiled with the PCRE_DUPNAMES option, names for subpatterns
+are not required to be unique. (Duplicate names are always allowed for
+subpatterns with the same number, created by using the (?| feature. Indeed, if
+such subpatterns are named, they are required to use the same names.)
+</P>
+<P>
+Normally, patterns with duplicate names are such that in any one match, only
+one of the named subpatterns participates. An example is shown in the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+documentation.
+</P>
+<P>
+When duplicates are present, <b>pcre_copy_named_substring()</b> and
+<b>pcre_get_named_substring()</b> return the first substring corresponding to
+the given name that is set. If none are set, PCRE_ERROR_NOSUBSTRING (-7) is
+returned; no data is returned. The <b>pcre_get_stringnumber()</b> function
+returns one of the numbers that are associated with the name, but it is not
+defined which it is.
+</P>
+<P>
+If you want to get full details of all captured substrings for a given name,
+you must use the <b>pcre_get_stringtable_entries()</b> function. The first
+argument is the compiled pattern, and the second is the name. The third and
+fourth are pointers to variables which are updated by the function. After it
+has run, they point to the first and last entries in the name-to-number table
+for the given name. The function itself returns the length of each entry, or
+PCRE_ERROR_NOSUBSTRING (-7) if there are none. The format of the table is
+described above in the section entitled <i>Information about a pattern</i>
+<a href="#infoaboutpattern">above.</a>
+Given all the relevant entries for the name, you can extract each of their
+numbers, and hence the captured data, if any.
+</P>
+<br><a name="SEC20" href="#TOC1">FINDING ALL POSSIBLE MATCHES</a><br>
+<P>
+The traditional matching function uses a similar algorithm to Perl, which stops
+when it finds the first match, starting at a given point in the subject. If you
+want to find all possible matches, or the longest possible match, consider
+using the alternative matching function (see below) instead. If you cannot use
+the alternative function, but still need to find all possible matches, you
+can kludge it up by making use of the callout facility, which is described in
+the
+<a href="pcrecallout.html"><b>pcrecallout</b></a>
+documentation.
+</P>
+<P>
+What you have to do is to insert a callout right at the end of the pattern.
+When your callout function is called, extract and save the current matched
+substring. Then return 1, which forces <b>pcre_exec()</b> to backtrack and try
+other alternatives. Ultimately, when it runs out of matches, <b>pcre_exec()</b>
+will yield PCRE_ERROR_NOMATCH.
+<a name="dfamatch"></a></P>
+<br><a name="SEC21" href="#TOC1">MATCHING A PATTERN: THE ALTERNATIVE FUNCTION</a><br>
+<P>
+<b>int pcre_dfa_exec(const pcre *<i>code</i>, const pcre_extra *<i>extra</i>,</b>
+<b>const char *<i>subject</i>, int <i>length</i>, int <i>startoffset</i>,</b>
+<b>int <i>options</i>, int *<i>ovector</i>, int <i>ovecsize</i>,</b>
+<b>int *<i>workspace</i>, int <i>wscount</i>);</b>
+</P>
+<P>
+The function <b>pcre_dfa_exec()</b> is called to match a subject string against
+a compiled pattern, using a matching algorithm that scans the subject string
+just once, and does not backtrack. This has different characteristics to the
+normal algorithm, and is not compatible with Perl. Some of the features of PCRE
+patterns are not supported. Nevertheless, there are times when this kind of
+matching can be useful. For a discussion of the two matching algorithms, and a
+list of features that <b>pcre_dfa_exec()</b> does not support, see the
+<a href="pcrematching.html"><b>pcrematching</b></a>
+documentation.
+</P>
+<P>
+The arguments for the <b>pcre_dfa_exec()</b> function are the same as for
+<b>pcre_exec()</b>, plus two extras. The <i>ovector</i> argument is used in a
+different way, and this is described below. The other common arguments are used
+in the same way as for <b>pcre_exec()</b>, so their description is not repeated
+here.
+</P>
+<P>
+The two additional arguments provide workspace for the function. The workspace
+vector should contain at least 20 elements. It is used for keeping track of
+multiple paths through the pattern tree. More workspace will be needed for
+patterns and subjects where there are a lot of potential matches.
+</P>
+<P>
+Here is an example of a simple call to <b>pcre_dfa_exec()</b>:
+<pre>
+  int rc;
+  int ovector[10];
+  int wspace[20];
+  rc = pcre_dfa_exec(
+    re,             /* result of pcre_compile() */
+    NULL,           /* we didn't study the pattern */
+    "some string",  /* the subject string */
+    11,             /* the length of the subject string */
+    0,              /* start at offset 0 in the subject */
+    0,              /* default options */
+    ovector,        /* vector of integers for substring information */
+    10,             /* number of elements (NOT size in bytes) */
+    wspace,         /* working space vector */
+    20);            /* number of elements (NOT size in bytes) */
+</PRE>
+</P>
+<br><b>
+Option bits for <b>pcre_dfa_exec()</b>
+</b><br>
+<P>
+The unused bits of the <i>options</i> argument for <b>pcre_dfa_exec()</b> must be
+zero. The only bits that may be set are PCRE_ANCHORED, PCRE_NEWLINE_<i>xxx</i>,
+PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART,
+PCRE_NO_UTF8_CHECK, PCRE_BSR_ANYCRLF, PCRE_BSR_UNICODE, PCRE_NO_START_OPTIMIZE,
+PCRE_PARTIAL_HARD, PCRE_PARTIAL_SOFT, PCRE_DFA_SHORTEST, and PCRE_DFA_RESTART.
+All but the last four of these are exactly the same as for <b>pcre_exec()</b>,
+so their description is not repeated here.
+<pre>
+  PCRE_PARTIAL_HARD
+  PCRE_PARTIAL_SOFT
+</pre>
+These have the same general effect as they do for <b>pcre_exec()</b>, but the
+details are slightly different. When PCRE_PARTIAL_HARD is set for
+<b>pcre_dfa_exec()</b>, it returns PCRE_ERROR_PARTIAL if the end of the subject
+is reached and there is still at least one matching possibility that requires
+additional characters. This happens even if some complete matches have also
+been found. When PCRE_PARTIAL_SOFT is set, the return code PCRE_ERROR_NOMATCH
+is converted into PCRE_ERROR_PARTIAL if the end of the subject is reached,
+there have been no complete matches, but there is still at least one matching
+possibility. The portion of the string that was inspected when the longest
+partial match was found is set as the first matching string in both cases.
+There is a more detailed discussion of partial and multi-segment matching, with
+examples, in the
+<a href="pcrepartial.html"><b>pcrepartial</b></a>
+documentation.
+<pre>
+  PCRE_DFA_SHORTEST
+</pre>
+Setting the PCRE_DFA_SHORTEST option causes the matching algorithm to stop as
+soon as it has found one match. Because of the way the alternative algorithm
+works, this is necessarily the shortest possible match at the first possible
+matching point in the subject string.
+<pre>
+  PCRE_DFA_RESTART
+</pre>
+When <b>pcre_dfa_exec()</b> returns a partial match, it is possible to call it
+again, with additional subject characters, and have it continue with the same
+match. The PCRE_DFA_RESTART option requests this action; when it is set, the
+<i>workspace</i> and <i>wscount</i> options must reference the same vector as
+before because data about the match so far is left in them after a partial
+match. There is more discussion of this facility in the
+<a href="pcrepartial.html"><b>pcrepartial</b></a>
+documentation.
+</P>
+<br><b>
+Successful returns from <b>pcre_dfa_exec()</b>
+</b><br>
+<P>
+When <b>pcre_dfa_exec()</b> succeeds, it may have matched more than one
+substring in the subject. Note, however, that all the matches from one run of
+the function start at the same point in the subject. The shorter matches are
+all initial substrings of the longer matches. For example, if the pattern
+<pre>
+  &#60;.*&#62;
+</pre>
+is matched against the string
+<pre>
+  This is &#60;something&#62; &#60;something else&#62; &#60;something further&#62; no more
+</pre>
+the three matched strings are
+<pre>
+  &#60;something&#62;
+  &#60;something&#62; &#60;something else&#62;
+  &#60;something&#62; &#60;something else&#62; &#60;something further&#62;
+</pre>
+On success, the yield of the function is a number greater than zero, which is
+the number of matched substrings. The substrings themselves are returned in
+<i>ovector</i>. Each string uses two elements; the first is the offset to the
+start, and the second is the offset to the end. In fact, all the strings have
+the same start offset. (Space could have been saved by giving this only once,
+but it was decided to retain some compatibility with the way <b>pcre_exec()</b>
+returns data, even though the meaning of the strings is different.)
+</P>
+<P>
+The strings are returned in reverse order of length; that is, the longest
+matching string is given first. If there were too many matches to fit into
+<i>ovector</i>, the yield of the function is zero, and the vector is filled with
+the longest matches. Unlike <b>pcre_exec()</b>, <b>pcre_dfa_exec()</b> can use
+the entire <i>ovector</i> for returning matched strings.
+</P>
+<br><b>
+Error returns from <b>pcre_dfa_exec()</b>
+</b><br>
+<P>
+The <b>pcre_dfa_exec()</b> function returns a negative number when it fails.
+Many of the errors are the same as for <b>pcre_exec()</b>, and these are
+described
+<a href="#errorlist">above.</a>
+There are in addition the following errors that are specific to
+<b>pcre_dfa_exec()</b>:
+<pre>
+  PCRE_ERROR_DFA_UITEM      (-16)
+</pre>
+This return is given if <b>pcre_dfa_exec()</b> encounters an item in the pattern
+that it does not support, for instance, the use of \C or a back reference.
+<pre>
+  PCRE_ERROR_DFA_UCOND      (-17)
+</pre>
+This return is given if <b>pcre_dfa_exec()</b> encounters a condition item that
+uses a back reference for the condition, or a test for recursion in a specific
+group. These are not supported.
+<pre>
+  PCRE_ERROR_DFA_UMLIMIT    (-18)
+</pre>
+This return is given if <b>pcre_dfa_exec()</b> is called with an <i>extra</i>
+block that contains a setting of the <i>match_limit</i> or
+<i>match_limit_recursion</i> fields. This is not supported (these fields are
+meaningless for DFA matching).
+<pre>
+  PCRE_ERROR_DFA_WSSIZE     (-19)
+</pre>
+This return is given if <b>pcre_dfa_exec()</b> runs out of space in the
+<i>workspace</i> vector.
+<pre>
+  PCRE_ERROR_DFA_RECURSE    (-20)
+</pre>
+When a recursive subpattern is processed, the matching function calls itself
+recursively, using private vectors for <i>ovector</i> and <i>workspace</i>. This
+error is given if the output vector is not large enough. This should be
+extremely rare, as a vector of size 1000 is used.
+</P>
+<br><a name="SEC22" href="#TOC1">SEE ALSO</a><br>
+<P>
+<b>pcrebuild</b>(3), <b>pcrecallout</b>(3), <b>pcrecpp(3)</b>(3),
+<b>pcrematching</b>(3), <b>pcrepartial</b>(3), <b>pcreposix</b>(3),
+<b>pcreprecompile</b>(3), <b>pcresample</b>(3), <b>pcrestack</b>(3).
+</P>
+<br><a name="SEC23" href="#TOC1">AUTHOR</a><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><a name="SEC24" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 02 December 2011
+<br>
+Copyright &copy; 1997-2011 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcrebuild.html b/jni/libpcre/doc/html/pcrebuild.html
new file mode 100644
index 0000000..664812d
--- /dev/null
+++ b/jni/libpcre/doc/html/pcrebuild.html
@@ -0,0 +1,388 @@
+<html>
+<head>
+<title>pcrebuild specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcrebuild man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">PCRE BUILD-TIME OPTIONS</a>
+<li><a name="TOC2" href="#SEC2">BUILDING SHARED AND STATIC LIBRARIES</a>
+<li><a name="TOC3" href="#SEC3">C++ SUPPORT</a>
+<li><a name="TOC4" href="#SEC4">UTF-8 SUPPORT</a>
+<li><a name="TOC5" href="#SEC5">UNICODE CHARACTER PROPERTY SUPPORT</a>
+<li><a name="TOC6" href="#SEC6">JUST-IN-TIME COMPILER SUPPORT</a>
+<li><a name="TOC7" href="#SEC7">CODE VALUE OF NEWLINE</a>
+<li><a name="TOC8" href="#SEC8">WHAT \R MATCHES</a>
+<li><a name="TOC9" href="#SEC9">POSIX MALLOC USAGE</a>
+<li><a name="TOC10" href="#SEC10">HANDLING VERY LARGE PATTERNS</a>
+<li><a name="TOC11" href="#SEC11">AVOIDING EXCESSIVE STACK USAGE</a>
+<li><a name="TOC12" href="#SEC12">LIMITING PCRE RESOURCE USAGE</a>
+<li><a name="TOC13" href="#SEC13">CREATING CHARACTER TABLES AT BUILD TIME</a>
+<li><a name="TOC14" href="#SEC14">USING EBCDIC CODE</a>
+<li><a name="TOC15" href="#SEC15">PCREGREP OPTIONS FOR COMPRESSED FILE SUPPORT</a>
+<li><a name="TOC16" href="#SEC16">PCREGREP BUFFER SIZE</a>
+<li><a name="TOC17" href="#SEC17">PCRETEST OPTION FOR LIBREADLINE SUPPORT</a>
+<li><a name="TOC18" href="#SEC18">SEE ALSO</a>
+<li><a name="TOC19" href="#SEC19">AUTHOR</a>
+<li><a name="TOC20" href="#SEC20">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">PCRE BUILD-TIME OPTIONS</a><br>
+<P>
+This document describes the optional features of PCRE that can be selected when
+the library is compiled. It assumes use of the <b>configure</b> script, where
+the optional features are selected or deselected by providing options to
+<b>configure</b> before running the <b>make</b> command. However, the same
+options can be selected in both Unix-like and non-Unix-like environments using
+the GUI facility of <b>cmake-gui</b> if you are using <b>CMake</b> instead of
+<b>configure</b> to build PCRE.
+</P>
+<P>
+There is a lot more information about building PCRE in non-Unix-like
+environments in the file called <i>NON_UNIX_USE</i>, which is part of the PCRE
+distribution. You should consult this file as well as the <i>README</i> file if
+you are building in a non-Unix-like environment.
+</P>
+<P>
+The complete list of options for <b>configure</b> (which includes the standard
+ones such as the selection of the installation directory) can be obtained by
+running
+<pre>
+  ./configure --help
+</pre>
+The following sections include descriptions of options whose names begin with
+--enable or --disable. These settings specify changes to the defaults for the
+<b>configure</b> command. Because of the way that <b>configure</b> works,
+--enable and --disable always come in pairs, so the complementary option always
+exists as well, but as it specifies the default, it is not described.
+</P>
+<br><a name="SEC2" href="#TOC1">BUILDING SHARED AND STATIC LIBRARIES</a><br>
+<P>
+The PCRE building process uses <b>libtool</b> to build both shared and static
+Unix libraries by default. You can suppress one of these by adding one of
+<pre>
+  --disable-shared
+  --disable-static
+</pre>
+to the <b>configure</b> command, as required.
+</P>
+<br><a name="SEC3" href="#TOC1">C++ SUPPORT</a><br>
+<P>
+By default, the <b>configure</b> script will search for a C++ compiler and C++
+header files. If it finds them, it automatically builds the C++ wrapper library
+for PCRE. You can disable this by adding
+<pre>
+  --disable-cpp
+</pre>
+to the <b>configure</b> command.
+</P>
+<br><a name="SEC4" href="#TOC1">UTF-8 SUPPORT</a><br>
+<P>
+To build PCRE with support for UTF-8 Unicode character strings, add
+<pre>
+  --enable-utf8
+</pre>
+to the <b>configure</b> command. Of itself, this does not make PCRE treat
+strings as UTF-8. As well as compiling PCRE with this option, you also have
+have to set the PCRE_UTF8 option when you call the <b>pcre_compile()</b>
+or <b>pcre_compile2()</b> functions.
+</P>
+<P>
+If you set --enable-utf8 when compiling in an EBCDIC environment, PCRE expects
+its input to be either ASCII or UTF-8 (depending on the runtime option). It is
+not possible to support both EBCDIC and UTF-8 codes in the same version of the
+library. Consequently, --enable-utf8 and --enable-ebcdic are mutually
+exclusive.
+</P>
+<br><a name="SEC5" href="#TOC1">UNICODE CHARACTER PROPERTY SUPPORT</a><br>
+<P>
+UTF-8 support allows PCRE to process character values greater than 255 in the
+strings that it handles. On its own, however, it does not provide any
+facilities for accessing the properties of such characters. If you want to be
+able to use the pattern escapes \P, \p, and \X, which refer to Unicode
+character properties, you must add
+<pre>
+  --enable-unicode-properties
+</pre>
+to the <b>configure</b> command. This implies UTF-8 support, even if you have
+not explicitly requested it.
+</P>
+<P>
+Including Unicode property support adds around 30K of tables to the PCRE
+library. Only the general category properties such as <i>Lu</i> and <i>Nd</i> are
+supported. Details are given in the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+documentation.
+</P>
+<br><a name="SEC6" href="#TOC1">JUST-IN-TIME COMPILER SUPPORT</a><br>
+<P>
+Just-in-time compiler support is included in the build by specifying
+<pre>
+  --enable-jit
+</pre>
+This support is available only for certain hardware architectures. If this
+option is set for an unsupported architecture, a compile time error occurs.
+See the
+<a href="pcrejit.html"><b>pcrejit</b></a>
+documentation for a discussion of JIT usage. When JIT support is enabled,
+pcregrep automatically makes use of it, unless you add
+<pre>
+  --disable-pcregrep-jit
+</pre>
+to the "configure" command.
+</P>
+<br><a name="SEC7" href="#TOC1">CODE VALUE OF NEWLINE</a><br>
+<P>
+By default, PCRE interprets the linefeed (LF) character as indicating the end
+of a line. This is the normal newline character on Unix-like systems. You can
+compile PCRE to use carriage return (CR) instead, by adding
+<pre>
+  --enable-newline-is-cr
+</pre>
+to the <b>configure</b> command. There is also a --enable-newline-is-lf option,
+which explicitly specifies linefeed as the newline character.
+<br>
+<br>
+Alternatively, you can specify that line endings are to be indicated by the two
+character sequence CRLF. If you want this, add
+<pre>
+  --enable-newline-is-crlf
+</pre>
+to the <b>configure</b> command. There is a fourth option, specified by
+<pre>
+  --enable-newline-is-anycrlf
+</pre>
+which causes PCRE to recognize any of the three sequences CR, LF, or CRLF as
+indicating a line ending. Finally, a fifth option, specified by
+<pre>
+  --enable-newline-is-any
+</pre>
+causes PCRE to recognize any Unicode newline sequence.
+</P>
+<P>
+Whatever line ending convention is selected when PCRE is built can be
+overridden when the library functions are called. At build time it is
+conventional to use the standard for your operating system.
+</P>
+<br><a name="SEC8" href="#TOC1">WHAT \R MATCHES</a><br>
+<P>
+By default, the sequence \R in a pattern matches any Unicode newline sequence,
+whatever has been selected as the line ending sequence. If you specify
+<pre>
+  --enable-bsr-anycrlf
+</pre>
+the default is changed so that \R matches only CR, LF, or CRLF. Whatever is
+selected when PCRE is built can be overridden when the library functions are
+called.
+</P>
+<br><a name="SEC9" href="#TOC1">POSIX MALLOC USAGE</a><br>
+<P>
+When PCRE is called through the POSIX interface (see the
+<a href="pcreposix.html"><b>pcreposix</b></a>
+documentation), additional working storage is required for holding the pointers
+to capturing substrings, because PCRE requires three integers per substring,
+whereas the POSIX interface provides only two. If the number of expected
+substrings is small, the wrapper function uses space on the stack, because this
+is faster than using <b>malloc()</b> for each call. The default threshold above
+which the stack is no longer used is 10; it can be changed by adding a setting
+such as
+<pre>
+  --with-posix-malloc-threshold=20
+</pre>
+to the <b>configure</b> command.
+</P>
+<br><a name="SEC10" href="#TOC1">HANDLING VERY LARGE PATTERNS</a><br>
+<P>
+Within a compiled pattern, offset values are used to point from one part to
+another (for example, from an opening parenthesis to an alternation
+metacharacter). By default, two-byte values are used for these offsets, leading
+to a maximum size for a compiled pattern of around 64K. This is sufficient to
+handle all but the most gigantic patterns. Nevertheless, some people do want to
+process truyl enormous patterns, so it is possible to compile PCRE to use
+three-byte or four-byte offsets by adding a setting such as
+<pre>
+  --with-link-size=3
+</pre>
+to the <b>configure</b> command. The value given must be 2, 3, or 4. Using
+longer offsets slows down the operation of PCRE because it has to load
+additional bytes when handling them.
+</P>
+<br><a name="SEC11" href="#TOC1">AVOIDING EXCESSIVE STACK USAGE</a><br>
+<P>
+When matching with the <b>pcre_exec()</b> function, PCRE implements backtracking
+by making recursive calls to an internal function called <b>match()</b>. In
+environments where the size of the stack is limited, this can severely limit
+PCRE's operation. (The Unix environment does not usually suffer from this
+problem, but it may sometimes be necessary to increase the maximum stack size.
+There is a discussion in the
+<a href="pcrestack.html"><b>pcrestack</b></a>
+documentation.) An alternative approach to recursion that uses memory from the
+heap to remember data, instead of using recursive function calls, has been
+implemented to work round the problem of limited stack size. If you want to
+build a version of PCRE that works this way, add
+<pre>
+  --disable-stack-for-recursion
+</pre>
+to the <b>configure</b> command. With this configuration, PCRE will use the
+<b>pcre_stack_malloc</b> and <b>pcre_stack_free</b> variables to call memory
+management functions. By default these point to <b>malloc()</b> and
+<b>free()</b>, but you can replace the pointers so that your own functions are
+used instead.
+</P>
+<P>
+Separate functions are provided rather than using <b>pcre_malloc</b> and
+<b>pcre_free</b> because the usage is very predictable: the block sizes
+requested are always the same, and the blocks are always freed in reverse
+order. A calling program might be able to implement optimized functions that
+perform better than <b>malloc()</b> and <b>free()</b>. PCRE runs noticeably more
+slowly when built in this way. This option affects only the <b>pcre_exec()</b>
+function; it is not relevant for <b>pcre_dfa_exec()</b>.
+</P>
+<br><a name="SEC12" href="#TOC1">LIMITING PCRE RESOURCE USAGE</a><br>
+<P>
+Internally, PCRE has a function called <b>match()</b>, which it calls repeatedly
+(sometimes recursively) when matching a pattern with the <b>pcre_exec()</b>
+function. By controlling the maximum number of times this function may be
+called during a single matching operation, a limit can be placed on the
+resources used by a single call to <b>pcre_exec()</b>. The limit can be changed
+at run time, as described in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+documentation. The default is 10 million, but this can be changed by adding a
+setting such as
+<pre>
+  --with-match-limit=500000
+</pre>
+to the <b>configure</b> command. This setting has no effect on the
+<b>pcre_dfa_exec()</b> matching function.
+</P>
+<P>
+In some environments it is desirable to limit the depth of recursive calls of
+<b>match()</b> more strictly than the total number of calls, in order to
+restrict the maximum amount of stack (or heap, if --disable-stack-for-recursion
+is specified) that is used. A second limit controls this; it defaults to the
+value that is set for --with-match-limit, which imposes no additional
+constraints. However, you can set a lower limit by adding, for example,
+<pre>
+  --with-match-limit-recursion=10000
+</pre>
+to the <b>configure</b> command. This value can also be overridden at run time.
+</P>
+<br><a name="SEC13" href="#TOC1">CREATING CHARACTER TABLES AT BUILD TIME</a><br>
+<P>
+PCRE uses fixed tables for processing characters whose code values are less
+than 256. By default, PCRE is built with a set of tables that are distributed
+in the file <i>pcre_chartables.c.dist</i>. These tables are for ASCII codes
+only. If you add
+<pre>
+  --enable-rebuild-chartables
+</pre>
+to the <b>configure</b> command, the distributed tables are no longer used.
+Instead, a program called <b>dftables</b> is compiled and run. This outputs the
+source for new set of tables, created in the default locale of your C runtime
+system. (This method of replacing the tables does not work if you are cross
+compiling, because <b>dftables</b> is run on the local host. If you need to
+create alternative tables when cross compiling, you will have to do so "by
+hand".)
+</P>
+<br><a name="SEC14" href="#TOC1">USING EBCDIC CODE</a><br>
+<P>
+PCRE assumes by default that it will run in an environment where the character
+code is ASCII (or Unicode, which is a superset of ASCII). This is the case for
+most computer operating systems. PCRE can, however, be compiled to run in an
+EBCDIC environment by adding
+<pre>
+  --enable-ebcdic
+</pre>
+to the <b>configure</b> command. This setting implies
+--enable-rebuild-chartables. You should only use it if you know that you are in
+an EBCDIC environment (for example, an IBM mainframe operating system). The
+--enable-ebcdic option is incompatible with --enable-utf8.
+</P>
+<br><a name="SEC15" href="#TOC1">PCREGREP OPTIONS FOR COMPRESSED FILE SUPPORT</a><br>
+<P>
+By default, <b>pcregrep</b> reads all files as plain text. You can build it so
+that it recognizes files whose names end in <b>.gz</b> or <b>.bz2</b>, and reads
+them with <b>libz</b> or <b>libbz2</b>, respectively, by adding one or both of
+<pre>
+  --enable-pcregrep-libz
+  --enable-pcregrep-libbz2
+</pre>
+to the <b>configure</b> command. These options naturally require that the
+relevant libraries are installed on your system. Configuration will fail if
+they are not.
+</P>
+<br><a name="SEC16" href="#TOC1">PCREGREP BUFFER SIZE</a><br>
+<P>
+<b>pcregrep</b> uses an internal buffer to hold a "window" on the file it is
+scanning, in order to be able to output "before" and "after" lines when it
+finds a match. The size of the buffer is controlled by a parameter whose
+default value is 20K. The buffer itself is three times this size, but because
+of the way it is used for holding "before" lines, the longest line that is
+guaranteed to be processable is the parameter size. You can change the default
+parameter value by adding, for example,
+<pre>
+  --with-pcregrep-bufsize=50K
+</pre>
+to the <b>configure</b> command. The caller of \fPpcregrep\fP can, however,
+override this value by specifying a run-time option.
+</P>
+<br><a name="SEC17" href="#TOC1">PCRETEST OPTION FOR LIBREADLINE SUPPORT</a><br>
+<P>
+If you add
+<pre>
+  --enable-pcretest-libreadline
+</pre>
+to the <b>configure</b> command, <b>pcretest</b> is linked with the
+<b>libreadline</b> library, and when its input is from a terminal, it reads it
+using the <b>readline()</b> function. This provides line-editing and history
+facilities. Note that <b>libreadline</b> is GPL-licensed, so if you distribute a
+binary of <b>pcretest</b> linked in this way, there may be licensing issues.
+</P>
+<P>
+Setting this option causes the <b>-lreadline</b> option to be added to the
+<b>pcretest</b> build. In many operating environments with a sytem-installed
+<b>libreadline</b> this is sufficient. However, in some environments (e.g.
+if an unmodified distribution version of readline is in use), some extra
+configuration may be necessary. The INSTALL file for <b>libreadline</b> says
+this:
+<pre>
+  "Readline uses the termcap functions, but does not link with the
+  termcap or curses library itself, allowing applications which link
+  with readline the to choose an appropriate library."
+</pre>
+If your environment has not been set up so that an appropriate library is
+automatically included, you may need to add something like
+<pre>
+  LIBS="-ncurses"
+</pre>
+immediately before the <b>configure</b> command.
+</P>
+<br><a name="SEC18" href="#TOC1">SEE ALSO</a><br>
+<P>
+<b>pcreapi</b>(3), <b>pcre_config</b>(3).
+</P>
+<br><a name="SEC19" href="#TOC1">AUTHOR</a><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><a name="SEC20" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 06 September 2011
+<br>
+Copyright &copy; 1997-2011 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcrecallout.html b/jni/libpcre/doc/html/pcrecallout.html
new file mode 100644
index 0000000..e891fdf
--- /dev/null
+++ b/jni/libpcre/doc/html/pcrecallout.html
@@ -0,0 +1,229 @@
+<html>
+<head>
+<title>pcrecallout specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcrecallout man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">PCRE CALLOUTS</a>
+<li><a name="TOC2" href="#SEC2">MISSING CALLOUTS</a>
+<li><a name="TOC3" href="#SEC3">THE CALLOUT INTERFACE</a>
+<li><a name="TOC4" href="#SEC4">RETURN VALUES</a>
+<li><a name="TOC5" href="#SEC5">AUTHOR</a>
+<li><a name="TOC6" href="#SEC6">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">PCRE CALLOUTS</a><br>
+<P>
+<b>int (*pcre_callout)(pcre_callout_block *);</b>
+</P>
+<P>
+PCRE provides a feature called "callout", which is a means of temporarily
+passing control to the caller of PCRE in the middle of pattern matching. The
+caller of PCRE provides an external function by putting its entry point in the
+global variable <i>pcre_callout</i>. By default, this variable contains NULL,
+which disables all calling out.
+</P>
+<P>
+Within a regular expression, (?C) indicates the points at which the external
+function is to be called. Different callout points can be identified by putting
+a number less than 256 after the letter C. The default value is zero.
+For example, this pattern has two callout points:
+<pre>
+  (?C1)abc(?C2)def
+</pre>
+If the PCRE_AUTO_CALLOUT option bit is set when <b>pcre_compile()</b> or
+<b>pcre_compile2()</b> is called, PCRE automatically inserts callouts, all with
+number 255, before each item in the pattern. For example, if PCRE_AUTO_CALLOUT
+is used with the pattern
+<pre>
+  A(\d{2}|--)
+</pre>
+it is processed as if it were
+<br>
+<br>
+(?C255)A(?C255)((?C255)\d{2}(?C255)|(?C255)-(?C255)-(?C255))(?C255)
+<br>
+<br>
+Notice that there is a callout before and after each parenthesis and
+alternation bar. Automatic callouts can be used for tracking the progress of
+pattern matching. The
+<a href="pcretest.html"><b>pcretest</b></a>
+command has an option that sets automatic callouts; when it is used, the output
+indicates how the pattern is matched. This is useful information when you are
+trying to optimize the performance of a particular pattern.
+</P>
+<P>
+The use of callouts in a pattern makes it ineligible for optimization by the
+just-in-time compiler. Studying such a pattern with the PCRE_STUDY_JIT_COMPILE
+option always fails.
+</P>
+<br><a name="SEC2" href="#TOC1">MISSING CALLOUTS</a><br>
+<P>
+You should be aware that, because of optimizations in the way PCRE matches
+patterns by default, callouts sometimes do not happen. For example, if the
+pattern is
+<pre>
+  ab(?C4)cd
+</pre>
+PCRE knows that any matching string must contain the letter "d". If the subject
+string is "abyz", the lack of "d" means that matching doesn't ever start, and
+the callout is never reached. However, with "abyd", though the result is still
+no match, the callout is obeyed.
+</P>
+<P>
+If the pattern is studied, PCRE knows the minimum length of a matching string,
+and will immediately give a "no match" return without actually running a match
+if the subject is not long enough, or, for unanchored patterns, if it has
+been scanned far enough.
+</P>
+<P>
+You can disable these optimizations by passing the PCRE_NO_START_OPTIMIZE
+option to <b>pcre_compile()</b>, <b>pcre_exec()</b>, or <b>pcre_dfa_exec()</b>,
+or by starting the pattern with (*NO_START_OPT). This slows down the matching
+process, but does ensure that callouts such as the example above are obeyed.
+</P>
+<br><a name="SEC3" href="#TOC1">THE CALLOUT INTERFACE</a><br>
+<P>
+During matching, when PCRE reaches a callout point, the external function
+defined by <i>pcre_callout</i> is called (if it is set). This applies to both
+the <b>pcre_exec()</b> and the <b>pcre_dfa_exec()</b> matching functions. The
+only argument to the callout function is a pointer to a <b>pcre_callout</b>
+block. This structure contains the following fields:
+<pre>
+  int         <i>version</i>;
+  int         <i>callout_number</i>;
+  int        *<i>offset_vector</i>;
+  const char *<i>subject</i>;
+  int         <i>subject_length</i>;
+  int         <i>start_match</i>;
+  int         <i>current_position</i>;
+  int         <i>capture_top</i>;
+  int         <i>capture_last</i>;
+  void       *<i>callout_data</i>;
+  int         <i>pattern_position</i>;
+  int         <i>next_item_length</i>;
+  const unsigned char *<i>mark</i>;
+</pre>
+The <i>version</i> field is an integer containing the version number of the
+block format. The initial version was 0; the current version is 2. The version
+number will change again in future if additional fields are added, but the
+intention is never to remove any of the existing fields.
+</P>
+<P>
+The <i>callout_number</i> field contains the number of the callout, as compiled
+into the pattern (that is, the number after ?C for manual callouts, and 255 for
+automatically generated callouts).
+</P>
+<P>
+The <i>offset_vector</i> field is a pointer to the vector of offsets that was
+passed by the caller to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>. When
+<b>pcre_exec()</b> is used, the contents can be inspected in order to extract
+substrings that have been matched so far, in the same way as for extracting
+substrings after a match has completed. For <b>pcre_dfa_exec()</b> this field is
+not useful.
+</P>
+<P>
+The <i>subject</i> and <i>subject_length</i> fields contain copies of the values
+that were passed to <b>pcre_exec()</b>.
+</P>
+<P>
+The <i>start_match</i> field normally contains the offset within the subject at
+which the current match attempt started. However, if the escape sequence \K
+has been encountered, this value is changed to reflect the modified starting
+point. If the pattern is not anchored, the callout function may be called
+several times from the same point in the pattern for different starting points
+in the subject.
+</P>
+<P>
+The <i>current_position</i> field contains the offset within the subject of the
+current match pointer.
+</P>
+<P>
+When the <b>pcre_exec()</b> function is used, the <i>capture_top</i> field
+contains one more than the number of the highest numbered captured substring so
+far. If no substrings have been captured, the value of <i>capture_top</i> is
+one. This is always the case when <b>pcre_dfa_exec()</b> is used, because it
+does not support captured substrings.
+</P>
+<P>
+The <i>capture_last</i> field contains the number of the most recently captured
+substring. If no substrings have been captured, its value is -1. This is always
+the case when <b>pcre_dfa_exec()</b> is used.
+</P>
+<P>
+The <i>callout_data</i> field contains a value that is passed to
+<b>pcre_exec()</b> or <b>pcre_dfa_exec()</b> specifically so that it can be
+passed back in callouts. It is passed in the <i>pcre_callout</i> field of the
+<b>pcre_extra</b> data structure. If no such data was passed, the value of
+<i>callout_data</i> in a <b>pcre_callout</b> block is NULL. There is a
+description of the <b>pcre_extra</b> structure in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+documentation.
+</P>
+<P>
+The <i>pattern_position</i> field is present from version 1 of the
+<i>pcre_callout</i> structure. It contains the offset to the next item to be
+matched in the pattern string.
+</P>
+<P>
+The <i>next_item_length</i> field is present from version 1 of the
+<i>pcre_callout</i> structure. It contains the length of the next item to be
+matched in the pattern string. When the callout immediately precedes an
+alternation bar, a closing parenthesis, or the end of the pattern, the length
+is zero. When the callout precedes an opening parenthesis, the length is that
+of the entire subpattern.
+</P>
+<P>
+The <i>pattern_position</i> and <i>next_item_length</i> fields are intended to
+help in distinguishing between different automatic callouts, which all have the
+same callout number. However, they are set for all callouts.
+</P>
+<P>
+The <i>mark</i> field is present from version 2 of the <i>pcre_callout</i>
+structure. In callouts from <b>pcre_exec()</b> it contains a pointer to the
+zero-terminated name of the most recently passed (*MARK), (*PRUNE), or (*THEN)
+item in the match, or NULL if no such items have been passed. Instances of
+(*PRUNE) or (*THEN) without a name do not obliterate a previous (*MARK). In
+callouts from <b>pcre_dfa_exec()</b> this field always contains NULL.
+</P>
+<br><a name="SEC4" href="#TOC1">RETURN VALUES</a><br>
+<P>
+The external callout function returns an integer to PCRE. If the value is zero,
+matching proceeds as normal. If the value is greater than zero, matching fails
+at the current point, but the testing of other matching possibilities goes
+ahead, just as if a lookahead assertion had failed. If the value is less than
+zero, the match is abandoned, and <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>
+returns the negative value.
+</P>
+<P>
+Negative values should normally be chosen from the set of PCRE_ERROR_xxx
+values. In particular, PCRE_ERROR_NOMATCH forces a standard "no match" failure.
+The error number PCRE_ERROR_CALLOUT is reserved for use by callout functions;
+it will never be used by PCRE itself.
+</P>
+<br><a name="SEC5" href="#TOC1">AUTHOR</a><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><a name="SEC6" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 30 November 2011
+<br>
+Copyright &copy; 1997-2011 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcrecompat.html b/jni/libpcre/doc/html/pcrecompat.html
new file mode 100644
index 0000000..4e5e18b
--- /dev/null
+++ b/jni/libpcre/doc/html/pcrecompat.html
@@ -0,0 +1,212 @@
+<html>
+<head>
+<title>pcrecompat specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcrecompat man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+DIFFERENCES BETWEEN PCRE AND PERL
+</b><br>
+<P>
+This document describes the differences in the ways that PCRE and Perl handle
+regular expressions. The differences described here are with respect to Perl
+versions 5.10 and above.
+</P>
+<P>
+1. PCRE has only a subset of Perl's UTF-8 and Unicode support. Details of what
+it does have are given in the
+<a href="pcreunicode.html"><b>pcreunicode</b></a>
+page.
+</P>
+<P>
+2. PCRE allows repeat quantifiers only on parenthesized assertions, but they do
+not mean what you might think. For example, (?!a){3} does not assert that the
+next three characters are not "a". It just asserts that the next character is
+not "a" three times (in principle: PCRE optimizes this to run the assertion
+just once). Perl allows repeat quantifiers on other assertions such as \b, but
+these do not seem to have any use.
+</P>
+<P>
+3. Capturing subpatterns that occur inside negative lookahead assertions are
+counted, but their entries in the offsets vector are never set. Perl sets its
+numerical variables from any such patterns that are matched before the
+assertion fails to match something (thereby succeeding), but only if the
+negative lookahead assertion contains just one branch.
+</P>
+<P>
+4. Though binary zero characters are supported in the subject string, they are
+not allowed in a pattern string because it is passed as a normal C string,
+terminated by zero. The escape sequence \0 can be used in the pattern to
+represent a binary zero.
+</P>
+<P>
+5. The following Perl escape sequences are not supported: \l, \u, \L,
+\U, and \N when followed by a character name or Unicode value. (\N on its
+own, matching a non-newline character, is supported.) In fact these are
+implemented by Perl's general string-handling and are not part of its pattern
+matching engine. If any of these are encountered by PCRE, an error is
+generated by default. However, if the PCRE_JAVASCRIPT_COMPAT option is set,
+\U and \u are interpreted as JavaScript interprets them.
+</P>
+<P>
+6. The Perl escape sequences \p, \P, and \X are supported only if PCRE is
+built with Unicode character property support. The properties that can be
+tested with \p and \P are limited to the general category properties such as
+Lu and Nd, script names such as Greek or Han, and the derived properties Any
+and L&. PCRE does support the Cs (surrogate) property, which Perl does not; the
+Perl documentation says "Because Perl hides the need for the user to understand
+the internal representation of Unicode characters, there is no need to
+implement the somewhat messy concept of surrogates."
+</P>
+<P>
+7. PCRE implements a simpler version of \X than Perl, which changed to make
+\X match what Unicode calls an "extended grapheme cluster". This is more
+complicated than an extended Unicode sequence, which is what PCRE matches.
+</P>
+<P>
+8. PCRE does support the \Q...\E escape for quoting substrings. Characters in
+between are treated as literals. This is slightly different from Perl in that $
+and @ are also handled as literals inside the quotes. In Perl, they cause
+variable interpolation (but of course PCRE does not have variables). Note the
+following examples:
+<pre>
+    Pattern            PCRE matches      Perl matches
+
+    \Qabc$xyz\E        abc$xyz           abc followed by the contents of $xyz
+    \Qabc\$xyz\E       abc\$xyz          abc\$xyz
+    \Qabc\E\$\Qxyz\E   abc$xyz           abc$xyz
+</pre>
+The \Q...\E sequence is recognized both inside and outside character classes.
+</P>
+<P>
+9. Fairly obviously, PCRE does not support the (?{code}) and (??{code})
+constructions. However, there is support for recursive patterns. This is not
+available in Perl 5.8, but it is in Perl 5.10. Also, the PCRE "callout"
+feature allows an external function to be called during pattern matching. See
+the
+<a href="pcrecallout.html"><b>pcrecallout</b></a>
+documentation for details.
+</P>
+<P>
+10. Subpatterns that are called as subroutines (whether or not recursively) are
+always treated as atomic groups in PCRE. This is like Python, but unlike Perl.
+Captured values that are set outside a subroutine call can be reference from
+inside in PCRE, but not in Perl. There is a discussion that explains these
+differences in more detail in the
+<a href="pcrepattern.html#recursiondifference">section on recursion differences from Perl</a>
+in the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+page.
+</P>
+<P>
+11. If (*THEN) is present in a group that is called as a subroutine, its action
+is limited to that group, even if the group does not contain any | characters.
+</P>
+<P>
+12. There are some differences that are concerned with the settings of captured
+strings when part of a pattern is repeated. For example, matching "aba" against
+the pattern /^(a(b)?)+$/ in Perl leaves $2 unset, but in PCRE it is set to "b".
+</P>
+<P>
+13. PCRE's handling of duplicate subpattern numbers and duplicate subpattern
+names is not as general as Perl's. This is a consequence of the fact the PCRE
+works internally just with numbers, using an external table to translate
+between numbers and names. In particular, a pattern such as (?|(?&#60;a&#62;A)|(?&#60;b)B),
+where the two capturing parentheses have the same number but different names,
+is not supported, and causes an error at compile time. If it were allowed, it
+would not be possible to distinguish which parentheses matched, because both
+names map to capturing subpattern number 1. To avoid this confusing situation,
+an error is given at compile time.
+</P>
+<P>
+14. Perl recognizes comments in some places that PCRE does not, for example,
+between the ( and ? at the start of a subpattern. If the /x modifier is set,
+Perl allows whitespace between ( and ? but PCRE never does, even if the
+PCRE_EXTENDED option is set.
+</P>
+<P>
+15. PCRE provides some extensions to the Perl regular expression facilities.
+Perl 5.10 includes new features that are not in earlier versions of Perl, some
+of which (such as named parentheses) have been in PCRE for some time. This list
+is with respect to Perl 5.10:
+<br>
+<br>
+(a) Although lookbehind assertions in PCRE must match fixed length strings,
+each alternative branch of a lookbehind assertion can match a different length
+of string. Perl requires them all to have the same length.
+<br>
+<br>
+(b) If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is not set, the $
+meta-character matches only at the very end of the string.
+<br>
+<br>
+(c) If PCRE_EXTRA is set, a backslash followed by a letter with no special
+meaning is faulted. Otherwise, like Perl, the backslash is quietly ignored.
+(Perl can be made to issue a warning.)
+<br>
+<br>
+(d) If PCRE_UNGREEDY is set, the greediness of the repetition quantifiers is
+inverted, that is, by default they are not greedy, but if followed by a
+question mark they are.
+<br>
+<br>
+(e) PCRE_ANCHORED can be used at matching time to force a pattern to be tried
+only at the first matching position in the subject string.
+<br>
+<br>
+(f) The PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART, and
+PCRE_NO_AUTO_CAPTURE options for <b>pcre_exec()</b> have no Perl equivalents.
+<br>
+<br>
+(g) The \R escape sequence can be restricted to match only CR, LF, or CRLF
+by the PCRE_BSR_ANYCRLF option.
+<br>
+<br>
+(h) The callout facility is PCRE-specific.
+<br>
+<br>
+(i) The partial matching facility is PCRE-specific.
+<br>
+<br>
+(j) Patterns compiled by PCRE can be saved and re-used at a later time, even on
+different hosts that have the other endianness. However, this does not apply to
+optimized data created by the just-in-time compiler.
+<br>
+<br>
+(k) The alternative matching function (<b>pcre_dfa_exec()</b>) matches in a
+different way and is not Perl-compatible.
+<br>
+<br>
+(l) PCRE recognizes some special sequences such as (*CR) at the start of
+a pattern that set overall options that cannot be changed within the pattern.
+</P>
+<br><b>
+AUTHOR
+</b><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><b>
+REVISION
+</b><br>
+<P>
+Last updated: 14 November 2011
+<br>
+Copyright &copy; 1997-2011 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcrecpp.html b/jni/libpcre/doc/html/pcrecpp.html
new file mode 100644
index 0000000..0ef2d4f
--- /dev/null
+++ b/jni/libpcre/doc/html/pcrecpp.html
@@ -0,0 +1,369 @@
+<html>
+<head>
+<title>pcrecpp specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcrecpp man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">SYNOPSIS OF C++ WRAPPER</a>
+<li><a name="TOC2" href="#SEC2">DESCRIPTION</a>
+<li><a name="TOC3" href="#SEC3">MATCHING INTERFACE</a>
+<li><a name="TOC4" href="#SEC4">QUOTING METACHARACTERS</a>
+<li><a name="TOC5" href="#SEC5">PARTIAL MATCHES</a>
+<li><a name="TOC6" href="#SEC6">UTF-8 AND THE MATCHING INTERFACE</a>
+<li><a name="TOC7" href="#SEC7">PASSING MODIFIERS TO THE REGULAR EXPRESSION ENGINE</a>
+<li><a name="TOC8" href="#SEC8">SCANNING TEXT INCREMENTALLY</a>
+<li><a name="TOC9" href="#SEC9">PARSING HEX/OCTAL/C-RADIX NUMBERS</a>
+<li><a name="TOC10" href="#SEC10">REPLACING PARTS OF STRINGS</a>
+<li><a name="TOC11" href="#SEC11">AUTHOR</a>
+<li><a name="TOC12" href="#SEC12">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">SYNOPSIS OF C++ WRAPPER</a><br>
+<P>
+<b>#include &#60;pcrecpp.h&#62;</b>
+</P>
+<br><a name="SEC2" href="#TOC1">DESCRIPTION</a><br>
+<P>
+The C++ wrapper for PCRE was provided by Google Inc. Some additional
+functionality was added by Giuseppe Maxia. This brief man page was constructed
+from the notes in the <i>pcrecpp.h</i> file, which should be consulted for
+further details.
+</P>
+<br><a name="SEC3" href="#TOC1">MATCHING INTERFACE</a><br>
+<P>
+The "FullMatch" operation checks that supplied text matches a supplied pattern
+exactly. If pointer arguments are supplied, it copies matched sub-strings that
+match sub-patterns into them.
+<pre>
+  Example: successful match
+     pcrecpp::RE re("h.*o");
+     re.FullMatch("hello");
+
+  Example: unsuccessful match (requires full match):
+     pcrecpp::RE re("e");
+     !re.FullMatch("hello");
+
+  Example: creating a temporary RE object:
+     pcrecpp::RE("h.*o").FullMatch("hello");
+</pre>
+You can pass in a "const char*" or a "string" for "text". The examples below
+tend to use a const char*. You can, as in the different examples above, store
+the RE object explicitly in a variable or use a temporary RE object. The
+examples below use one mode or the other arbitrarily. Either could correctly be
+used for any of these examples.
+</P>
+<P>
+You must supply extra pointer arguments to extract matched subpieces.
+<pre>
+  Example: extracts "ruby" into "s" and 1234 into "i"
+     int i;
+     string s;
+     pcrecpp::RE re("(\\w+):(\\d+)");
+     re.FullMatch("ruby:1234", &s, &i);
+
+  Example: does not try to extract any extra sub-patterns
+     re.FullMatch("ruby:1234", &s);
+
+  Example: does not try to extract into NULL
+     re.FullMatch("ruby:1234", NULL, &i);
+
+  Example: integer overflow causes failure
+     !re.FullMatch("ruby:1234567891234", NULL, &i);
+
+  Example: fails because there aren't enough sub-patterns:
+     !pcrecpp::RE("\\w+:\\d+").FullMatch("ruby:1234", &s);
+
+  Example: fails because string cannot be stored in integer
+     !pcrecpp::RE("(.*)").FullMatch("ruby", &i);
+</pre>
+The provided pointer arguments can be pointers to any scalar numeric
+type, or one of:
+<pre>
+   string        (matched piece is copied to string)
+   StringPiece   (StringPiece is mutated to point to matched piece)
+   T             (where "bool T::ParseFrom(const char*, int)" exists)
+   NULL          (the corresponding matched sub-pattern is not copied)
+</pre>
+The function returns true iff all of the following conditions are satisfied:
+<pre>
+  a. "text" matches "pattern" exactly;
+
+  b. The number of matched sub-patterns is &#62;= number of supplied
+     pointers;
+
+  c. The "i"th argument has a suitable type for holding the
+     string captured as the "i"th sub-pattern. If you pass in
+     void * NULL for the "i"th argument, or a non-void * NULL
+     of the correct type, or pass fewer arguments than the
+     number of sub-patterns, "i"th captured sub-pattern is
+     ignored.
+</pre>
+CAVEAT: An optional sub-pattern that does not exist in the matched
+string is assigned the empty string. Therefore, the following will
+return false (because the empty string is not a valid number):
+<pre>
+   int number;
+   pcrecpp::RE::FullMatch("abc", "[a-z]+(\\d+)?", &number);
+</pre>
+The matching interface supports at most 16 arguments per call.
+If you need more, consider using the more general interface
+<b>pcrecpp::RE::DoMatch</b>. See <b>pcrecpp.h</b> for the signature for
+<b>DoMatch</b>.
+</P>
+<P>
+NOTE: Do not use <b>no_arg</b>, which is used internally to mark the end of a
+list of optional arguments, as a placeholder for missing arguments, as this can
+lead to segfaults.
+</P>
+<br><a name="SEC4" href="#TOC1">QUOTING METACHARACTERS</a><br>
+<P>
+You can use the "QuoteMeta" operation to insert backslashes before all
+potentially meaningful characters in a string. The returned string, used as a
+regular expression, will exactly match the original string.
+<pre>
+  Example:
+     string quoted = RE::QuoteMeta(unquoted);
+</pre>
+Note that it's legal to escape a character even if it has no special meaning in
+a regular expression -- so this function does that. (This also makes it
+identical to the perl function of the same name; see "perldoc -f quotemeta".)
+For example, "1.5-2.0?" becomes "1\.5\-2\.0\?".
+</P>
+<br><a name="SEC5" href="#TOC1">PARTIAL MATCHES</a><br>
+<P>
+You can use the "PartialMatch" operation when you want the pattern
+to match any substring of the text.
+<pre>
+  Example: simple search for a string:
+     pcrecpp::RE("ell").PartialMatch("hello");
+
+  Example: find first number in a string:
+     int number;
+     pcrecpp::RE re("(\\d+)");
+     re.PartialMatch("x*100 + 20", &number);
+     assert(number == 100);
+</PRE>
+</P>
+<br><a name="SEC6" href="#TOC1">UTF-8 AND THE MATCHING INTERFACE</a><br>
+<P>
+By default, pattern and text are plain text, one byte per character. The UTF8
+flag, passed to the constructor, causes both pattern and string to be treated
+as UTF-8 text, still a byte stream but potentially multiple bytes per
+character. In practice, the text is likelier to be UTF-8 than the pattern, but
+the match returned may depend on the UTF8 flag, so always use it when matching
+UTF8 text. For example, "." will match one byte normally but with UTF8 set may
+match up to three bytes of a multi-byte character.
+<pre>
+  Example:
+     pcrecpp::RE_Options options;
+     options.set_utf8();
+     pcrecpp::RE re(utf8_pattern, options);
+     re.FullMatch(utf8_string);
+
+  Example: using the convenience function UTF8():
+     pcrecpp::RE re(utf8_pattern, pcrecpp::UTF8());
+     re.FullMatch(utf8_string);
+</pre>
+NOTE: The UTF8 flag is ignored if pcre was not configured with the
+<pre>
+      --enable-utf8 flag.
+</PRE>
+</P>
+<br><a name="SEC7" href="#TOC1">PASSING MODIFIERS TO THE REGULAR EXPRESSION ENGINE</a><br>
+<P>
+PCRE defines some modifiers to change the behavior of the regular expression
+engine. The C++ wrapper defines an auxiliary class, RE_Options, as a vehicle to
+pass such modifiers to a RE class. Currently, the following modifiers are
+supported:
+<pre>
+   modifier              description               Perl corresponding
+
+   PCRE_CASELESS         case insensitive match      /i
+   PCRE_MULTILINE        multiple lines match        /m
+   PCRE_DOTALL           dot matches newlines        /s
+   PCRE_DOLLAR_ENDONLY   $ matches only at end       N/A
+   PCRE_EXTRA            strict escape parsing       N/A
+   PCRE_EXTENDED         ignore whitespaces          /x
+   PCRE_UTF8             handles UTF8 chars          built-in
+   PCRE_UNGREEDY         reverses * and *?           N/A
+   PCRE_NO_AUTO_CAPTURE  disables capturing parens   N/A (*)
+</pre>
+(*) Both Perl and PCRE allow non capturing parentheses by means of the
+"?:" modifier within the pattern itself. e.g. (?:ab|cd) does not
+capture, while (ab|cd) does.
+</P>
+<P>
+For a full account on how each modifier works, please check the
+PCRE API reference page.
+</P>
+<P>
+For each modifier, there are two member functions whose name is made
+out of the modifier in lowercase, without the "PCRE_" prefix. For
+instance, PCRE_CASELESS is handled by
+<pre>
+  bool caseless()
+</pre>
+which returns true if the modifier is set, and
+<pre>
+  RE_Options & set_caseless(bool)
+</pre>
+which sets or unsets the modifier. Moreover, PCRE_EXTRA_MATCH_LIMIT can be
+accessed through the <b>set_match_limit()</b> and <b>match_limit()</b> member
+functions. Setting <i>match_limit</i> to a non-zero value will limit the
+execution of pcre to keep it from doing bad things like blowing the stack or
+taking an eternity to return a result. A value of 5000 is good enough to stop
+stack blowup in a 2MB thread stack. Setting <i>match_limit</i> to zero disables
+match limiting. Alternatively, you can call <b>match_limit_recursion()</b>
+which uses PCRE_EXTRA_MATCH_LIMIT_RECURSION to limit how much PCRE
+recurses. <b>match_limit()</b> limits the number of matches PCRE does;
+<b>match_limit_recursion()</b> limits the depth of internal recursion, and
+therefore the amount of stack that is used.
+</P>
+<P>
+Normally, to pass one or more modifiers to a RE class, you declare
+a <i>RE_Options</i> object, set the appropriate options, and pass this
+object to a RE constructor. Example:
+<pre>
+   RE_Options opt;
+   opt.set_caseless(true);
+   if (RE("HELLO", opt).PartialMatch("hello world")) ...
+</pre>
+RE_options has two constructors. The default constructor takes no arguments and
+creates a set of flags that are off by default. The optional parameter
+<i>option_flags</i> is to facilitate transfer of legacy code from C programs.
+This lets you do
+<pre>
+   RE(pattern,
+     RE_Options(PCRE_CASELESS|PCRE_MULTILINE)).PartialMatch(str);
+</pre>
+However, new code is better off doing
+<pre>
+   RE(pattern,
+     RE_Options().set_caseless(true).set_multiline(true))
+       .PartialMatch(str);
+</pre>
+If you are going to pass one of the most used modifiers, there are some
+convenience functions that return a RE_Options class with the
+appropriate modifier already set: <b>CASELESS()</b>, <b>UTF8()</b>,
+<b>MULTILINE()</b>, <b>DOTALL</b>(), and <b>EXTENDED()</b>.
+</P>
+<P>
+If you need to set several options at once, and you don't want to go through
+the pains of declaring a RE_Options object and setting several options, there
+is a parallel method that give you such ability on the fly. You can concatenate
+several <b>set_xxxxx()</b> member functions, since each of them returns a
+reference to its class object. For example, to pass PCRE_CASELESS,
+PCRE_EXTENDED, and PCRE_MULTILINE to a RE with one statement, you may write:
+<pre>
+   RE(" ^ xyz \\s+ .* blah$",
+     RE_Options()
+       .set_caseless(true)
+       .set_extended(true)
+       .set_multiline(true)).PartialMatch(sometext);
+
+</PRE>
+</P>
+<br><a name="SEC8" href="#TOC1">SCANNING TEXT INCREMENTALLY</a><br>
+<P>
+The "Consume" operation may be useful if you want to repeatedly
+match regular expressions at the front of a string and skip over
+them as they match. This requires use of the "StringPiece" type,
+which represents a sub-range of a real string. Like RE, StringPiece
+is defined in the pcrecpp namespace.
+<pre>
+  Example: read lines of the form "var = value" from a string.
+     string contents = ...;                 // Fill string somehow
+     pcrecpp::StringPiece input(contents);  // Wrap in a StringPiece
+
+     string var;
+     int value;
+     pcrecpp::RE re("(\\w+) = (\\d+)\n");
+     while (re.Consume(&input, &var, &value)) {
+       ...;
+     }
+</pre>
+Each successful call to "Consume" will set "var/value", and also
+advance "input" so it points past the matched text.
+</P>
+<P>
+The "FindAndConsume" operation is similar to "Consume" but does not
+anchor your match at the beginning of the string. For example, you
+could extract all words from a string by repeatedly calling
+<pre>
+  pcrecpp::RE("(\\w+)").FindAndConsume(&input, &word)
+</PRE>
+</P>
+<br><a name="SEC9" href="#TOC1">PARSING HEX/OCTAL/C-RADIX NUMBERS</a><br>
+<P>
+By default, if you pass a pointer to a numeric value, the
+corresponding text is interpreted as a base-10 number. You can
+instead wrap the pointer with a call to one of the operators Hex(),
+Octal(), or CRadix() to interpret the text in another base. The
+CRadix operator interprets C-style "0" (base-8) and "0x" (base-16)
+prefixes, but defaults to base-10.
+<pre>
+  Example:
+    int a, b, c, d;
+    pcrecpp::RE re("(.*) (.*) (.*) (.*)");
+    re.FullMatch("100 40 0100 0x40",
+                 pcrecpp::Octal(&a), pcrecpp::Hex(&b),
+                 pcrecpp::CRadix(&c), pcrecpp::CRadix(&d));
+</pre>
+will leave 64 in a, b, c, and d.
+</P>
+<br><a name="SEC10" href="#TOC1">REPLACING PARTS OF STRINGS</a><br>
+<P>
+You can replace the first match of "pattern" in "str" with "rewrite".
+Within "rewrite", backslash-escaped digits (\1 to \9) can be
+used to insert text matching corresponding parenthesized group
+from the pattern. \0 in "rewrite" refers to the entire matching
+text. For example:
+<pre>
+  string s = "yabba dabba doo";
+  pcrecpp::RE("b+").Replace("d", &s);
+</pre>
+will leave "s" containing "yada dabba doo". The result is true if the pattern
+matches and a replacement occurs, false otherwise.
+</P>
+<P>
+<b>GlobalReplace</b> is like <b>Replace</b> except that it replaces all
+occurrences of the pattern in the string with the rewrite. Replacements are
+not subject to re-matching. For example:
+<pre>
+  string s = "yabba dabba doo";
+  pcrecpp::RE("b+").GlobalReplace("d", &s);
+</pre>
+will leave "s" containing "yada dada doo". It returns the number of
+replacements made.
+</P>
+<P>
+<b>Extract</b> is like <b>Replace</b>, except that if the pattern matches,
+"rewrite" is copied into "out" (an additional argument) with substitutions.
+The non-matching portions of "text" are ignored. Returns true iff a match
+occurred and the extraction happened successfully;  if no match occurs, the
+string is left unaffected.
+</P>
+<br><a name="SEC11" href="#TOC1">AUTHOR</a><br>
+<P>
+The C++ wrapper was contributed by Google Inc.
+<br>
+Copyright &copy; 2007 Google Inc.
+<br>
+</P>
+<br><a name="SEC12" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 17 March 2009
+<br>
+Minor typo fixed: 25 July 2011
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcredemo.html b/jni/libpcre/doc/html/pcredemo.html
new file mode 100644
index 0000000..cbe03e1
--- /dev/null
+++ b/jni/libpcre/doc/html/pcredemo.html
@@ -0,0 +1,426 @@
+<html>
+<head>
+<title>pcredemo specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcredemo man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+</ul>
+<PRE>
+/*************************************************
+*           PCRE DEMONSTRATION PROGRAM           *
+*************************************************/
+
+/* This is a demonstration program to illustrate the most straightforward ways
+of calling the PCRE regular expression library from a C program. See the
+pcresample documentation for a short discussion ("man pcresample" if you have
+the PCRE man pages installed).
+
+In Unix-like environments, if PCRE is installed in your standard system
+libraries, you should be able to compile this program using this command:
+
+gcc -Wall pcredemo.c -lpcre -o pcredemo
+
+If PCRE is not installed in a standard place, it is likely to be installed with
+support for the pkg-config mechanism. If you have pkg-config, you can compile
+this program using this command:
+
+gcc -Wall pcredemo.c `pkg-config --cflags --libs libpcre` -o pcredemo
+
+If you do not have pkg-config, you may have to use this:
+
+gcc -Wall pcredemo.c -I/usr/local/include -L/usr/local/lib \
+  -R/usr/local/lib -lpcre -o pcredemo
+
+Replace "/usr/local/include" and "/usr/local/lib" with wherever the include and
+library files for PCRE are installed on your system. Only some operating
+systems (e.g. Solaris) use the -R option.
+
+Building under Windows:
+
+If you want to statically link this program against a non-dll .a file, you must
+define PCRE_STATIC before including pcre.h, otherwise the pcre_malloc() and
+pcre_free() exported functions will be declared __declspec(dllimport), with
+unwanted results. So in this environment, uncomment the following line. */
+
+/* #define PCRE_STATIC */
+
+#include &lt;stdio.h&gt;
+#include &lt;string.h&gt;
+#include &lt;pcre.h&gt;
+
+#define OVECCOUNT 30    /* should be a multiple of 3 */
+
+
+int main(int argc, char **argv)
+{
+pcre *re;
+const char *error;
+char *pattern;
+char *subject;
+unsigned char *name_table;
+unsigned int option_bits;
+int erroffset;
+int find_all;
+int crlf_is_newline;
+int namecount;
+int name_entry_size;
+int ovector[OVECCOUNT];
+int subject_length;
+int rc, i;
+int utf8;
+
+
+/**************************************************************************
+* First, sort out the command line. There is only one possible option at  *
+* the moment, "-g" to request repeated matching to find all occurrences,  *
+* like Perl's /g option. We set the variable find_all to a non-zero value *
+* if the -g option is present. Apart from that, there must be exactly two *
+* arguments.                                                              *
+**************************************************************************/
+
+find_all = 0;
+for (i = 1; i &lt; argc; i++)
+  {
+  if (strcmp(argv[i], "-g") == 0) find_all = 1;
+    else break;
+  }
+
+/* After the options, we require exactly two arguments, which are the pattern,
+and the subject string. */
+
+if (argc - i != 2)
+  {
+  printf("Two arguments required: a regex and a subject string\n");
+  return 1;
+  }
+
+pattern = argv[i];
+subject = argv[i+1];
+subject_length = (int)strlen(subject);
+
+
+/*************************************************************************
+* Now we are going to compile the regular expression pattern, and handle *
+* and errors that are detected.                                          *
+*************************************************************************/
+
+re = pcre_compile(
+  pattern,              /* the pattern */
+  0,                    /* default options */
+  &amp;error,               /* for error message */
+  &amp;erroffset,           /* for error offset */
+  NULL);                /* use default character tables */
+
+/* Compilation failed: print the error message and exit */
+
+if (re == NULL)
+  {
+  printf("PCRE compilation failed at offset %d: %s\n", erroffset, error);
+  return 1;
+  }
+
+
+/*************************************************************************
+* If the compilation succeeded, we call PCRE again, in order to do a     *
+* pattern match against the subject string. This does just ONE match. If *
+* further matching is needed, it will be done below.                     *
+*************************************************************************/
+
+rc = pcre_exec(
+  re,                   /* the compiled pattern */
+  NULL,                 /* no extra data - we didn't study the pattern */
+  subject,              /* the subject string */
+  subject_length,       /* the length of the subject */
+  0,                    /* start at offset 0 in the subject */
+  0,                    /* default options */
+  ovector,              /* output vector for substring information */
+  OVECCOUNT);           /* number of elements in the output vector */
+
+/* Matching failed: handle error cases */
+
+if (rc &lt; 0)
+  {
+  switch(rc)
+    {
+    case PCRE_ERROR_NOMATCH: printf("No match\n"); break;
+    /*
+    Handle other special cases if you like
+    */
+    default: printf("Matching error %d\n", rc); break;
+    }
+  pcre_free(re);     /* Release memory used for the compiled pattern */
+  return 1;
+  }
+
+/* Match succeded */
+
+printf("\nMatch succeeded at offset %d\n", ovector[0]);
+
+
+/*************************************************************************
+* We have found the first match within the subject string. If the output *
+* vector wasn't big enough, say so. Then output any substrings that were *
+* captured.                                                              *
+*************************************************************************/
+
+/* The output vector wasn't big enough */
+
+if (rc == 0)
+  {
+  rc = OVECCOUNT/3;
+  printf("ovector only has room for %d captured substrings\n", rc - 1);
+  }
+
+/* Show substrings stored in the output vector by number. Obviously, in a real
+application you might want to do things other than print them. */
+
+for (i = 0; i &lt; rc; i++)
+  {
+  char *substring_start = subject + ovector[2*i];
+  int substring_length = ovector[2*i+1] - ovector[2*i];
+  printf("%2d: %.*s\n", i, substring_length, substring_start);
+  }
+
+
+/**************************************************************************
+* That concludes the basic part of this demonstration program. We have    *
+* compiled a pattern, and performed a single match. The code that follows *
+* shows first how to access named substrings, and then how to code for    *
+* repeated matches on the same subject.                                   *
+**************************************************************************/
+
+/* See if there are any named substrings, and if so, show them by name. First
+we have to extract the count of named parentheses from the pattern. */
+
+(void)pcre_fullinfo(
+  re,                   /* the compiled pattern */
+  NULL,                 /* no extra data - we didn't study the pattern */
+  PCRE_INFO_NAMECOUNT,  /* number of named substrings */
+  &amp;namecount);          /* where to put the answer */
+
+if (namecount &lt;= 0) printf("No named substrings\n"); else
+  {
+  unsigned char *tabptr;
+  printf("Named substrings\n");
+
+  /* Before we can access the substrings, we must extract the table for
+  translating names to numbers, and the size of each entry in the table. */
+
+  (void)pcre_fullinfo(
+    re,                       /* the compiled pattern */
+    NULL,                     /* no extra data - we didn't study the pattern */
+    PCRE_INFO_NAMETABLE,      /* address of the table */
+    &amp;name_table);             /* where to put the answer */
+
+  (void)pcre_fullinfo(
+    re,                       /* the compiled pattern */
+    NULL,                     /* no extra data - we didn't study the pattern */
+    PCRE_INFO_NAMEENTRYSIZE,  /* size of each entry in the table */
+    &amp;name_entry_size);        /* where to put the answer */
+
+  /* Now we can scan the table and, for each entry, print the number, the name,
+  and the substring itself. */
+
+  tabptr = name_table;
+  for (i = 0; i &lt; namecount; i++)
+    {
+    int n = (tabptr[0] &lt;&lt; 8) | tabptr[1];
+    printf("(%d) %*s: %.*s\n", n, name_entry_size - 3, tabptr + 2,
+      ovector[2*n+1] - ovector[2*n], subject + ovector[2*n]);
+    tabptr += name_entry_size;
+    }
+  }
+
+
+/*************************************************************************
+* If the "-g" option was given on the command line, we want to continue  *
+* to search for additional matches in the subject string, in a similar   *
+* way to the /g option in Perl. This turns out to be trickier than you   *
+* might think because of the possibility of matching an empty string.    *
+* What happens is as follows:                                            *
+*                                                                        *
+* If the previous match was NOT for an empty string, we can just start   *
+* the next match at the end of the previous one.                         *
+*                                                                        *
+* If the previous match WAS for an empty string, we can't do that, as it *
+* would lead to an infinite loop. Instead, a special call of pcre_exec() *
+* is made with the PCRE_NOTEMPTY_ATSTART and PCRE_ANCHORED flags set.    *
+* The first of these tells PCRE that an empty string at the start of the *
+* subject is not a valid match; other possibilities must be tried. The   *
+* second flag restricts PCRE to one match attempt at the initial string  *
+* position. If this match succeeds, an alternative to the empty string   *
+* match has been found, and we can print it and proceed round the loop,  *
+* advancing by the length of whatever was found. If this match does not  *
+* succeed, we still stay in the loop, advancing by just one character.   *
+* In UTF-8 mode, which can be set by (*UTF8) in the pattern, this may be *
+* more than one byte.                                                    *
+*                                                                        *
+* However, there is a complication concerned with newlines. When the     *
+* newline convention is such that CRLF is a valid newline, we want must  *
+* advance by two characters rather than one. The newline convention can  *
+* be set in the regex by (*CR), etc.; if not, we must find the default.  *
+*************************************************************************/
+
+if (!find_all)     /* Check for -g */
+  {
+  pcre_free(re);   /* Release the memory used for the compiled pattern */
+  return 0;        /* Finish unless -g was given */
+  }
+
+/* Before running the loop, check for UTF-8 and whether CRLF is a valid newline
+sequence. First, find the options with which the regex was compiled; extract
+the UTF-8 state, and mask off all but the newline options. */
+
+(void)pcre_fullinfo(re, NULL, PCRE_INFO_OPTIONS, &amp;option_bits);
+utf8 = option_bits &amp; PCRE_UTF8;
+option_bits &amp;= PCRE_NEWLINE_CR|PCRE_NEWLINE_LF|PCRE_NEWLINE_CRLF|
+               PCRE_NEWLINE_ANY|PCRE_NEWLINE_ANYCRLF;
+
+/* If no newline options were set, find the default newline convention from the
+build configuration. */
+
+if (option_bits == 0)
+  {
+  int d;
+  (void)pcre_config(PCRE_CONFIG_NEWLINE, &amp;d);
+  /* Note that these values are always the ASCII ones, even in
+  EBCDIC environments. CR = 13, NL = 10. */
+  option_bits = (d == 13)? PCRE_NEWLINE_CR :
+          (d == 10)? PCRE_NEWLINE_LF :
+          (d == (13&lt;&lt;8 | 10))? PCRE_NEWLINE_CRLF :
+          (d == -2)? PCRE_NEWLINE_ANYCRLF :
+          (d == -1)? PCRE_NEWLINE_ANY : 0;
+  }
+
+/* See if CRLF is a valid newline sequence. */
+
+crlf_is_newline =
+     option_bits == PCRE_NEWLINE_ANY ||
+     option_bits == PCRE_NEWLINE_CRLF ||
+     option_bits == PCRE_NEWLINE_ANYCRLF;
+
+/* Loop for second and subsequent matches */
+
+for (;;)
+  {
+  int options = 0;                 /* Normally no options */
+  int start_offset = ovector[1];   /* Start at end of previous match */
+
+  /* If the previous match was for an empty string, we are finished if we are
+  at the end of the subject. Otherwise, arrange to run another match at the
+  same point to see if a non-empty match can be found. */
+
+  if (ovector[0] == ovector[1])
+    {
+    if (ovector[0] == subject_length) break;
+    options = PCRE_NOTEMPTY_ATSTART | PCRE_ANCHORED;
+    }
+
+  /* Run the next matching operation */
+
+  rc = pcre_exec(
+    re,                   /* the compiled pattern */
+    NULL,                 /* no extra data - we didn't study the pattern */
+    subject,              /* the subject string */
+    subject_length,       /* the length of the subject */
+    start_offset,         /* starting offset in the subject */
+    options,              /* options */
+    ovector,              /* output vector for substring information */
+    OVECCOUNT);           /* number of elements in the output vector */
+
+  /* This time, a result of NOMATCH isn't an error. If the value in "options"
+  is zero, it just means we have found all possible matches, so the loop ends.
+  Otherwise, it means we have failed to find a non-empty-string match at a
+  point where there was a previous empty-string match. In this case, we do what
+  Perl does: advance the matching position by one character, and continue. We
+  do this by setting the "end of previous match" offset, because that is picked
+  up at the top of the loop as the point at which to start again.
+
+  There are two complications: (a) When CRLF is a valid newline sequence, and
+  the current position is just before it, advance by an extra byte. (b)
+  Otherwise we must ensure that we skip an entire UTF-8 character if we are in
+  UTF-8 mode. */
+
+  if (rc == PCRE_ERROR_NOMATCH)
+    {
+    if (options == 0) break;                    /* All matches found */
+    ovector[1] = start_offset + 1;              /* Advance one byte */
+    if (crlf_is_newline &amp;&amp;                      /* If CRLF is newline &amp; */
+        start_offset &lt; subject_length - 1 &amp;&amp;    /* we are at CRLF, */
+        subject[start_offset] == '\r' &amp;&amp;
+        subject[start_offset + 1] == '\n')
+      ovector[1] += 1;                          /* Advance by one more. */
+    else if (utf8)                              /* Otherwise, ensure we */
+      {                                         /* advance a whole UTF-8 */
+      while (ovector[1] &lt; subject_length)       /* character. */
+        {
+        if ((subject[ovector[1]] &amp; 0xc0) != 0x80) break;
+        ovector[1] += 1;
+        }
+      }
+    continue;    /* Go round the loop again */
+    }
+
+  /* Other matching errors are not recoverable. */
+
+  if (rc &lt; 0)
+    {
+    printf("Matching error %d\n", rc);
+    pcre_free(re);    /* Release memory used for the compiled pattern */
+    return 1;
+    }
+
+  /* Match succeded */
+
+  printf("\nMatch succeeded again at offset %d\n", ovector[0]);
+
+  /* The match succeeded, but the output vector wasn't big enough. */
+
+  if (rc == 0)
+    {
+    rc = OVECCOUNT/3;
+    printf("ovector only has room for %d captured substrings\n", rc - 1);
+    }
+
+  /* As before, show substrings stored in the output vector by number, and then
+  also any named substrings. */
+
+  for (i = 0; i &lt; rc; i++)
+    {
+    char *substring_start = subject + ovector[2*i];
+    int substring_length = ovector[2*i+1] - ovector[2*i];
+    printf("%2d: %.*s\n", i, substring_length, substring_start);
+    }
+
+  if (namecount &lt;= 0) printf("No named substrings\n"); else
+    {
+    unsigned char *tabptr = name_table;
+    printf("Named substrings\n");
+    for (i = 0; i &lt; namecount; i++)
+      {
+      int n = (tabptr[0] &lt;&lt; 8) | tabptr[1];
+      printf("(%d) %*s: %.*s\n", n, name_entry_size - 3, tabptr + 2,
+        ovector[2*n+1] - ovector[2*n], subject + ovector[2*n]);
+      tabptr += name_entry_size;
+      }
+    }
+  }      /* End of loop to find second and subsequent matches */
+
+printf("\n");
+pcre_free(re);       /* Release memory used for the compiled pattern */
+return 0;
+}
+
+/* End of pcredemo.c */
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcregrep.html b/jni/libpcre/doc/html/pcregrep.html
new file mode 100644
index 0000000..4d88c67
--- /dev/null
+++ b/jni/libpcre/doc/html/pcregrep.html
@@ -0,0 +1,651 @@
+<html>
+<head>
+<title>pcregrep specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcregrep man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">SYNOPSIS</a>
+<li><a name="TOC2" href="#SEC2">DESCRIPTION</a>
+<li><a name="TOC3" href="#SEC3">SUPPORT FOR COMPRESSED FILES</a>
+<li><a name="TOC4" href="#SEC4">OPTIONS</a>
+<li><a name="TOC5" href="#SEC5">ENVIRONMENT VARIABLES</a>
+<li><a name="TOC6" href="#SEC6">NEWLINES</a>
+<li><a name="TOC7" href="#SEC7">OPTIONS COMPATIBILITY</a>
+<li><a name="TOC8" href="#SEC8">OPTIONS WITH DATA</a>
+<li><a name="TOC9" href="#SEC9">MATCHING ERRORS</a>
+<li><a name="TOC10" href="#SEC10">DIAGNOSTICS</a>
+<li><a name="TOC11" href="#SEC11">SEE ALSO</a>
+<li><a name="TOC12" href="#SEC12">AUTHOR</a>
+<li><a name="TOC13" href="#SEC13">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">SYNOPSIS</a><br>
+<P>
+<b>pcregrep [options] [long options] [pattern] [path1 path2 ...]</b>
+</P>
+<br><a name="SEC2" href="#TOC1">DESCRIPTION</a><br>
+<P>
+<b>pcregrep</b> searches files for character patterns, in the same way as other
+grep commands do, but it uses the PCRE regular expression library to support
+patterns that are compatible with the regular expressions of Perl 5. See
+<a href="pcrepattern.html"><b>pcrepattern</b>(3)</a>
+for a full description of syntax and semantics of the regular expressions
+that PCRE supports.
+</P>
+<P>
+Patterns, whether supplied on the command line or in a separate file, are given
+without delimiters. For example:
+<pre>
+  pcregrep Thursday /etc/motd
+</pre>
+If you attempt to use delimiters (for example, by surrounding a pattern with
+slashes, as is common in Perl scripts), they are interpreted as part of the
+pattern. Quotes can of course be used to delimit patterns on the command line
+because they are interpreted by the shell, and indeed they are required if a
+pattern contains white space or shell metacharacters.
+</P>
+<P>
+The first argument that follows any option settings is treated as the single
+pattern to be matched when neither <b>-e</b> nor <b>-f</b> is present.
+Conversely, when one or both of these options are used to specify patterns, all
+arguments are treated as path names. At least one of <b>-e</b>, <b>-f</b>, or an
+argument pattern must be provided.
+</P>
+<P>
+If no files are specified, <b>pcregrep</b> reads the standard input. The
+standard input can also be referenced by a name consisting of a single hyphen.
+For example:
+<pre>
+  pcregrep some-pattern /file1 - /file3
+</pre>
+By default, each line that matches a pattern is copied to the standard
+output, and if there is more than one file, the file name is output at the
+start of each line, followed by a colon. However, there are options that can
+change how <b>pcregrep</b> behaves. In particular, the <b>-M</b> option makes it
+possible to search for patterns that span line boundaries. What defines a line
+boundary is controlled by the <b>-N</b> (<b>--newline</b>) option.
+</P>
+<P>
+The amount of memory used for buffering files that are being scanned is
+controlled by a parameter that can be set by the <b>--buffer-size</b> option.
+The default value for this parameter is specified when <b>pcregrep</b> is built,
+with the default default being 20K. A block of memory three times this size is
+used (to allow for buffering "before" and "after" lines). An error occurs if a
+line overflows the buffer.
+</P>
+<P>
+Patterns are limited to 8K or BUFSIZ bytes, whichever is the greater. BUFSIZ is
+defined in <b>&#60;stdio.h&#62;</b>. When there is more than one pattern (specified by
+the use of <b>-e</b> and/or <b>-f</b>), each pattern is applied to each line in
+the order in which they are defined, except that all the <b>-e</b> patterns are
+tried before the <b>-f</b> patterns.
+</P>
+<P>
+By default, as soon as one pattern matches (or fails to match when <b>-v</b> is
+used), no further patterns are considered. However, if <b>--colour</b> (or
+<b>--color</b>) is used to colour the matching substrings, or if
+<b>--only-matching</b>, <b>--file-offsets</b>, or <b>--line-offsets</b> is used to
+output only the part of the line that matched (either shown literally, or as an
+offset), scanning resumes immediately following the match, so that further
+matches on the same line can be found. If there are multiple patterns, they are
+all tried on the remainder of the line, but patterns that follow the one that
+matched are not tried on the earlier part of the line.
+</P>
+<P>
+This is the same behaviour as GNU grep, but it does mean that the order in
+which multiple patterns are specified can affect the output when one of the
+above options is used.
+</P>
+<P>
+Patterns that can match an empty string are accepted, but empty string
+matches are never recognized. An example is the pattern "(super)?(man)?", in
+which all components are optional. This pattern finds all occurrences of both
+"super" and "man"; the output differs from matching with "super|man" when only
+the matching substrings are being shown.
+</P>
+<P>
+If the <b>LC_ALL</b> or <b>LC_CTYPE</b> environment variable is set,
+<b>pcregrep</b> uses the value to set a locale when calling the PCRE library.
+The <b>--locale</b> option can be used to override this.
+</P>
+<br><a name="SEC3" href="#TOC1">SUPPORT FOR COMPRESSED FILES</a><br>
+<P>
+It is possible to compile <b>pcregrep</b> so that it uses <b>libz</b> or
+<b>libbz2</b> to read files whose names end in <b>.gz</b> or <b>.bz2</b>,
+respectively. You can find out whether your binary has support for one or both
+of these file types by running it with the <b>--help</b> option. If the
+appropriate support is not present, files are treated as plain text. The
+standard input is always so treated.
+</P>
+<br><a name="SEC4" href="#TOC1">OPTIONS</a><br>
+<P>
+The order in which some of the options appear can affect the output. For
+example, both the <b>-h</b> and <b>-l</b> options affect the printing of file
+names. Whichever comes later in the command line will be the one that takes
+effect. Numerical values for options may be followed by K or M, to signify
+multiplication by 1024 or 1024*1024 respectively.
+</P>
+<P>
+<b>--</b>
+This terminates the list of options. It is useful if the next item on the
+command line starts with a hyphen but is not an option. This allows for the
+processing of patterns and filenames that start with hyphens.
+</P>
+<P>
+<b>-A</b> <i>number</i>, <b>--after-context=</b><i>number</i>
+Output <i>number</i> lines of context after each matching line. If filenames
+and/or line numbers are being output, a hyphen separator is used instead of a
+colon for the context lines. A line containing "--" is output between each
+group of lines, unless they are in fact contiguous in the input file. The value
+of <i>number</i> is expected to be relatively small. However, <b>pcregrep</b>
+guarantees to have up to 8K of following text available for context output.
+</P>
+<P>
+<b>-B</b> <i>number</i>, <b>--before-context=</b><i>number</i>
+Output <i>number</i> lines of context before each matching line. If filenames
+and/or line numbers are being output, a hyphen separator is used instead of a
+colon for the context lines. A line containing "--" is output between each
+group of lines, unless they are in fact contiguous in the input file. The value
+of <i>number</i> is expected to be relatively small. However, <b>pcregrep</b>
+guarantees to have up to 8K of preceding text available for context output.
+</P>
+<P>
+<b>--buffer-size=</b><i>number</i>
+Set the parameter that controls how much memory is used for buffering files
+that are being scanned.
+</P>
+<P>
+<b>-C</b> <i>number</i>, <b>--context=</b><i>number</i>
+Output <i>number</i> lines of context both before and after each matching line.
+This is equivalent to setting both <b>-A</b> and <b>-B</b> to the same value.
+</P>
+<P>
+<b>-c</b>, <b>--count</b>
+Do not output individual lines from the files that are being scanned; instead
+output the number of lines that would otherwise have been shown. If no lines
+are selected, the number zero is output. If several files are are being
+scanned, a count is output for each of them. However, if the
+<b>--files-with-matches</b> option is also used, only those files whose counts
+are greater than zero are listed. When <b>-c</b> is used, the <b>-A</b>,
+<b>-B</b>, and <b>-C</b> options are ignored.
+</P>
+<P>
+<b>--colour</b>, <b>--color</b>
+If this option is given without any data, it is equivalent to "--colour=auto".
+If data is required, it must be given in the same shell item, separated by an
+equals sign.
+</P>
+<P>
+<b>--colour=</b><i>value</i>, <b>--color=</b><i>value</i>
+This option specifies under what circumstances the parts of a line that matched
+a pattern should be coloured in the output. By default, the output is not
+coloured. The value (which is optional, see above) may be "never", "always", or
+"auto". In the latter case, colouring happens only if the standard output is
+connected to a terminal. More resources are used when colouring is enabled,
+because <b>pcregrep</b> has to search for all possible matches in a line, not
+just one, in order to colour them all.
+<br>
+<br>
+The colour that is used can be specified by setting the environment variable
+PCREGREP_COLOUR or PCREGREP_COLOR. The value of this variable should be a
+string of two numbers, separated by a semicolon. They are copied directly into
+the control string for setting colour on a terminal, so it is your
+responsibility to ensure that they make sense. If neither of the environment
+variables is set, the default is "1;31", which gives red.
+</P>
+<P>
+<b>-D</b> <i>action</i>, <b>--devices=</b><i>action</i>
+If an input path is not a regular file or a directory, "action" specifies how
+it is to be processed. Valid values are "read" (the default) or "skip"
+(silently skip the path).
+</P>
+<P>
+<b>-d</b> <i>action</i>, <b>--directories=</b><i>action</i>
+If an input path is a directory, "action" specifies how it is to be processed.
+Valid values are "read" (the default), "recurse" (equivalent to the <b>-r</b>
+option), or "skip" (silently skip the path). In the default case, directories
+are read as if they were ordinary files. In some operating systems the effect
+of reading a directory like this is an immediate end-of-file.
+</P>
+<P>
+<b>-e</b> <i>pattern</i>, <b>--regex=</b><i>pattern</i>, <b>--regexp=</b><i>pattern</i>
+Specify a pattern to be matched. This option can be used multiple times in
+order to specify several patterns. It can also be used as a way of specifying a
+single pattern that starts with a hyphen. When <b>-e</b> is used, no argument
+pattern is taken from the command line; all arguments are treated as file
+names. There is an overall maximum of 100 patterns. They are applied to each
+line in the order in which they are defined until one matches (or fails to
+match if <b>-v</b> is used). If <b>-f</b> is used with <b>-e</b>, the command line
+patterns are matched first, followed by the patterns from the file, independent
+of the order in which these options are specified. Note that multiple use of
+<b>-e</b> is not the same as a single pattern with alternatives. For example,
+X|Y finds the first character in a line that is X or Y, whereas if the two
+patterns are given separately, <b>pcregrep</b> finds X if it is present, even if
+it follows Y in the line. It finds Y only if there is no X in the line. This
+really matters only if you are using <b>-o</b> to show the part(s) of the line
+that matched.
+</P>
+<P>
+<b>--exclude</b>=<i>pattern</i>
+When <b>pcregrep</b> is searching the files in a directory as a consequence of
+the <b>-r</b> (recursive search) option, any regular files whose names match the
+pattern are excluded. Subdirectories are not excluded by this option; they are
+searched recursively, subject to the <b>--exclude-dir</b> and
+<b>--include_dir</b> options. The pattern is a PCRE regular expression, and is
+matched against the final component of the file name (not the entire path). If
+a file name matches both <b>--include</b> and <b>--exclude</b>, it is excluded.
+There is no short form for this option.
+</P>
+<P>
+<b>--exclude-dir</b>=<i>pattern</i>
+When <b>pcregrep</b> is searching the contents of a directory as a consequence
+of the <b>-r</b> (recursive search) option, any subdirectories whose names match
+the pattern are excluded. (Note that the \fP--exclude\fP option does not affect
+subdirectories.) The pattern is a PCRE regular expression, and is matched
+against the final component of the name (not the entire path). If a
+subdirectory name matches both <b>--include-dir</b> and <b>--exclude-dir</b>, it
+is excluded. There is no short form for this option.
+</P>
+<P>
+<b>-F</b>, <b>--fixed-strings</b>
+Interpret each pattern as a list of fixed strings, separated by newlines,
+instead of as a regular expression. The <b>-w</b> (match as a word) and <b>-x</b>
+(match whole line) options can be used with <b>-F</b>. They apply to each of the
+fixed strings. A line is selected if any of the fixed strings are found in it
+(subject to <b>-w</b> or <b>-x</b>, if present).
+</P>
+<P>
+<b>-f</b> <i>filename</i>, <b>--file=</b><i>filename</i>
+Read a number of patterns from the file, one per line, and match them against
+each line of input. A data line is output if any of the patterns match it. The
+filename can be given as "-" to refer to the standard input. When <b>-f</b> is
+used, patterns specified on the command line using <b>-e</b> may also be
+present; they are tested before the file's patterns. However, no other pattern
+is taken from the command line; all arguments are treated as file names. There
+is an overall maximum of 100 patterns. Trailing white space is removed from
+each line, and blank lines are ignored. An empty file contains no patterns and
+therefore matches nothing. See also the comments about multiple patterns versus
+a single pattern with alternatives in the description of <b>-e</b> above.
+</P>
+<P>
+<b>--file-offsets</b>
+Instead of showing lines or parts of lines that match, show each match as an
+offset from the start of the file and a length, separated by a comma. In this
+mode, no context is shown. That is, the <b>-A</b>, <b>-B</b>, and <b>-C</b>
+options are ignored. If there is more than one match in a line, each of them is
+shown separately. This option is mutually exclusive with <b>--line-offsets</b>
+and <b>--only-matching</b>.
+</P>
+<P>
+<b>-H</b>, <b>--with-filename</b>
+Force the inclusion of the filename at the start of output lines when searching
+a single file. By default, the filename is not shown in this case. For matching
+lines, the filename is followed by a colon; for context lines, a hyphen
+separator is used. If a line number is also being output, it follows the file
+name.
+</P>
+<P>
+<b>-h</b>, <b>--no-filename</b>
+Suppress the output filenames when searching multiple files. By default,
+filenames are shown when multiple files are searched. For matching lines, the
+filename is followed by a colon; for context lines, a hyphen separator is used.
+If a line number is also being output, it follows the file name.
+</P>
+<P>
+<b>--help</b>
+Output a help message, giving brief details of the command options and file
+type support, and then exit.
+</P>
+<P>
+<b>-i</b>, <b>--ignore-case</b>
+Ignore upper/lower case distinctions during comparisons.
+</P>
+<P>
+<b>--include</b>=<i>pattern</i>
+When <b>pcregrep</b> is searching the files in a directory as a consequence of
+the <b>-r</b> (recursive search) option, only those regular files whose names
+match the pattern are included. Subdirectories are always included and searched
+recursively, subject to the \fP--include-dir\fP and <b>--exclude-dir</b>
+options. The pattern is a PCRE regular expression, and is matched against the
+final component of the file name (not the entire path). If a file name matches
+both <b>--include</b> and <b>--exclude</b>, it is excluded. There is no short
+form for this option.
+</P>
+<P>
+<b>--include-dir</b>=<i>pattern</i>
+When <b>pcregrep</b> is searching the contents of a directory as a consequence
+of the <b>-r</b> (recursive search) option, only those subdirectories whose
+names match the pattern are included. (Note that the <b>--include</b> option
+does not affect subdirectories.) The pattern is a PCRE regular expression, and
+is matched against the final component of the name (not the entire path). If a
+subdirectory name matches both <b>--include-dir</b> and <b>--exclude-dir</b>, it
+is excluded. There is no short form for this option.
+</P>
+<P>
+<b>-L</b>, <b>--files-without-match</b>
+Instead of outputting lines from the files, just output the names of the files
+that do not contain any lines that would have been output. Each file name is
+output once, on a separate line.
+</P>
+<P>
+<b>-l</b>, <b>--files-with-matches</b>
+Instead of outputting lines from the files, just output the names of the files
+containing lines that would have been output. Each file name is output
+once, on a separate line. Searching normally stops as soon as a matching line
+is found in a file. However, if the <b>-c</b> (count) option is also used,
+matching continues in order to obtain the correct count, and those files that
+have at least one match are listed along with their counts. Using this option
+with <b>-c</b> is a way of suppressing the listing of files with no matches.
+</P>
+<P>
+<b>--label</b>=<i>name</i>
+This option supplies a name to be used for the standard input when file names
+are being output. If not supplied, "(standard input)" is used. There is no
+short form for this option.
+</P>
+<P>
+<b>--line-buffered</b>
+When this option is given, input is read and processed line by line, and the
+output is flushed after each write. By default, input is read in large chunks,
+unless <b>pcregrep</b> can determine that it is reading from a terminal (which
+is currently possible only in Unix environments). Output to terminal is
+normally automatically flushed by the operating system. This option can be
+useful when the input or output is attached to a pipe and you do not want
+<b>pcregrep</b> to buffer up large amounts of data. However, its use will affect
+performance, and the <b>-M</b> (multiline) option ceases to work.
+</P>
+<P>
+<b>--line-offsets</b>
+Instead of showing lines or parts of lines that match, show each match as a
+line number, the offset from the start of the line, and a length. The line
+number is terminated by a colon (as usual; see the <b>-n</b> option), and the
+offset and length are separated by a comma. In this mode, no context is shown.
+That is, the <b>-A</b>, <b>-B</b>, and <b>-C</b> options are ignored. If there is
+more than one match in a line, each of them is shown separately. This option is
+mutually exclusive with <b>--file-offsets</b> and <b>--only-matching</b>.
+</P>
+<P>
+<b>--locale</b>=<i>locale-name</i>
+This option specifies a locale to be used for pattern matching. It overrides
+the value in the <b>LC_ALL</b> or <b>LC_CTYPE</b> environment variables. If no
+locale is specified, the PCRE library's default (usually the "C" locale) is
+used. There is no short form for this option.
+</P>
+<P>
+<b>--match-limit</b>=<i>number</i>
+Processing some regular expression patterns can require a very large amount of
+memory, leading in some cases to a program crash if not enough is available.
+Other patterns may take a very long time to search for all possible matching
+strings. The <b>pcre_exec()</b> function that is called by <b>pcregrep</b> to do
+the matching has two parameters that can limit the resources that it uses.
+<br>
+<br>
+The <b>--match-limit</b> option provides a means of limiting resource usage
+when processing patterns that are not going to match, but which have a very
+large number of possibilities in their search trees. The classic example is a
+pattern that uses nested unlimited repeats. Internally, PCRE uses a function
+called <b>match()</b> which it calls repeatedly (sometimes recursively). The
+limit set by <b>--match-limit</b> is imposed on the number of times this
+function is called during a match, which has the effect of limiting the amount
+of backtracking that can take place.
+<br>
+<br>
+The <b>--recursion-limit</b> option is similar to <b>--match-limit</b>, but
+instead of limiting the total number of times that <b>match()</b> is called, it
+limits the depth of recursive calls, which in turn limits the amount of memory
+that can be used. The recursion depth is a smaller number than the total number
+of calls, because not all calls to <b>match()</b> are recursive. This limit is
+of use only if it is set smaller than <b>--match-limit</b>.
+<br>
+<br>
+There are no short forms for these options. The default settings are specified
+when the PCRE library is compiled, with the default default being 10 million.
+</P>
+<P>
+<b>-M</b>, <b>--multiline</b>
+Allow patterns to match more than one line. When this option is given, patterns
+may usefully contain literal newline characters and internal occurrences of ^
+and $ characters. The output for a successful match may consist of more than
+one line, the last of which is the one in which the match ended. If the matched
+string ends with a newline sequence the output ends at the end of that line.
+<br>
+<br>
+When this option is set, the PCRE library is called in "multiline" mode.
+There is a limit to the number of lines that can be matched, imposed by the way
+that <b>pcregrep</b> buffers the input file as it scans it. However,
+<b>pcregrep</b> ensures that at least 8K characters or the rest of the document
+(whichever is the shorter) are available for forward matching, and similarly
+the previous 8K characters (or all the previous characters, if fewer than 8K)
+are guaranteed to be available for lookbehind assertions. This option does not
+work when input is read line by line (see \fP--line-buffered\fP.)
+</P>
+<P>
+<b>-N</b> <i>newline-type</i>, <b>--newline</b>=<i>newline-type</i>
+The PCRE library supports five different conventions for indicating
+the ends of lines. They are the single-character sequences CR (carriage return)
+and LF (linefeed), the two-character sequence CRLF, an "anycrlf" convention,
+which recognizes any of the preceding three types, and an "any" convention, in
+which any Unicode line ending sequence is assumed to end a line. The Unicode
+sequences are the three just mentioned, plus VT (vertical tab, U+000B), FF
+(form feed, U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and
+PS (paragraph separator, U+2029).
+<br>
+<br>
+When the PCRE library is built, a default line-ending sequence is specified.
+This is normally the standard sequence for the operating system. Unless
+otherwise specified by this option, <b>pcregrep</b> uses the library's default.
+The possible values for this option are CR, LF, CRLF, ANYCRLF, or ANY. This
+makes it possible to use <b>pcregrep</b> on files that have come from other
+environments without having to modify their line endings. If the data that is
+being scanned does not agree with the convention set by this option,
+<b>pcregrep</b> may behave in strange ways.
+</P>
+<P>
+<b>-n</b>, <b>--line-number</b>
+Precede each output line by its line number in the file, followed by a colon
+for matching lines or a hyphen for context lines. If the filename is also being
+output, it precedes the line number. This option is forced if
+<b>--line-offsets</b> is used.
+</P>
+<P>
+<b>--no-jit</b>
+If the PCRE library is built with support for just-in-time compiling (which
+speeds up matching), <b>pcregrep</b> automatically makes use of this, unless it
+was explicitly disabled at build time. This option can be used to disable the
+use of JIT at run time. It is provided for testing and working round problems.
+It should never be needed in normal use.
+</P>
+<P>
+<b>-o</b>, <b>--only-matching</b>
+Show only the part of the line that matched a pattern instead of the whole
+line. In this mode, no context is shown. That is, the <b>-A</b>, <b>-B</b>, and
+<b>-C</b> options are ignored. If there is more than one match in a line, each
+of them is shown separately. If <b>-o</b> is combined with <b>-v</b> (invert the
+sense of the match to find non-matching lines), no output is generated, but the
+return code is set appropriately. If the matched portion of the line is empty,
+nothing is output unless the file name or line number are being printed, in
+which case they are shown on an otherwise empty line. This option is mutually
+exclusive with <b>--file-offsets</b> and <b>--line-offsets</b>.
+</P>
+<P>
+<b>-o</b><i>number</i>, <b>--only-matching</b>=<i>number</i>
+Show only the part of the line that matched the capturing parentheses of the
+given number. Up to 32 capturing parentheses are supported. Because these
+options can be given without an argument (see above), if an argument is
+present, it must be given in the same shell item, for example, -o3 or
+--only-matching=2. The comments given for the non-argument case above also
+apply to this case. If the specified capturing parentheses do not exist in the
+pattern, or were not set in the match, nothing is output unless the file name
+or line number are being printed.
+</P>
+<P>
+<b>-q</b>, <b>--quiet</b>
+Work quietly, that is, display nothing except error messages. The exit
+status indicates whether or not any matches were found.
+</P>
+<P>
+<b>-r</b>, <b>--recursive</b>
+If any given path is a directory, recursively scan the files it contains,
+taking note of any <b>--include</b> and <b>--exclude</b> settings. By default, a
+directory is read as a normal file; in some operating systems this gives an
+immediate end-of-file. This option is a shorthand for setting the <b>-d</b>
+option to "recurse".
+</P>
+<P>
+<b>--recursion-limit</b>=<i>number</i>
+See <b>--match-limit</b> above.
+</P>
+<P>
+<b>-s</b>, <b>--no-messages</b>
+Suppress error messages about non-existent or unreadable files. Such files are
+quietly skipped. However, the return code is still 2, even if matches were
+found in other files.
+</P>
+<P>
+<b>-u</b>, <b>--utf-8</b>
+Operate in UTF-8 mode. This option is available only if PCRE has been compiled
+with UTF-8 support. Both patterns and subject lines must be valid strings of
+UTF-8 characters.
+</P>
+<P>
+<b>-V</b>, <b>--version</b>
+Write the version numbers of <b>pcregrep</b> and the PCRE library that is being
+used to the standard error stream.
+</P>
+<P>
+<b>-v</b>, <b>--invert-match</b>
+Invert the sense of the match, so that lines which do <i>not</i> match any of
+the patterns are the ones that are found.
+</P>
+<P>
+<b>-w</b>, <b>--word-regex</b>, <b>--word-regexp</b>
+Force the patterns to match only whole words. This is equivalent to having \b
+at the start and end of the pattern.
+</P>
+<P>
+<b>-x</b>, <b>--line-regex</b>, <b>--line-regexp</b>
+Force the patterns to be anchored (each must start matching at the beginning of
+a line) and in addition, require them to match entire lines. This is
+equivalent to having ^ and $ characters at the start and end of each
+alternative branch in every pattern.
+</P>
+<br><a name="SEC5" href="#TOC1">ENVIRONMENT VARIABLES</a><br>
+<P>
+The environment variables <b>LC_ALL</b> and <b>LC_CTYPE</b> are examined, in that
+order, for a locale. The first one that is set is used. This can be overridden
+by the <b>--locale</b> option. If no locale is set, the PCRE library's default
+(usually the "C" locale) is used.
+</P>
+<br><a name="SEC6" href="#TOC1">NEWLINES</a><br>
+<P>
+The <b>-N</b> (<b>--newline</b>) option allows <b>pcregrep</b> to scan files with
+different newline conventions from the default. However, the setting of this
+option does not affect the way in which <b>pcregrep</b> writes information to
+the standard error and output streams. It uses the string "\n" in C
+<b>printf()</b> calls to indicate newlines, relying on the C I/O library to
+convert this to an appropriate sequence if the output is sent to a file.
+</P>
+<br><a name="SEC7" href="#TOC1">OPTIONS COMPATIBILITY</a><br>
+<P>
+Many of the short and long forms of <b>pcregrep</b>'s options are the same
+as in the GNU <b>grep</b> program (version 2.5.4). Any long option of the form
+<b>--xxx-regexp</b> (GNU terminology) is also available as <b>--xxx-regex</b>
+(PCRE terminology). However, the <b>--file-offsets</b>, <b>--include-dir</b>,
+<b>--line-offsets</b>, <b>--locale</b>, <b>--match-limit</b>, <b>-M</b>,
+<b>--multiline</b>, <b>-N</b>, <b>--newline</b>, <b>--recursion-limit</b>,
+<b>-u</b>, and <b>--utf-8</b> options are specific to <b>pcregrep</b>, as is the
+use of the <b>--only-matching</b> option with a capturing parentheses number.
+</P>
+<P>
+Although most of the common options work the same way, a few are different in
+<b>pcregrep</b>. For example, the <b>--include</b> option's argument is a glob
+for GNU <b>grep</b>, but a regular expression for <b>pcregrep</b>. If both the
+<b>-c</b> and <b>-l</b> options are given, GNU grep lists only file names,
+without counts, but <b>pcregrep</b> gives the counts.
+</P>
+<br><a name="SEC8" href="#TOC1">OPTIONS WITH DATA</a><br>
+<P>
+There are four different ways in which an option with data can be specified.
+If a short form option is used, the data may follow immediately, or (with one
+exception) in the next command line item. For example:
+<pre>
+  -f/some/file
+  -f /some/file
+</pre>
+The exception is the <b>-o</b> option, which may appear with or without data.
+Because of this, if data is present, it must follow immediately in the same
+item, for example -o3.
+</P>
+<P>
+If a long form option is used, the data may appear in the same command line
+item, separated by an equals character, or (with two exceptions) it may appear
+in the next command line item. For example:
+<pre>
+  --file=/some/file
+  --file /some/file
+</pre>
+Note, however, that if you want to supply a file name beginning with ~ as data
+in a shell command, and have the shell expand ~ to a home directory, you must
+separate the file name from the option, because the shell does not treat ~
+specially unless it is at the start of an item.
+</P>
+<P>
+The exceptions to the above are the <b>--colour</b> (or <b>--color</b>) and
+<b>--only-matching</b> options, for which the data is optional. If one of these
+options does have data, it must be given in the first form, using an equals
+character. Otherwise <b>pcregrep</b> will assume that it has no data.
+</P>
+<br><a name="SEC9" href="#TOC1">MATCHING ERRORS</a><br>
+<P>
+It is possible to supply a regular expression that takes a very long time to
+fail to match certain lines. Such patterns normally involve nested indefinite
+repeats, for example: (a+)*\d when matched against a line of a's with no final
+digit. The PCRE matching function has a resource limit that causes it to abort
+in these circumstances. If this happens, <b>pcregrep</b> outputs an error
+message and the line that caused the problem to the standard error stream. If
+there are more than 20 such errors, <b>pcregrep</b> gives up.
+</P>
+<P>
+The <b>--match-limit</b> option of <b>pcregrep</b> can be used to set the overall
+resource limit; there is a second option called <b>--recursion-limit</b> that
+sets a limit on the amount of memory (usually stack) that is used (see the
+discussion of these options above).
+</P>
+<br><a name="SEC10" href="#TOC1">DIAGNOSTICS</a><br>
+<P>
+Exit status is 0 if any matches were found, 1 if no matches were found, and 2
+for syntax errors, overlong lines, non-existent or inaccessible files (even if
+matches were found in other files) or too many matching errors. Using the
+<b>-s</b> option to suppress error messages about inaccessible files does not
+affect the return code.
+</P>
+<br><a name="SEC11" href="#TOC1">SEE ALSO</a><br>
+<P>
+<b>pcrepattern</b>(3), <b>pcretest</b>(1).
+</P>
+<br><a name="SEC12" href="#TOC1">AUTHOR</a><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><a name="SEC13" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 06 September 2011
+<br>
+Copyright &copy; 1997-2011 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcrejit.html b/jni/libpcre/doc/html/pcrejit.html
new file mode 100644
index 0000000..7411ecf
--- /dev/null
+++ b/jni/libpcre/doc/html/pcrejit.html
@@ -0,0 +1,383 @@
+<html>
+<head>
+<title>pcrejit specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcrejit man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">PCRE JUST-IN-TIME COMPILER SUPPORT</a>
+<li><a name="TOC2" href="#SEC2">AVAILABILITY OF JIT SUPPORT</a>
+<li><a name="TOC3" href="#SEC3">SIMPLE USE OF JIT</a>
+<li><a name="TOC4" href="#SEC4">UNSUPPORTED OPTIONS AND PATTERN ITEMS</a>
+<li><a name="TOC5" href="#SEC5">RETURN VALUES FROM JIT EXECUTION</a>
+<li><a name="TOC6" href="#SEC6">SAVING AND RESTORING COMPILED PATTERNS</a>
+<li><a name="TOC7" href="#SEC7">CONTROLLING THE JIT STACK</a>
+<li><a name="TOC8" href="#SEC8">JIT STACK FAQ</a>
+<li><a name="TOC9" href="#SEC9">EXAMPLE CODE</a>
+<li><a name="TOC10" href="#SEC10">SEE ALSO</a>
+<li><a name="TOC11" href="#SEC11">AUTHOR</a>
+<li><a name="TOC12" href="#SEC12">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">PCRE JUST-IN-TIME COMPILER SUPPORT</a><br>
+<P>
+Just-in-time compiling is a heavyweight optimization that can greatly speed up
+pattern matching. However, it comes at the cost of extra processing before the
+match is performed. Therefore, it is of most benefit when the same pattern is
+going to be matched many times. This does not necessarily mean many calls of
+\fPpcre_exec()\fP; if the pattern is not anchored, matching attempts may take
+place many times at various positions in the subject, even for a single call to
+<b>pcre_exec()</b>. If the subject string is very long, it may still pay to use
+JIT for one-off matches.
+</P>
+<P>
+JIT support applies only to the traditional matching function,
+<b>pcre_exec()</b>. It does not apply when <b>pcre_dfa_exec()</b> is being used.
+The code for this support was written by Zoltan Herczeg.
+</P>
+<br><a name="SEC2" href="#TOC1">AVAILABILITY OF JIT SUPPORT</a><br>
+<P>
+JIT support is an optional feature of PCRE. The "configure" option --enable-jit
+(or equivalent CMake option) must be set when PCRE is built if you want to use
+JIT. The support is limited to the following hardware platforms:
+<pre>
+  ARM v5, v7, and Thumb2
+  Intel x86 32-bit and 64-bit
+  MIPS 32-bit
+  Power PC 32-bit and 64-bit (experimental)
+</pre>
+The Power PC support is designated as experimental because it has not been
+fully tested. If --enable-jit is set on an unsupported platform, compilation
+fails.
+</P>
+<P>
+A program that is linked with PCRE 8.20 or later can tell if JIT support is
+available by calling <b>pcre_config()</b> with the PCRE_CONFIG_JIT option. The
+result is 1 when JIT is available, and 0 otherwise. However, a simple program
+does not need to check this in order to use JIT. The API is implemented in a
+way that falls back to the ordinary PCRE code if JIT is not available.
+</P>
+<P>
+If your program may sometimes be linked with versions of PCRE that are older
+than 8.20, but you want to use JIT when it is available, you can test
+the values of PCRE_MAJOR and PCRE_MINOR, or the existence of a JIT macro such
+as PCRE_CONFIG_JIT, for compile-time control of your code.
+</P>
+<br><a name="SEC3" href="#TOC1">SIMPLE USE OF JIT</a><br>
+<P>
+You have to do two things to make use of the JIT support in the simplest way:
+<pre>
+  (1) Call <b>pcre_study()</b> with the PCRE_STUDY_JIT_COMPILE option for
+      each compiled pattern, and pass the resulting <b>pcre_extra</b> block to
+      <b>pcre_exec()</b>.
+
+  (2) Use <b>pcre_free_study()</b> to free the <b>pcre_extra</b> block when it is
+      no longer needed instead of just freeing it yourself. This
+      ensures that any JIT data is also freed.
+</pre>
+For a program that may be linked with pre-8.20 versions of PCRE, you can insert
+<pre>
+  #ifndef PCRE_STUDY_JIT_COMPILE
+  #define PCRE_STUDY_JIT_COMPILE 0
+  #endif
+</pre>
+so that no option is passed to <b>pcre_study()</b>, and then use something like
+this to free the study data:
+<pre>
+  #ifdef PCRE_CONFIG_JIT
+      pcre_free_study(study_ptr);
+  #else
+      pcre_free(study_ptr);
+  #endif
+</pre>
+In some circumstances you may need to call additional functions. These are
+described in the section entitled
+<a href="#stackcontrol">"Controlling the JIT stack"</a>
+below.
+</P>
+<P>
+If JIT support is not available, PCRE_STUDY_JIT_COMPILE is ignored, and no JIT
+data is set up. Otherwise, the compiled pattern is passed to the JIT compiler,
+which turns it into machine code that executes much faster than the normal
+interpretive code. When <b>pcre_exec()</b> is passed a <b>pcre_extra</b> block
+containing a pointer to JIT code, it obeys that instead of the normal code. The
+result is identical, but the code runs much faster.
+</P>
+<P>
+There are some <b>pcre_exec()</b> options that are not supported for JIT
+execution. There are also some pattern items that JIT cannot handle. Details
+are given below. In both cases, execution automatically falls back to the
+interpretive code.
+</P>
+<P>
+If the JIT compiler finds an unsupported item, no JIT data is generated. You
+can find out if JIT execution is available after studying a pattern by calling
+<b>pcre_fullinfo()</b> with the PCRE_INFO_JIT option. A result of 1 means that
+JIT compilation was successful. A result of 0 means that JIT support is not
+available, or the pattern was not studied with PCRE_STUDY_JIT_COMPILE, or the
+JIT compiler was not able to handle the pattern.
+</P>
+<P>
+Once a pattern has been studied, with or without JIT, it can be used as many
+times as you like for matching different subject strings.
+</P>
+<br><a name="SEC4" href="#TOC1">UNSUPPORTED OPTIONS AND PATTERN ITEMS</a><br>
+<P>
+The only <b>pcre_exec()</b> options that are supported for JIT execution are
+PCRE_NO_UTF8_CHECK, PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, and
+PCRE_NOTEMPTY_ATSTART. Note in particular that partial matching is not
+supported.
+</P>
+<P>
+The unsupported pattern items are:
+<pre>
+  \C             match a single byte; not supported in UTF-8 mode
+  (?Cn)          callouts
+  (*COMMIT)      )
+  (*MARK)        )
+  (*PRUNE)       ) the backtracking control verbs
+  (*SKIP)        )
+  (*THEN)        )
+</pre>
+Support for some of these may be added in future.
+</P>
+<br><a name="SEC5" href="#TOC1">RETURN VALUES FROM JIT EXECUTION</a><br>
+<P>
+When a pattern is matched using JIT execution, the return values are the same
+as those given by the interpretive <b>pcre_exec()</b> code, with the addition of
+one new error code: PCRE_ERROR_JIT_STACKLIMIT. This means that the memory used
+for the JIT stack was insufficient. See
+<a href="#stackcontrol">"Controlling the JIT stack"</a>
+below for a discussion of JIT stack usage. For compatibility with the
+interpretive <b>pcre_exec()</b> code, no more than two-thirds of the
+<i>ovector</i> argument is used for passing back captured substrings.
+</P>
+<P>
+The error code PCRE_ERROR_MATCHLIMIT is returned by the JIT code if searching a
+very large pattern tree goes on for too long, as it is in the same circumstance
+when JIT is not used, but the details of exactly what is counted are not the
+same. The PCRE_ERROR_RECURSIONLIMIT error code is never returned by JIT
+execution.
+</P>
+<br><a name="SEC6" href="#TOC1">SAVING AND RESTORING COMPILED PATTERNS</a><br>
+<P>
+The code that is generated by the JIT compiler is architecture-specific, and is
+also position dependent. For those reasons it cannot be saved (in a file or
+database) and restored later like the bytecode and other data of a compiled
+pattern. Saving and restoring compiled patterns is not something many people
+do. More detail about this facility is given in the
+<a href="pcreprecompile.html"><b>pcreprecompile</b></a>
+documentation. It should be possible to run <b>pcre_study()</b> on a saved and
+restored pattern, and thereby recreate the JIT data, but because JIT
+compilation uses significant resources, it is probably not worth doing this;
+you might as well recompile the original pattern.
+<a name="stackcontrol"></a></P>
+<br><a name="SEC7" href="#TOC1">CONTROLLING THE JIT STACK</a><br>
+<P>
+When the compiled JIT code runs, it needs a block of memory to use as a stack.
+By default, it uses 32K on the machine stack. However, some large or
+complicated patterns need more than this. The error PCRE_ERROR_JIT_STACKLIMIT
+is given when there is not enough stack. Three functions are provided for
+managing blocks of memory for use as JIT stacks. There is further discussion
+about the use of JIT stacks in the section entitled
+<a href="#stackcontrol">"JIT stack FAQ"</a>
+below.
+</P>
+<P>
+The <b>pcre_jit_stack_alloc()</b> function creates a JIT stack. Its arguments
+are a starting size and a maximum size, and it returns a pointer to an opaque
+structure of type <b>pcre_jit_stack</b>, or NULL if there is an error. The
+<b>pcre_jit_stack_free()</b> function can be used to free a stack that is no
+longer needed. (For the technically minded: the address space is allocated by
+mmap or VirtualAlloc.)
+</P>
+<P>
+JIT uses far less memory for recursion than the interpretive code,
+and a maximum stack size of 512K to 1M should be more than enough for any
+pattern.
+</P>
+<P>
+The <b>pcre_assign_jit_stack()</b> function specifies which stack JIT code
+should use. Its arguments are as follows:
+<pre>
+  pcre_extra         *extra
+  pcre_jit_callback  callback
+  void               *data
+</pre>
+The <i>extra</i> argument must be the result of studying a pattern with
+PCRE_STUDY_JIT_COMPILE. There are three cases for the values of the other two
+options:
+<pre>
+  (1) If <i>callback</i> is NULL and <i>data</i> is NULL, an internal 32K block
+      on the machine stack is used.
+
+  (2) If <i>callback</i> is NULL and <i>data</i> is not NULL, <i>data</i> must be
+      a valid JIT stack, the result of calling <b>pcre_jit_stack_alloc()</b>.
+
+  (3) If <i>callback</i> not NULL, it must point to a function that is called
+      with <i>data</i> as an argument at the start of matching, in order to
+      set up a JIT stack. If the result is NULL, the internal 32K stack
+      is used; otherwise the return value must be a valid JIT stack,
+      the result of calling <b>pcre_jit_stack_alloc()</b>.
+</pre>
+You may safely assign the same JIT stack to more than one pattern, as long as
+they are all matched sequentially in the same thread. In a multithread
+application, each thread must use its own JIT stack.
+</P>
+<P>
+Strictly speaking, even more is allowed. You can assign the same stack to any
+number of patterns as long as they are not used for matching by multiple
+threads at the same time. For example, you can assign the same stack to all
+compiled patterns, and use a global mutex in the callback to wait until the
+stack is available for use. However, this is an inefficient solution, and
+not recommended.
+</P>
+<P>
+This is a suggestion for how a typical multithreaded program might operate:
+<pre>
+  During thread initalization
+    thread_local_var = pcre_jit_stack_alloc(...)
+
+  During thread exit
+    pcre_jit_stack_free(thread_local_var)
+
+  Use a one-line callback function
+    return thread_local_var
+</pre>
+All the functions described in this section do nothing if JIT is not available,
+and <b>pcre_assign_jit_stack()</b> does nothing unless the <b>extra</b> argument
+is non-NULL and points to a <b>pcre_extra</b> block that is the result of a
+successful study with PCRE_STUDY_JIT_COMPILE.
+<a name="stackfaq"></a></P>
+<br><a name="SEC8" href="#TOC1">JIT STACK FAQ</a><br>
+<P>
+(1) Why do we need JIT stacks?
+<br>
+<br>
+PCRE (and JIT) is a recursive, depth-first engine, so it needs a stack where
+the local data of the current node is pushed before checking its child nodes.
+Allocating real machine stack on some platforms is difficult. For example, the
+stack chain needs to be updated every time if we extend the stack on PowerPC.
+Although it is possible, its updating time overhead decreases performance. So
+we do the recursion in memory.
+</P>
+<P>
+(2) Why don't we simply allocate blocks of memory with <b>malloc()</b>?
+<br>
+<br>
+Modern operating systems have a nice feature: they can reserve an address space
+instead of allocating memory. We can safely allocate memory pages inside this
+address space, so the stack could grow without moving memory data (this is
+important because of pointers). Thus we can allocate 1M address space, and use
+only a single memory page (usually 4K) if that is enough. However, we can still
+grow up to 1M anytime if needed.
+</P>
+<P>
+(3) Who "owns" a JIT stack?
+<br>
+<br>
+The owner of the stack is the user program, not the JIT studied pattern or
+anything else. The user program must ensure that if a stack is used by
+<b>pcre_exec()</b>, (that is, it is assigned to the pattern currently running),
+that stack must not be used by any other threads (to avoid overwriting the same
+memory area). The best practice for multithreaded programs is to allocate a
+stack for each thread, and return this stack through the JIT callback function.
+</P>
+<P>
+(4) When should a JIT stack be freed?
+<br>
+<br>
+You can free a JIT stack at any time, as long as it will not be used by
+<b>pcre_exec()</b> again. When you assign the stack to a pattern, only a pointer
+is set. There is no reference counting or any other magic. You can free the
+patterns and stacks in any order, anytime. Just <i>do not</i> call
+<b>pcre_exec()</b> with a pattern pointing to an already freed stack, as that
+will cause SEGFAULT. (Also, do not free a stack currently used by
+<b>pcre_exec()</b> in another thread). You can also replace the stack for a
+pattern at any time. You can even free the previous stack before assigning a
+replacement.
+</P>
+<P>
+(5) Should I allocate/free a stack every time before/after calling
+<b>pcre_exec()</b>?
+<br>
+<br>
+No, because this is too costly in terms of resources. However, you could
+implement some clever idea which release the stack if it is not used in let's
+say two minutes. The JIT callback can help to achive this without keeping a
+list of the currently JIT studied patterns.
+</P>
+<P>
+(6) OK, the stack is for long term memory allocation. But what happens if a
+pattern causes stack overflow with a stack of 1M? Is that 1M kept until the
+stack is freed?
+<br>
+<br>
+Especially on embedded sytems, it might be a good idea to release
+memory sometimes without freeing the stack. There is no API for this at the
+moment. Probably a function call which returns with the currently allocated
+memory for any stack and another which allows releasing memory (shrinking the
+stack) would be a good idea if someone needs this.
+</P>
+<P>
+(7) This is too much of a headache. Isn't there any better solution for JIT
+stack handling?
+<br>
+<br>
+No, thanks to Windows. If POSIX threads were used everywhere, we could throw
+out this complicated API.
+</P>
+<br><a name="SEC9" href="#TOC1">EXAMPLE CODE</a><br>
+<P>
+This is a single-threaded example that specifies a JIT stack without using a
+callback.
+<pre>
+  int rc;
+  int ovector[30];
+  pcre *re;
+  pcre_extra *extra;
+  pcre_jit_stack *jit_stack;
+
+  re = pcre_compile(pattern, 0, &error, &erroffset, NULL);
+  /* Check for errors */
+  extra = pcre_study(re, PCRE_STUDY_JIT_COMPILE, &error);
+  jit_stack = pcre_jit_stack_alloc(32*1024, 512*1024);
+  /* Check for error (NULL) */
+  pcre_assign_jit_stack(extra, NULL, jit_stack);
+  rc = pcre_exec(re, extra, subject, length, 0, 0, ovector, 30);
+  /* Check results */
+  pcre_free(re);
+  pcre_free_study(extra);
+  pcre_jit_stack_free(jit_stack);
+
+</PRE>
+</P>
+<br><a name="SEC10" href="#TOC1">SEE ALSO</a><br>
+<P>
+<b>pcreapi</b>(3)
+</P>
+<br><a name="SEC11" href="#TOC1">AUTHOR</a><br>
+<P>
+Philip Hazel (FAQ by Zoltan Herczeg)
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><a name="SEC12" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 26 November 2011
+<br>
+Copyright &copy; 1997-2011 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcrelimits.html b/jni/libpcre/doc/html/pcrelimits.html
new file mode 100644
index 0000000..2cab81f
--- /dev/null
+++ b/jni/libpcre/doc/html/pcrelimits.html
@@ -0,0 +1,80 @@
+<html>
+<head>
+<title>pcrelimits specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcrelimits man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+SIZE AND OTHER LIMITATIONS
+</b><br>
+<P>
+There are some size limitations in PCRE but it is hoped that they will never in
+practice be relevant.
+</P>
+<P>
+The maximum length of a compiled pattern is 65539 (sic) bytes if PCRE is
+compiled with the default internal linkage size of 2. If you want to process
+regular expressions that are truly enormous, you can compile PCRE with an
+internal linkage size of 3 or 4 (see the <b>README</b> file in the source
+distribution and the
+<a href="pcrebuild.html"><b>pcrebuild</b></a>
+documentation for details). In these cases the limit is substantially larger.
+However, the speed of execution is slower.
+</P>
+<P>
+All values in repeating quantifiers must be less than 65536.
+</P>
+<P>
+There is no limit to the number of parenthesized subpatterns, but there can be
+no more than 65535 capturing subpatterns.
+</P>
+<P>
+There is a limit to the number of forward references to subsequent subpatterns
+of around 200,000. Repeated forward references with fixed upper limits, for
+example, (?2){0,100} when subpattern number 2 is to the right, are included in
+the count. There is no limit to the number of backward references.
+</P>
+<P>
+The maximum length of name for a named subpattern is 32 characters, and the
+maximum number of named subpatterns is 10000.
+</P>
+<P>
+The maximum length of a subject string is the largest positive number that an
+integer variable can hold. However, when using the traditional matching
+function, PCRE uses recursion to handle subpatterns and indefinite repetition.
+This means that the available stack space may limit the size of a subject
+string that can be processed by certain patterns. For a discussion of stack
+issues, see the
+<a href="pcrestack.html"><b>pcrestack</b></a>
+documentation.
+</P>
+<br><b>
+AUTHOR
+</b><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><b>
+REVISION
+</b><br>
+<P>
+Last updated: 30 November 2011
+<br>
+Copyright &copy; 1997-2011 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcrematching.html b/jni/libpcre/doc/html/pcrematching.html
new file mode 100644
index 0000000..ad17c98
--- /dev/null
+++ b/jni/libpcre/doc/html/pcrematching.html
@@ -0,0 +1,229 @@
+<html>
+<head>
+<title>pcrematching specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcrematching man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">PCRE MATCHING ALGORITHMS</a>
+<li><a name="TOC2" href="#SEC2">REGULAR EXPRESSIONS AS TREES</a>
+<li><a name="TOC3" href="#SEC3">THE STANDARD MATCHING ALGORITHM</a>
+<li><a name="TOC4" href="#SEC4">THE ALTERNATIVE MATCHING ALGORITHM</a>
+<li><a name="TOC5" href="#SEC5">ADVANTAGES OF THE ALTERNATIVE ALGORITHM</a>
+<li><a name="TOC6" href="#SEC6">DISADVANTAGES OF THE ALTERNATIVE ALGORITHM</a>
+<li><a name="TOC7" href="#SEC7">AUTHOR</a>
+<li><a name="TOC8" href="#SEC8">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">PCRE MATCHING ALGORITHMS</a><br>
+<P>
+This document describes the two different algorithms that are available in PCRE
+for matching a compiled regular expression against a given subject string. The
+"standard" algorithm is the one provided by the <b>pcre_exec()</b> function.
+This works in the same was as Perl's matching function, and provides a
+Perl-compatible matching operation.
+</P>
+<P>
+An alternative algorithm is provided by the <b>pcre_dfa_exec()</b> function;
+this operates in a different way, and is not Perl-compatible. It has advantages
+and disadvantages compared with the standard algorithm, and these are described
+below.
+</P>
+<P>
+When there is only one possible way in which a given subject string can match a
+pattern, the two algorithms give the same answer. A difference arises, however,
+when there are multiple possibilities. For example, if the pattern
+<pre>
+  ^&#60;.*&#62;
+</pre>
+is matched against the string
+<pre>
+  &#60;something&#62; &#60;something else&#62; &#60;something further&#62;
+</pre>
+there are three possible answers. The standard algorithm finds only one of
+them, whereas the alternative algorithm finds all three.
+</P>
+<br><a name="SEC2" href="#TOC1">REGULAR EXPRESSIONS AS TREES</a><br>
+<P>
+The set of strings that are matched by a regular expression can be represented
+as a tree structure. An unlimited repetition in the pattern makes the tree of
+infinite size, but it is still a tree. Matching the pattern to a given subject
+string (from a given starting point) can be thought of as a search of the tree.
+There are two ways to search a tree: depth-first and breadth-first, and these
+correspond to the two matching algorithms provided by PCRE.
+</P>
+<br><a name="SEC3" href="#TOC1">THE STANDARD MATCHING ALGORITHM</a><br>
+<P>
+In the terminology of Jeffrey Friedl's book "Mastering Regular
+Expressions", the standard algorithm is an "NFA algorithm". It conducts a
+depth-first search of the pattern tree. That is, it proceeds along a single
+path through the tree, checking that the subject matches what is required. When
+there is a mismatch, the algorithm tries any alternatives at the current point,
+and if they all fail, it backs up to the previous branch point in the tree, and
+tries the next alternative branch at that level. This often involves backing up
+(moving to the left) in the subject string as well. The order in which
+repetition branches are tried is controlled by the greedy or ungreedy nature of
+the quantifier.
+</P>
+<P>
+If a leaf node is reached, a matching string has been found, and at that point
+the algorithm stops. Thus, if there is more than one possible match, this
+algorithm returns the first one that it finds. Whether this is the shortest,
+the longest, or some intermediate length depends on the way the greedy and
+ungreedy repetition quantifiers are specified in the pattern.
+</P>
+<P>
+Because it ends up with a single path through the tree, it is relatively
+straightforward for this algorithm to keep track of the substrings that are
+matched by portions of the pattern in parentheses. This provides support for
+capturing parentheses and back references.
+</P>
+<br><a name="SEC4" href="#TOC1">THE ALTERNATIVE MATCHING ALGORITHM</a><br>
+<P>
+This algorithm conducts a breadth-first search of the tree. Starting from the
+first matching point in the subject, it scans the subject string from left to
+right, once, character by character, and as it does this, it remembers all the
+paths through the tree that represent valid matches. In Friedl's terminology,
+this is a kind of "DFA algorithm", though it is not implemented as a
+traditional finite state machine (it keeps multiple states active
+simultaneously).
+</P>
+<P>
+Although the general principle of this matching algorithm is that it scans the
+subject string only once, without backtracking, there is one exception: when a
+lookaround assertion is encountered, the characters following or preceding the
+current point have to be independently inspected.
+</P>
+<P>
+The scan continues until either the end of the subject is reached, or there are
+no more unterminated paths. At this point, terminated paths represent the
+different matching possibilities (if there are none, the match has failed).
+Thus, if there is more than one possible match, this algorithm finds all of
+them, and in particular, it finds the longest. The matches are returned in
+decreasing order of length. There is an option to stop the algorithm after the
+first match (which is necessarily the shortest) is found.
+</P>
+<P>
+Note that all the matches that are found start at the same point in the
+subject. If the pattern
+<pre>
+  cat(er(pillar)?)?
+</pre>
+is matched against the string "the caterpillar catchment", the result will be
+the three strings "caterpillar", "cater", and "cat" that start at the fifth
+character of the subject. The algorithm does not automatically move on to find
+matches that start at later positions.
+</P>
+<P>
+There are a number of features of PCRE regular expressions that are not
+supported by the alternative matching algorithm. They are as follows:
+</P>
+<P>
+1. Because the algorithm finds all possible matches, the greedy or ungreedy
+nature of repetition quantifiers is not relevant. Greedy and ungreedy
+quantifiers are treated in exactly the same way. However, possessive
+quantifiers can make a difference when what follows could also match what is
+quantified, for example in a pattern like this:
+<pre>
+  ^a++\w!
+</pre>
+This pattern matches "aaab!" but not "aaa!", which would be matched by a
+non-possessive quantifier. Similarly, if an atomic group is present, it is
+matched as if it were a standalone pattern at the current point, and the
+longest match is then "locked in" for the rest of the overall pattern.
+</P>
+<P>
+2. When dealing with multiple paths through the tree simultaneously, it is not
+straightforward to keep track of captured substrings for the different matching
+possibilities, and PCRE's implementation of this algorithm does not attempt to
+do this. This means that no captured substrings are available.
+</P>
+<P>
+3. Because no substrings are captured, back references within the pattern are
+not supported, and cause errors if encountered.
+</P>
+<P>
+4. For the same reason, conditional expressions that use a backreference as the
+condition or test for a specific group recursion are not supported.
+</P>
+<P>
+5. Because many paths through the tree may be active, the \K escape sequence,
+which resets the start of the match when encountered (but may be on some paths
+and not on others), is not supported. It causes an error if encountered.
+</P>
+<P>
+6. Callouts are supported, but the value of the <i>capture_top</i> field is
+always 1, and the value of the <i>capture_last</i> field is always -1.
+</P>
+<P>
+7. The \C escape sequence, which (in the standard algorithm) matches a single
+byte, even in UTF-8 mode, is not supported in UTF-8 mode, because the
+alternative algorithm moves through the subject string one character at a time,
+for all active paths through the tree.
+</P>
+<P>
+8. Except for (*FAIL), the backtracking control verbs such as (*PRUNE) are not
+supported. (*FAIL) is supported, and behaves like a failing negative assertion.
+</P>
+<br><a name="SEC5" href="#TOC1">ADVANTAGES OF THE ALTERNATIVE ALGORITHM</a><br>
+<P>
+Using the alternative matching algorithm provides the following advantages:
+</P>
+<P>
+1. All possible matches (at a single point in the subject) are automatically
+found, and in particular, the longest match is found. To find more than one
+match using the standard algorithm, you have to do kludgy things with
+callouts.
+</P>
+<P>
+2. Because the alternative algorithm scans the subject string just once, and
+never needs to backtrack, it is possible to pass very long subject strings to
+the matching function in several pieces, checking for partial matching each
+time. Although it is possible to do multi-segment matching using the standard
+algorithm (<b>pcre_exec()</b>), by retaining partially matched substrings, it is
+more complicated. The
+<a href="pcrepartial.html"><b>pcrepartial</b></a>
+documentation gives details of partial matching and discusses multi-segment
+matching.
+</P>
+<br><a name="SEC6" href="#TOC1">DISADVANTAGES OF THE ALTERNATIVE ALGORITHM</a><br>
+<P>
+The alternative algorithm suffers from a number of disadvantages:
+</P>
+<P>
+1. It is substantially slower than the standard algorithm. This is partly
+because it has to search for all possible matches, but is also because it is
+less susceptible to optimization.
+</P>
+<P>
+2. Capturing parentheses and back references are not supported.
+</P>
+<P>
+3. Although atomic groups are supported, their use does not provide the
+performance advantage that it does for the standard algorithm.
+</P>
+<br><a name="SEC7" href="#TOC1">AUTHOR</a><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><a name="SEC8" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 19 November 2011
+<br>
+Copyright &copy; 1997-2010 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcrepartial.html b/jni/libpcre/doc/html/pcrepartial.html
new file mode 100644
index 0000000..1c8cdf2
--- /dev/null
+++ b/jni/libpcre/doc/html/pcrepartial.html
@@ -0,0 +1,445 @@
+<html>
+<head>
+<title>pcrepartial specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcrepartial man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">PARTIAL MATCHING IN PCRE</a>
+<li><a name="TOC2" href="#SEC2">PARTIAL MATCHING USING pcre_exec()</a>
+<li><a name="TOC3" href="#SEC3">PARTIAL MATCHING USING pcre_dfa_exec()</a>
+<li><a name="TOC4" href="#SEC4">PARTIAL MATCHING AND WORD BOUNDARIES</a>
+<li><a name="TOC5" href="#SEC5">FORMERLY RESTRICTED PATTERNS</a>
+<li><a name="TOC6" href="#SEC6">EXAMPLE OF PARTIAL MATCHING USING PCRETEST</a>
+<li><a name="TOC7" href="#SEC7">MULTI-SEGMENT MATCHING WITH pcre_dfa_exec()</a>
+<li><a name="TOC8" href="#SEC8">MULTI-SEGMENT MATCHING WITH pcre_exec()</a>
+<li><a name="TOC9" href="#SEC9">ISSUES WITH MULTI-SEGMENT MATCHING</a>
+<li><a name="TOC10" href="#SEC10">AUTHOR</a>
+<li><a name="TOC11" href="#SEC11">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">PARTIAL MATCHING IN PCRE</a><br>
+<P>
+In normal use of PCRE, if the subject string that is passed to
+<b>pcre_exec()</b> or <b>pcre_dfa_exec()</b> matches as far as it goes, but is
+too short to match the entire pattern, PCRE_ERROR_NOMATCH is returned. There
+are circumstances where it might be helpful to distinguish this case from other
+cases in which there is no match.
+</P>
+<P>
+Consider, for example, an application where a human is required to type in data
+for a field with specific formatting requirements. An example might be a date
+in the form <i>ddmmmyy</i>, defined by this pattern:
+<pre>
+  ^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$
+</pre>
+If the application sees the user's keystrokes one by one, and can check that
+what has been typed so far is potentially valid, it is able to raise an error
+as soon as a mistake is made, by beeping and not reflecting the character that
+has been typed, for example. This immediate feedback is likely to be a better
+user interface than a check that is delayed until the entire string has been
+entered. Partial matching can also be useful when the subject string is very
+long and is not all available at once.
+</P>
+<P>
+PCRE supports partial matching by means of the PCRE_PARTIAL_SOFT and
+PCRE_PARTIAL_HARD options, which can be set when calling <b>pcre_exec()</b> or
+<b>pcre_dfa_exec()</b>. For backwards compatibility, PCRE_PARTIAL is a synonym
+for PCRE_PARTIAL_SOFT. The essential difference between the two options is
+whether or not a partial match is preferred to an alternative complete match,
+though the details differ between the two matching functions. If both options
+are set, PCRE_PARTIAL_HARD takes precedence.
+</P>
+<P>
+Setting a partial matching option for <b>pcre_exec()</b> disables the use of any
+just-in-time code that was set up by calling <b>pcre_study()</b> with the
+PCRE_STUDY_JIT_COMPILE option. It also disables two of PCRE's standard
+optimizations. PCRE remembers the last literal byte in a pattern, and abandons
+matching immediately if such a byte is not present in the subject string. This
+optimization cannot be used for a subject string that might match only
+partially. If the pattern was studied, PCRE knows the minimum length of a
+matching string, and does not bother to run the matching function on shorter
+strings. This optimization is also disabled for partial matching.
+</P>
+<br><a name="SEC2" href="#TOC1">PARTIAL MATCHING USING pcre_exec()</a><br>
+<P>
+A partial match occurs during a call to <b>pcre_exec()</b> when the end of the
+subject string is reached successfully, but matching cannot continue because
+more characters are needed. However, at least one character in the subject must
+have been inspected. This character need not form part of the final matched
+string; lookbehind assertions and the \K escape sequence provide ways of
+inspecting characters before the start of a matched substring. The requirement
+for inspecting at least one character exists because an empty string can always
+be matched; without such a restriction there would always be a partial match of
+an empty string at the end of the subject.
+</P>
+<P>
+If there are at least two slots in the offsets vector when <b>pcre_exec()</b>
+returns with a partial match, the first slot is set to the offset of the
+earliest character that was inspected when the partial match was found. For
+convenience, the second offset points to the end of the subject so that a
+substring can easily be identified.
+</P>
+<P>
+For the majority of patterns, the first offset identifies the start of the
+partially matched string. However, for patterns that contain lookbehind
+assertions, or \K, or begin with \b or \B, earlier characters have been
+inspected while carrying out the match. For example:
+<pre>
+  /(?&#60;=abc)123/
+</pre>
+This pattern matches "123", but only if it is preceded by "abc". If the subject
+string is "xyzabc12", the offsets after a partial match are for the substring
+"abc12", because all these characters are needed if another match is tried
+with extra characters added to the subject.
+</P>
+<P>
+What happens when a partial match is identified depends on which of the two
+partial matching options are set.
+</P>
+<br><b>
+PCRE_PARTIAL_SOFT with pcre_exec()
+</b><br>
+<P>
+If PCRE_PARTIAL_SOFT is set when <b>pcre_exec()</b> identifies a partial match,
+the partial match is remembered, but matching continues as normal, and other
+alternatives in the pattern are tried. If no complete match can be found,
+<b>pcre_exec()</b> returns PCRE_ERROR_PARTIAL instead of PCRE_ERROR_NOMATCH.
+</P>
+<P>
+This option is "soft" because it prefers a complete match over a partial match.
+All the various matching items in a pattern behave as if the subject string is
+potentially complete. For example, \z, \Z, and $ match at the end of the
+subject, as normal, and for \b and \B the end of the subject is treated as a
+non-alphanumeric.
+</P>
+<P>
+If there is more than one partial match, the first one that was found provides
+the data that is returned. Consider this pattern:
+<pre>
+  /123\w+X|dogY/
+</pre>
+If this is matched against the subject string "abc123dog", both
+alternatives fail to match, but the end of the subject is reached during
+matching, so PCRE_ERROR_PARTIAL is returned. The offsets are set to 3 and 9,
+identifying "123dog" as the first partial match that was found. (In this
+example, there are two partial matches, because "dog" on its own partially
+matches the second alternative.)
+</P>
+<br><b>
+PCRE_PARTIAL_HARD with pcre_exec()
+</b><br>
+<P>
+If PCRE_PARTIAL_HARD is set for <b>pcre_exec()</b>, it returns
+PCRE_ERROR_PARTIAL as soon as a partial match is found, without continuing to
+search for possible complete matches. This option is "hard" because it prefers
+an earlier partial match over a later complete match. For this reason, the
+assumption is made that the end of the supplied subject string may not be the
+true end of the available data, and so, if \z, \Z, \b, \B, or $ are
+encountered at the end of the subject, the result is PCRE_ERROR_PARTIAL.
+</P>
+<P>
+Setting PCRE_PARTIAL_HARD also affects the way <b>pcre_exec()</b> checks UTF-8
+subject strings for validity. Normally, an invalid UTF-8 sequence causes the
+error PCRE_ERROR_BADUTF8. However, in the special case of a truncated UTF-8
+character at the end of the subject, PCRE_ERROR_SHORTUTF8 is returned when
+PCRE_PARTIAL_HARD is set.
+</P>
+<br><b>
+Comparing hard and soft partial matching
+</b><br>
+<P>
+The difference between the two partial matching options can be illustrated by a
+pattern such as:
+<pre>
+  /dog(sbody)?/
+</pre>
+This matches either "dog" or "dogsbody", greedily (that is, it prefers the
+longer string if possible). If it is matched against the string "dog" with
+PCRE_PARTIAL_SOFT, it yields a complete match for "dog". However, if
+PCRE_PARTIAL_HARD is set, the result is PCRE_ERROR_PARTIAL. On the other hand,
+if the pattern is made ungreedy the result is different:
+<pre>
+  /dog(sbody)??/
+</pre>
+In this case the result is always a complete match because <b>pcre_exec()</b>
+finds that first, and it never continues after finding a match. It might be
+easier to follow this explanation by thinking of the two patterns like this:
+<pre>
+  /dog(sbody)?/    is the same as  /dogsbody|dog/
+  /dog(sbody)??/   is the same as  /dog|dogsbody/
+</pre>
+The second pattern will never match "dogsbody" when <b>pcre_exec()</b> is
+used, because it will always find the shorter match first.
+</P>
+<br><a name="SEC3" href="#TOC1">PARTIAL MATCHING USING pcre_dfa_exec()</a><br>
+<P>
+The <b>pcre_dfa_exec()</b> function moves along the subject string character by
+character, without backtracking, searching for all possible matches
+simultaneously. If the end of the subject is reached before the end of the
+pattern, there is the possibility of a partial match, again provided that at
+least one character has been inspected.
+</P>
+<P>
+When PCRE_PARTIAL_SOFT is set, PCRE_ERROR_PARTIAL is returned only if there
+have been no complete matches. Otherwise, the complete matches are returned.
+However, if PCRE_PARTIAL_HARD is set, a partial match takes precedence over any
+complete matches. The portion of the string that was inspected when the longest
+partial match was found is set as the first matching string, provided there are
+at least two slots in the offsets vector.
+</P>
+<P>
+Because <b>pcre_dfa_exec()</b> always searches for all possible matches, and
+there is no difference between greedy and ungreedy repetition, its behaviour is
+different from <b>pcre_exec</b> when PCRE_PARTIAL_HARD is set. Consider the
+string "dog" matched against the ungreedy pattern shown above:
+<pre>
+  /dog(sbody)??/
+</pre>
+Whereas <b>pcre_exec()</b> stops as soon as it finds the complete match for
+"dog", <b>pcre_dfa_exec()</b> also finds the partial match for "dogsbody", and
+so returns that when PCRE_PARTIAL_HARD is set.
+</P>
+<br><a name="SEC4" href="#TOC1">PARTIAL MATCHING AND WORD BOUNDARIES</a><br>
+<P>
+If a pattern ends with one of sequences \b or \B, which test for word
+boundaries, partial matching with PCRE_PARTIAL_SOFT can give counter-intuitive
+results. Consider this pattern:
+<pre>
+  /\bcat\b/
+</pre>
+This matches "cat", provided there is a word boundary at either end. If the
+subject string is "the cat", the comparison of the final "t" with a following
+character cannot take place, so a partial match is found. However,
+<b>pcre_exec()</b> carries on with normal matching, which matches \b at the end
+of the subject when the last character is a letter, thus finding a complete
+match. The result, therefore, is <i>not</i> PCRE_ERROR_PARTIAL. The same thing
+happens with <b>pcre_dfa_exec()</b>, because it also finds the complete match.
+</P>
+<P>
+Using PCRE_PARTIAL_HARD in this case does yield PCRE_ERROR_PARTIAL, because
+then the partial match takes precedence.
+</P>
+<br><a name="SEC5" href="#TOC1">FORMERLY RESTRICTED PATTERNS</a><br>
+<P>
+For releases of PCRE prior to 8.00, because of the way certain internal
+optimizations were implemented in the <b>pcre_exec()</b> function, the
+PCRE_PARTIAL option (predecessor of PCRE_PARTIAL_SOFT) could not be used with
+all patterns. From release 8.00 onwards, the restrictions no longer apply, and
+partial matching with <b>pcre_exec()</b> can be requested for any pattern.
+</P>
+<P>
+Items that were formerly restricted were repeated single characters and
+repeated metasequences. If PCRE_PARTIAL was set for a pattern that did not
+conform to the restrictions, <b>pcre_exec()</b> returned the error code
+PCRE_ERROR_BADPARTIAL (-13). This error code is no longer in use. The
+PCRE_INFO_OKPARTIAL call to <b>pcre_fullinfo()</b> to find out if a compiled
+pattern can be used for partial matching now always returns 1.
+</P>
+<br><a name="SEC6" href="#TOC1">EXAMPLE OF PARTIAL MATCHING USING PCRETEST</a><br>
+<P>
+If the escape sequence \P is present in a <b>pcretest</b> data line, the
+PCRE_PARTIAL_SOFT option is used for the match. Here is a run of <b>pcretest</b>
+that uses the date example quoted above:
+<pre>
+    re&#62; /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
+  data&#62; 25jun04\P
+   0: 25jun04
+   1: jun
+  data&#62; 25dec3\P
+  Partial match: 23dec3
+  data&#62; 3ju\P
+  Partial match: 3ju
+  data&#62; 3juj\P
+  No match
+  data&#62; j\P
+  No match
+</pre>
+The first data string is matched completely, so <b>pcretest</b> shows the
+matched substrings. The remaining four strings do not match the complete
+pattern, but the first two are partial matches. Similar output is obtained
+when <b>pcre_dfa_exec()</b> is used.
+</P>
+<P>
+If the escape sequence \P is present more than once in a <b>pcretest</b> data
+line, the PCRE_PARTIAL_HARD option is set for the match.
+</P>
+<br><a name="SEC7" href="#TOC1">MULTI-SEGMENT MATCHING WITH pcre_dfa_exec()</a><br>
+<P>
+When a partial match has been found using <b>pcre_dfa_exec()</b>, it is possible
+to continue the match by providing additional subject data and calling
+<b>pcre_dfa_exec()</b> again with the same compiled regular expression, this
+time setting the PCRE_DFA_RESTART option. You must pass the same working
+space as before, because this is where details of the previous partial match
+are stored. Here is an example using <b>pcretest</b>, using the \R escape
+sequence to set the PCRE_DFA_RESTART option (\D specifies the use of
+<b>pcre_dfa_exec()</b>):
+<pre>
+    re&#62; /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
+  data&#62; 23ja\P\D
+  Partial match: 23ja
+  data&#62; n05\R\D
+   0: n05
+</pre>
+The first call has "23ja" as the subject, and requests partial matching; the
+second call has "n05" as the subject for the continued (restarted) match.
+Notice that when the match is complete, only the last part is shown; PCRE does
+not retain the previously partially-matched string. It is up to the calling
+program to do that if it needs to.
+</P>
+<P>
+You can set the PCRE_PARTIAL_SOFT or PCRE_PARTIAL_HARD options with
+PCRE_DFA_RESTART to continue partial matching over multiple segments. This
+facility can be used to pass very long subject strings to
+<b>pcre_dfa_exec()</b>.
+</P>
+<br><a name="SEC8" href="#TOC1">MULTI-SEGMENT MATCHING WITH pcre_exec()</a><br>
+<P>
+From release 8.00, <b>pcre_exec()</b> can also be used to do multi-segment
+matching. Unlike <b>pcre_dfa_exec()</b>, it is not possible to restart the
+previous match with a new segment of data. Instead, new data must be added to
+the previous subject string, and the entire match re-run, starting from the
+point where the partial match occurred. Earlier data can be discarded. It is
+best to use PCRE_PARTIAL_HARD in this situation, because it does not treat the
+end of a segment as the end of the subject when matching \z, \Z, \b, \B,
+and $. Consider an unanchored pattern that matches dates:
+<pre>
+    re&#62; /\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d/
+  data&#62; The date is 23ja\P\P
+  Partial match: 23ja
+</pre>
+At this stage, an application could discard the text preceding "23ja", add on
+text from the next segment, and call <b>pcre_exec()</b> again. Unlike
+<b>pcre_dfa_exec()</b>, the entire matching string must always be available, and
+the complete matching process occurs for each call, so more memory and more
+processing time is needed.
+</P>
+<P>
+<b>Note:</b> If the pattern contains lookbehind assertions, or \K, or starts
+with \b or \B, the string that is returned for a partial match will include
+characters that precede the partially matched string itself, because these must
+be retained when adding on more characters for a subsequent matching attempt.
+</P>
+<br><a name="SEC9" href="#TOC1">ISSUES WITH MULTI-SEGMENT MATCHING</a><br>
+<P>
+Certain types of pattern may give problems with multi-segment matching,
+whichever matching function is used.
+</P>
+<P>
+1. If the pattern contains a test for the beginning of a line, you need to pass
+the PCRE_NOTBOL option when the subject string for any call does start at the
+beginning of a line. There is also a PCRE_NOTEOL option, but in practice when
+doing multi-segment matching you should be using PCRE_PARTIAL_HARD, which
+includes the effect of PCRE_NOTEOL.
+</P>
+<P>
+2. Lookbehind assertions at the start of a pattern are catered for in the
+offsets that are returned for a partial match. However, in theory, a lookbehind
+assertion later in the pattern could require even earlier characters to be
+inspected, and it might not have been reached when a partial match occurs. This
+is probably an extremely unlikely case; you could guard against it to a certain
+extent by always including extra characters at the start.
+</P>
+<P>
+3. Matching a subject string that is split into multiple segments may not
+always produce exactly the same result as matching over one single long string,
+especially when PCRE_PARTIAL_SOFT is used. The section "Partial Matching and
+Word Boundaries" above describes an issue that arises if the pattern ends with
+\b or \B. Another kind of difference may occur when there are multiple
+matching possibilities, because (for PCRE_PARTIAL_SOFT) a partial match result
+is given only when there are no completed matches. This means that as soon as
+the shortest match has been found, continuation to a new subject segment is no
+longer possible. Consider again this <b>pcretest</b> example:
+<pre>
+    re&#62; /dog(sbody)?/
+  data&#62; dogsb\P
+   0: dog
+  data&#62; do\P\D
+  Partial match: do
+  data&#62; gsb\R\P\D
+   0: g
+  data&#62; dogsbody\D
+   0: dogsbody
+   1: dog
+</pre>
+The first data line passes the string "dogsb" to <b>pcre_exec()</b>, setting the
+PCRE_PARTIAL_SOFT option. Although the string is a partial match for
+"dogsbody", the result is not PCRE_ERROR_PARTIAL, because the shorter string
+"dog" is a complete match. Similarly, when the subject is presented to
+<b>pcre_dfa_exec()</b> in several parts ("do" and "gsb" being the first two) the
+match stops when "dog" has been found, and it is not possible to continue. On
+the other hand, if "dogsbody" is presented as a single string,
+<b>pcre_dfa_exec()</b> finds both matches.
+</P>
+<P>
+Because of these problems, it is best to use PCRE_PARTIAL_HARD when matching
+multi-segment data. The example above then behaves differently:
+<pre>
+    re&#62; /dog(sbody)?/
+  data&#62; dogsb\P\P
+  Partial match: dogsb
+  data&#62; do\P\D
+  Partial match: do
+  data&#62; gsb\R\P\P\D
+  Partial match: gsb
+</pre>
+4. Patterns that contain alternatives at the top level which do not all
+start with the same pattern item may not work as expected when
+PCRE_DFA_RESTART is used with <b>pcre_dfa_exec()</b>. For example, consider this
+pattern:
+<pre>
+  1234|3789
+</pre>
+If the first part of the subject is "ABC123", a partial match of the first
+alternative is found at offset 3. There is no partial match for the second
+alternative, because such a match does not start at the same point in the
+subject string. Attempting to continue with the string "7890" does not yield a
+match because only those alternatives that match at one point in the subject
+are remembered. The problem arises because the start of the second alternative
+matches within the first alternative. There is no problem with anchored
+patterns or patterns such as:
+<pre>
+  1234|ABCD
+</pre>
+where no string can be a partial match for both alternatives. This is not a
+problem if <b>pcre_exec()</b> is used, because the entire match has to be rerun
+each time:
+<pre>
+    re&#62; /1234|3789/
+  data&#62; ABC123\P\P
+  Partial match: 123
+  data&#62; 1237890
+   0: 3789
+</pre>
+Of course, instead of using PCRE_DFA_RESTART, the same technique of re-running
+the entire match can also be used with <b>pcre_dfa_exec()</b>. Another
+possibility is to work with two buffers. If a partial match at offset <i>n</i>
+in the first buffer is followed by "no match" when PCRE_DFA_RESTART is used on
+the second buffer, you can then try a new match starting at offset <i>n+1</i> in
+the first buffer.
+</P>
+<br><a name="SEC10" href="#TOC1">AUTHOR</a><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><a name="SEC11" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 26 August 2011
+<br>
+Copyright &copy; 1997-2011 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcrepattern.html b/jni/libpcre/doc/html/pcrepattern.html
new file mode 100644
index 0000000..aa39d63
--- /dev/null
+++ b/jni/libpcre/doc/html/pcrepattern.html
@@ -0,0 +1,2838 @@
+<html>
+<head>
+<title>pcrepattern specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcrepattern man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">PCRE REGULAR EXPRESSION DETAILS</a>
+<li><a name="TOC2" href="#SEC2">NEWLINE CONVENTIONS</a>
+<li><a name="TOC3" href="#SEC3">CHARACTERS AND METACHARACTERS</a>
+<li><a name="TOC4" href="#SEC4">BACKSLASH</a>
+<li><a name="TOC5" href="#SEC5">CIRCUMFLEX AND DOLLAR</a>
+<li><a name="TOC6" href="#SEC6">FULL STOP (PERIOD, DOT) AND \N</a>
+<li><a name="TOC7" href="#SEC7">MATCHING A SINGLE BYTE</a>
+<li><a name="TOC8" href="#SEC8">SQUARE BRACKETS AND CHARACTER CLASSES</a>
+<li><a name="TOC9" href="#SEC9">POSIX CHARACTER CLASSES</a>
+<li><a name="TOC10" href="#SEC10">VERTICAL BAR</a>
+<li><a name="TOC11" href="#SEC11">INTERNAL OPTION SETTING</a>
+<li><a name="TOC12" href="#SEC12">SUBPATTERNS</a>
+<li><a name="TOC13" href="#SEC13">DUPLICATE SUBPATTERN NUMBERS</a>
+<li><a name="TOC14" href="#SEC14">NAMED SUBPATTERNS</a>
+<li><a name="TOC15" href="#SEC15">REPETITION</a>
+<li><a name="TOC16" href="#SEC16">ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS</a>
+<li><a name="TOC17" href="#SEC17">BACK REFERENCES</a>
+<li><a name="TOC18" href="#SEC18">ASSERTIONS</a>
+<li><a name="TOC19" href="#SEC19">CONDITIONAL SUBPATTERNS</a>
+<li><a name="TOC20" href="#SEC20">COMMENTS</a>
+<li><a name="TOC21" href="#SEC21">RECURSIVE PATTERNS</a>
+<li><a name="TOC22" href="#SEC22">SUBPATTERNS AS SUBROUTINES</a>
+<li><a name="TOC23" href="#SEC23">ONIGURUMA SUBROUTINE SYNTAX</a>
+<li><a name="TOC24" href="#SEC24">CALLOUTS</a>
+<li><a name="TOC25" href="#SEC25">BACKTRACKING CONTROL</a>
+<li><a name="TOC26" href="#SEC26">SEE ALSO</a>
+<li><a name="TOC27" href="#SEC27">AUTHOR</a>
+<li><a name="TOC28" href="#SEC28">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">PCRE REGULAR EXPRESSION DETAILS</a><br>
+<P>
+The syntax and semantics of the regular expressions that are supported by PCRE
+are described in detail below. There is a quick-reference syntax summary in the
+<a href="pcresyntax.html"><b>pcresyntax</b></a>
+page. PCRE tries to match Perl syntax and semantics as closely as it can. PCRE
+also supports some alternative regular expression syntax (which does not
+conflict with the Perl syntax) in order to provide some compatibility with
+regular expressions in Python, .NET, and Oniguruma.
+</P>
+<P>
+Perl's regular expressions are described in its own documentation, and
+regular expressions in general are covered in a number of books, some of which
+have copious examples. Jeffrey Friedl's "Mastering Regular Expressions",
+published by O'Reilly, covers regular expressions in great detail. This
+description of PCRE's regular expressions is intended as reference material.
+</P>
+<P>
+The original operation of PCRE was on strings of one-byte characters. However,
+there is now also support for UTF-8 character strings. To use this,
+PCRE must be built to include UTF-8 support, and you must call
+<b>pcre_compile()</b> or <b>pcre_compile2()</b> with the PCRE_UTF8 option. There
+is also a special sequence that can be given at the start of a pattern:
+<pre>
+  (*UTF8)
+</pre>
+Starting a pattern with this sequence is equivalent to setting the PCRE_UTF8
+option. This feature is not Perl-compatible. How setting UTF-8 mode affects
+pattern matching is mentioned in several places below. There is also a summary
+of UTF-8 features in the
+<a href="pcreunicode.html"><b>pcreunicode</b></a>
+page.
+</P>
+<P>
+Another special sequence that may appear at the start of a pattern or in
+combination with (*UTF8) is:
+<pre>
+  (*UCP)
+</pre>
+This has the same effect as setting the PCRE_UCP option: it causes sequences
+such as \d and \w to use Unicode properties to determine character types,
+instead of recognizing only characters with codes less than 128 via a lookup
+table.
+</P>
+<P>
+If a pattern starts with (*NO_START_OPT), it has the same effect as setting the
+PCRE_NO_START_OPTIMIZE option either at compile or matching time. There are
+also some more of these special sequences that are concerned with the handling
+of newlines; they are described below.
+</P>
+<P>
+The remainder of this document discusses the patterns that are supported by
+PCRE when its main matching function, <b>pcre_exec()</b>, is used.
+From release 6.0, PCRE offers a second matching function,
+<b>pcre_dfa_exec()</b>, which matches using a different algorithm that is not
+Perl-compatible. Some of the features discussed below are not available when
+<b>pcre_dfa_exec()</b> is used. The advantages and disadvantages of the
+alternative function, and how it differs from the normal function, are
+discussed in the
+<a href="pcrematching.html"><b>pcrematching</b></a>
+page.
+<a name="newlines"></a></P>
+<br><a name="SEC2" href="#TOC1">NEWLINE CONVENTIONS</a><br>
+<P>
+PCRE supports five different conventions for indicating line breaks in
+strings: a single CR (carriage return) character, a single LF (linefeed)
+character, the two-character sequence CRLF, any of the three preceding, or any
+Unicode newline sequence. The
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page has
+<a href="pcreapi.html#newlines">further discussion</a>
+about newlines, and shows how to set the newline convention in the
+<i>options</i> arguments for the compiling and matching functions.
+</P>
+<P>
+It is also possible to specify a newline convention by starting a pattern
+string with one of the following five sequences:
+<pre>
+  (*CR)        carriage return
+  (*LF)        linefeed
+  (*CRLF)      carriage return, followed by linefeed
+  (*ANYCRLF)   any of the three above
+  (*ANY)       all Unicode newline sequences
+</pre>
+These override the default and the options given to <b>pcre_compile()</b> or
+<b>pcre_compile2()</b>. For example, on a Unix system where LF is the default
+newline sequence, the pattern
+<pre>
+  (*CR)a.b
+</pre>
+changes the convention to CR. That pattern matches "a\nb" because LF is no
+longer a newline. Note that these special settings, which are not
+Perl-compatible, are recognized only at the very start of a pattern, and that
+they must be in upper case. If more than one of them is present, the last one
+is used.
+</P>
+<P>
+The newline convention affects the interpretation of the dot metacharacter when
+PCRE_DOTALL is not set, and also the behaviour of \N. However, it does not
+affect what the \R escape sequence matches. By default, this is any Unicode
+newline sequence, for Perl compatibility. However, this can be changed; see the
+description of \R in the section entitled
+<a href="#newlineseq">"Newline sequences"</a>
+below. A change of \R setting can be combined with a change of newline
+convention.
+</P>
+<br><a name="SEC3" href="#TOC1">CHARACTERS AND METACHARACTERS</a><br>
+<P>
+A regular expression is a pattern that is matched against a subject string from
+left to right. Most characters stand for themselves in a pattern, and match the
+corresponding characters in the subject. As a trivial example, the pattern
+<pre>
+  The quick brown fox
+</pre>
+matches a portion of a subject string that is identical to itself. When
+caseless matching is specified (the PCRE_CASELESS option), letters are matched
+independently of case. In UTF-8 mode, PCRE always understands the concept of
+case for characters whose values are less than 128, so caseless matching is
+always possible. For characters with higher values, the concept of case is
+supported if PCRE is compiled with Unicode property support, but not otherwise.
+If you want to use caseless matching for characters 128 and above, you must
+ensure that PCRE is compiled with Unicode property support as well as with
+UTF-8 support.
+</P>
+<P>
+The power of regular expressions comes from the ability to include alternatives
+and repetitions in the pattern. These are encoded in the pattern by the use of
+<i>metacharacters</i>, which do not stand for themselves but instead are
+interpreted in some special way.
+</P>
+<P>
+There are two different sets of metacharacters: those that are recognized
+anywhere in the pattern except within square brackets, and those that are
+recognized within square brackets. Outside square brackets, the metacharacters
+are as follows:
+<pre>
+  \      general escape character with several uses
+  ^      assert start of string (or line, in multiline mode)
+  $      assert end of string (or line, in multiline mode)
+  .      match any character except newline (by default)
+  [      start character class definition
+  |      start of alternative branch
+  (      start subpattern
+  )      end subpattern
+  ?      extends the meaning of (
+         also 0 or 1 quantifier
+         also quantifier minimizer
+  *      0 or more quantifier
+  +      1 or more quantifier
+         also "possessive quantifier"
+  {      start min/max quantifier
+</pre>
+Part of a pattern that is in square brackets is called a "character class". In
+a character class the only metacharacters are:
+<pre>
+  \      general escape character
+  ^      negate the class, but only if the first character
+  -      indicates character range
+  [      POSIX character class (only if followed by POSIX syntax)
+  ]      terminates the character class
+</pre>
+The following sections describe the use of each of the metacharacters.
+</P>
+<br><a name="SEC4" href="#TOC1">BACKSLASH</a><br>
+<P>
+The backslash character has several uses. Firstly, if it is followed by a
+character that is not a number or a letter, it takes away any special meaning
+that character may have. This use of backslash as an escape character applies
+both inside and outside character classes.
+</P>
+<P>
+For example, if you want to match a * character, you write \* in the pattern.
+This escaping action applies whether or not the following character would
+otherwise be interpreted as a metacharacter, so it is always safe to precede a
+non-alphanumeric with backslash to specify that it stands for itself. In
+particular, if you want to match a backslash, you write \\.
+</P>
+<P>
+In UTF-8 mode, only ASCII numbers and letters have any special meaning after a
+backslash. All other characters (in particular, those whose codepoints are
+greater than 127) are treated as literals.
+</P>
+<P>
+If a pattern is compiled with the PCRE_EXTENDED option, whitespace in the
+pattern (other than in a character class) and characters between a # outside
+a character class and the next newline are ignored. An escaping backslash can
+be used to include a whitespace or # character as part of the pattern.
+</P>
+<P>
+If you want to remove the special meaning from a sequence of characters, you
+can do so by putting them between \Q and \E. This is different from Perl in
+that $ and @ are handled as literals in \Q...\E sequences in PCRE, whereas in
+Perl, $ and @ cause variable interpolation. Note the following examples:
+<pre>
+  Pattern            PCRE matches   Perl matches
+
+  \Qabc$xyz\E        abc$xyz        abc followed by the contents of $xyz
+  \Qabc\$xyz\E       abc\$xyz       abc\$xyz
+  \Qabc\E\$\Qxyz\E   abc$xyz        abc$xyz
+</pre>
+The \Q...\E sequence is recognized both inside and outside character classes.
+An isolated \E that is not preceded by \Q is ignored. If \Q is not followed
+by \E later in the pattern, the literal interpretation continues to the end of
+the pattern (that is, \E is assumed at the end). If the isolated \Q is inside
+a character class, this causes an error, because the character class is not
+terminated.
+<a name="digitsafterbackslash"></a></P>
+<br><b>
+Non-printing characters
+</b><br>
+<P>
+A second use of backslash provides a way of encoding non-printing characters
+in patterns in a visible manner. There is no restriction on the appearance of
+non-printing characters, apart from the binary zero that terminates a pattern,
+but when a pattern is being prepared by text editing, it is often easier to use
+one of the following escape sequences than the binary character it represents:
+<pre>
+  \a        alarm, that is, the BEL character (hex 07)
+  \cx       "control-x", where x is any ASCII character
+  \e        escape (hex 1B)
+  \f        formfeed (hex 0C)
+  \n        linefeed (hex 0A)
+  \r        carriage return (hex 0D)
+  \t        tab (hex 09)
+  \ddd      character with octal code ddd, or back reference
+  \xhh      character with hex code hh
+  \x{hhh..} character with hex code hhh.. (non-JavaScript mode)
+  \uhhhh    character with hex code hhhh (JavaScript mode only)
+</pre>
+The precise effect of \cx is as follows: if x is a lower case letter, it
+is converted to upper case. Then bit 6 of the character (hex 40) is inverted.
+Thus \cz becomes hex 1A (z is 7A), but \c{ becomes hex 3B ({ is 7B), while
+\c; becomes hex 7B (; is 3B). If the byte following \c has a value greater
+than 127, a compile-time error occurs. This locks out non-ASCII characters in
+both byte mode and UTF-8 mode. (When PCRE is compiled in EBCDIC mode, all byte
+values are valid. A lower case letter is converted to upper case, and then the
+0xc0 bits are flipped.)
+</P>
+<P>
+By default, after \x, from zero to two hexadecimal digits are read (letters
+can be in upper or lower case). Any number of hexadecimal digits may appear
+between \x{ and }, but the value of the character code must be less than 256
+in non-UTF-8 mode, and less than 2**31 in UTF-8 mode. That is, the maximum
+value in hexadecimal is 7FFFFFFF. Note that this is bigger than the largest
+Unicode code point, which is 10FFFF.
+</P>
+<P>
+If characters other than hexadecimal digits appear between \x{ and }, or if
+there is no terminating }, this form of escape is not recognized. Instead, the
+initial \x will be interpreted as a basic hexadecimal escape, with no
+following digits, giving a character whose value is zero.
+</P>
+<P>
+If the PCRE_JAVASCRIPT_COMPAT option is set, the interpretation of \x is
+as just described only when it is followed by two hexadecimal digits.
+Otherwise, it matches a literal "x" character. In JavaScript mode, support for
+code points greater than 256 is provided by \u, which must be followed by
+four hexadecimal digits; otherwise it matches a literal "u" character.
+</P>
+<P>
+Characters whose value is less than 256 can be defined by either of the two
+syntaxes for \x (or by \u in JavaScript mode). There is no difference in the
+way they are handled. For example, \xdc is exactly the same as \x{dc} (or
+\u00dc in JavaScript mode).
+</P>
+<P>
+After \0 up to two further octal digits are read. If there are fewer than two
+digits, just those that are present are used. Thus the sequence \0\x\07
+specifies two binary zeros followed by a BEL character (code value 7). Make
+sure you supply two digits after the initial zero if the pattern character that
+follows is itself an octal digit.
+</P>
+<P>
+The handling of a backslash followed by a digit other than 0 is complicated.
+Outside a character class, PCRE reads it and any following digits as a decimal
+number. If the number is less than 10, or if there have been at least that many
+previous capturing left parentheses in the expression, the entire sequence is
+taken as a <i>back reference</i>. A description of how this works is given
+<a href="#backreferences">later,</a>
+following the discussion of
+<a href="#subpattern">parenthesized subpatterns.</a>
+</P>
+<P>
+Inside a character class, or if the decimal number is greater than 9 and there
+have not been that many capturing subpatterns, PCRE re-reads up to three octal
+digits following the backslash, and uses them to generate a data character. Any
+subsequent digits stand for themselves. In non-UTF-8 mode, the value of a
+character specified in octal must be less than \400. In UTF-8 mode, values up
+to \777 are permitted. For example:
+<pre>
+  \040   is another way of writing a space
+  \40    is the same, provided there are fewer than 40 previous capturing subpatterns
+  \7     is always a back reference
+  \11    might be a back reference, or another way of writing a tab
+  \011   is always a tab
+  \0113  is a tab followed by the character "3"
+  \113   might be a back reference, otherwise the character with octal code 113
+  \377   might be a back reference, otherwise the byte consisting entirely of 1 bits
+  \81    is either a back reference, or a binary zero followed by the two characters "8" and "1"
+</pre>
+Note that octal values of 100 or greater must not be introduced by a leading
+zero, because no more than three octal digits are ever read.
+</P>
+<P>
+All the sequences that define a single character value can be used both inside
+and outside character classes. In addition, inside a character class, \b is
+interpreted as the backspace character (hex 08).
+</P>
+<P>
+\N is not allowed in a character class. \B, \R, and \X are not special
+inside a character class. Like other unrecognized escape sequences, they are
+treated as the literal characters "B", "R", and "X" by default, but cause an
+error if the PCRE_EXTRA option is set. Outside a character class, these
+sequences have different meanings.
+</P>
+<br><b>
+Unsupported escape sequences
+</b><br>
+<P>
+In Perl, the sequences \l, \L, \u, and \U are recognized by its string
+handler and used to modify the case of following characters. By default, PCRE
+does not support these escape sequences. However, if the PCRE_JAVASCRIPT_COMPAT
+option is set, \U matches a "U" character, and \u can be used to define a
+character by code point, as described in the previous section.
+</P>
+<br><b>
+Absolute and relative back references
+</b><br>
+<P>
+The sequence \g followed by an unsigned or a negative number, optionally
+enclosed in braces, is an absolute or relative back reference. A named back
+reference can be coded as \g{name}. Back references are discussed
+<a href="#backreferences">later,</a>
+following the discussion of
+<a href="#subpattern">parenthesized subpatterns.</a>
+</P>
+<br><b>
+Absolute and relative subroutine calls
+</b><br>
+<P>
+For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or
+a number enclosed either in angle brackets or single quotes, is an alternative
+syntax for referencing a subpattern as a "subroutine". Details are discussed
+<a href="#onigurumasubroutines">later.</a>
+Note that \g{...} (Perl syntax) and \g&#60;...&#62; (Oniguruma syntax) are <i>not</i>
+synonymous. The former is a back reference; the latter is a
+<a href="#subpatternsassubroutines">subroutine</a>
+call.
+<a name="genericchartypes"></a></P>
+<br><b>
+Generic character types
+</b><br>
+<P>
+Another use of backslash is for specifying generic character types:
+<pre>
+  \d     any decimal digit
+  \D     any character that is not a decimal digit
+  \h     any horizontal whitespace character
+  \H     any character that is not a horizontal whitespace character
+  \s     any whitespace character
+  \S     any character that is not a whitespace character
+  \v     any vertical whitespace character
+  \V     any character that is not a vertical whitespace character
+  \w     any "word" character
+  \W     any "non-word" character
+</pre>
+There is also the single sequence \N, which matches a non-newline character.
+This is the same as
+<a href="#fullstopdot">the "." metacharacter</a>
+when PCRE_DOTALL is not set. Perl also uses \N to match characters by name;
+PCRE does not support this.
+</P>
+<P>
+Each pair of lower and upper case escape sequences partitions the complete set
+of characters into two disjoint sets. Any given character matches one, and only
+one, of each pair. The sequences can appear both inside and outside character
+classes. They each match one character of the appropriate type. If the current
+matching point is at the end of the subject string, all of them fail, because
+there is no character to match.
+</P>
+<P>
+For compatibility with Perl, \s does not match the VT character (code 11).
+This makes it different from the the POSIX "space" class. The \s characters
+are HT (9), LF (10), FF (12), CR (13), and space (32). If "use locale;" is
+included in a Perl script, \s may match the VT character. In PCRE, it never
+does.
+</P>
+<P>
+A "word" character is an underscore or any character that is a letter or digit.
+By default, the definition of letters and digits is controlled by PCRE's
+low-valued character tables, and may vary if locale-specific matching is taking
+place (see
+<a href="pcreapi.html#localesupport">"Locale support"</a>
+in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page). For example, in a French locale such as "fr_FR" in Unix-like systems,
+or "french" in Windows, some character codes greater than 128 are used for
+accented letters, and these are then matched by \w. The use of locales with
+Unicode is discouraged.
+</P>
+<P>
+By default, in UTF-8 mode, characters with values greater than 128 never match
+\d, \s, or \w, and always match \D, \S, and \W. These sequences retain
+their original meanings from before UTF-8 support was available, mainly for
+efficiency reasons. However, if PCRE is compiled with Unicode property support,
+and the PCRE_UCP option is set, the behaviour is changed so that Unicode
+properties are used to determine character types, as follows:
+<pre>
+  \d  any character that \p{Nd} matches (decimal digit)
+  \s  any character that \p{Z} matches, plus HT, LF, FF, CR
+  \w  any character that \p{L} or \p{N} matches, plus underscore
+</pre>
+The upper case escapes match the inverse sets of characters. Note that \d
+matches only decimal digits, whereas \w matches any Unicode digit, as well as
+any Unicode letter, and underscore. Note also that PCRE_UCP affects \b, and
+\B because they are defined in terms of \w and \W. Matching these sequences
+is noticeably slower when PCRE_UCP is set.
+</P>
+<P>
+The sequences \h, \H, \v, and \V are features that were added to Perl at
+release 5.10. In contrast to the other sequences, which match only ASCII
+characters by default, these always match certain high-valued codepoints in
+UTF-8 mode, whether or not PCRE_UCP is set. The horizontal space characters
+are:
+<pre>
+  U+0009     Horizontal tab
+  U+0020     Space
+  U+00A0     Non-break space
+  U+1680     Ogham space mark
+  U+180E     Mongolian vowel separator
+  U+2000     En quad
+  U+2001     Em quad
+  U+2002     En space
+  U+2003     Em space
+  U+2004     Three-per-em space
+  U+2005     Four-per-em space
+  U+2006     Six-per-em space
+  U+2007     Figure space
+  U+2008     Punctuation space
+  U+2009     Thin space
+  U+200A     Hair space
+  U+202F     Narrow no-break space
+  U+205F     Medium mathematical space
+  U+3000     Ideographic space
+</pre>
+The vertical space characters are:
+<pre>
+  U+000A     Linefeed
+  U+000B     Vertical tab
+  U+000C     Formfeed
+  U+000D     Carriage return
+  U+0085     Next line
+  U+2028     Line separator
+  U+2029     Paragraph separator
+<a name="newlineseq"></a></PRE>
+</P>
+<br><b>
+Newline sequences
+</b><br>
+<P>
+Outside a character class, by default, the escape sequence \R matches any
+Unicode newline sequence. In non-UTF-8 mode \R is equivalent to the following:
+<pre>
+  (?&#62;\r\n|\n|\x0b|\f|\r|\x85)
+</pre>
+This is an example of an "atomic group", details of which are given
+<a href="#atomicgroup">below.</a>
+This particular group matches either the two-character sequence CR followed by
+LF, or one of the single characters LF (linefeed, U+000A), VT (vertical tab,
+U+000B), FF (formfeed, U+000C), CR (carriage return, U+000D), or NEL (next
+line, U+0085). The two-character sequence is treated as a single unit that
+cannot be split.
+</P>
+<P>
+In UTF-8 mode, two additional characters whose codepoints are greater than 255
+are added: LS (line separator, U+2028) and PS (paragraph separator, U+2029).
+Unicode character property support is not needed for these characters to be
+recognized.
+</P>
+<P>
+It is possible to restrict \R to match only CR, LF, or CRLF (instead of the
+complete set of Unicode line endings) by setting the option PCRE_BSR_ANYCRLF
+either at compile time or when the pattern is matched. (BSR is an abbrevation
+for "backslash R".) This can be made the default when PCRE is built; if this is
+the case, the other behaviour can be requested via the PCRE_BSR_UNICODE option.
+It is also possible to specify these settings by starting a pattern string with
+one of the following sequences:
+<pre>
+  (*BSR_ANYCRLF)   CR, LF, or CRLF only
+  (*BSR_UNICODE)   any Unicode newline sequence
+</pre>
+These override the default and the options given to <b>pcre_compile()</b> or
+<b>pcre_compile2()</b>, but they can be overridden by options given to
+<b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>. Note that these special settings,
+which are not Perl-compatible, are recognized only at the very start of a
+pattern, and that they must be in upper case. If more than one of them is
+present, the last one is used. They can be combined with a change of newline
+convention; for example, a pattern can start with:
+<pre>
+  (*ANY)(*BSR_ANYCRLF)
+</pre>
+They can also be combined with the (*UTF8) or (*UCP) special sequences. Inside
+a character class, \R is treated as an unrecognized escape sequence, and so
+matches the letter "R" by default, but causes an error if PCRE_EXTRA is set.
+<a name="uniextseq"></a></P>
+<br><b>
+Unicode character properties
+</b><br>
+<P>
+When PCRE is built with Unicode character property support, three additional
+escape sequences that match characters with specific properties are available.
+When not in UTF-8 mode, these sequences are of course limited to testing
+characters whose codepoints are less than 256, but they do work in this mode.
+The extra escape sequences are:
+<pre>
+  \p{<i>xx</i>}   a character with the <i>xx</i> property
+  \P{<i>xx</i>}   a character without the <i>xx</i> property
+  \X       an extended Unicode sequence
+</pre>
+The property names represented by <i>xx</i> above are limited to the Unicode
+script names, the general category properties, "Any", which matches any
+character (including newline), and some special PCRE properties (described
+in the
+<a href="#extraprops">next section).</a>
+Other Perl properties such as "InMusicalSymbols" are not currently supported by
+PCRE. Note that \P{Any} does not match any characters, so always causes a
+match failure.
+</P>
+<P>
+Sets of Unicode characters are defined as belonging to certain scripts. A
+character from one of these sets can be matched using a script name. For
+example:
+<pre>
+  \p{Greek}
+  \P{Han}
+</pre>
+Those that are not part of an identified script are lumped together as
+"Common". The current list of scripts is:
+</P>
+<P>
+Arabic,
+Armenian,
+Avestan,
+Balinese,
+Bamum,
+Bengali,
+Bopomofo,
+Braille,
+Buginese,
+Buhid,
+Canadian_Aboriginal,
+Carian,
+Cham,
+Cherokee,
+Common,
+Coptic,
+Cuneiform,
+Cypriot,
+Cyrillic,
+Deseret,
+Devanagari,
+Egyptian_Hieroglyphs,
+Ethiopic,
+Georgian,
+Glagolitic,
+Gothic,
+Greek,
+Gujarati,
+Gurmukhi,
+Han,
+Hangul,
+Hanunoo,
+Hebrew,
+Hiragana,
+Imperial_Aramaic,
+Inherited,
+Inscriptional_Pahlavi,
+Inscriptional_Parthian,
+Javanese,
+Kaithi,
+Kannada,
+Katakana,
+Kayah_Li,
+Kharoshthi,
+Khmer,
+Lao,
+Latin,
+Lepcha,
+Limbu,
+Linear_B,
+Lisu,
+Lycian,
+Lydian,
+Malayalam,
+Meetei_Mayek,
+Mongolian,
+Myanmar,
+New_Tai_Lue,
+Nko,
+Ogham,
+Old_Italic,
+Old_Persian,
+Old_South_Arabian,
+Old_Turkic,
+Ol_Chiki,
+Oriya,
+Osmanya,
+Phags_Pa,
+Phoenician,
+Rejang,
+Runic,
+Samaritan,
+Saurashtra,
+Shavian,
+Sinhala,
+Sundanese,
+Syloti_Nagri,
+Syriac,
+Tagalog,
+Tagbanwa,
+Tai_Le,
+Tai_Tham,
+Tai_Viet,
+Tamil,
+Telugu,
+Thaana,
+Thai,
+Tibetan,
+Tifinagh,
+Ugaritic,
+Vai,
+Yi.
+</P>
+<P>
+Each character has exactly one Unicode general category property, specified by
+a two-letter abbreviation. For compatibility with Perl, negation can be
+specified by including a circumflex between the opening brace and the property
+name. For example, \p{^Lu} is the same as \P{Lu}.
+</P>
+<P>
+If only one letter is specified with \p or \P, it includes all the general
+category properties that start with that letter. In this case, in the absence
+of negation, the curly brackets in the escape sequence are optional; these two
+examples have the same effect:
+<pre>
+  \p{L}
+  \pL
+</pre>
+The following general category property codes are supported:
+<pre>
+  C     Other
+  Cc    Control
+  Cf    Format
+  Cn    Unassigned
+  Co    Private use
+  Cs    Surrogate
+
+  L     Letter
+  Ll    Lower case letter
+  Lm    Modifier letter
+  Lo    Other letter
+  Lt    Title case letter
+  Lu    Upper case letter
+
+  M     Mark
+  Mc    Spacing mark
+  Me    Enclosing mark
+  Mn    Non-spacing mark
+
+  N     Number
+  Nd    Decimal number
+  Nl    Letter number
+  No    Other number
+
+  P     Punctuation
+  Pc    Connector punctuation
+  Pd    Dash punctuation
+  Pe    Close punctuation
+  Pf    Final punctuation
+  Pi    Initial punctuation
+  Po    Other punctuation
+  Ps    Open punctuation
+
+  S     Symbol
+  Sc    Currency symbol
+  Sk    Modifier symbol
+  Sm    Mathematical symbol
+  So    Other symbol
+
+  Z     Separator
+  Zl    Line separator
+  Zp    Paragraph separator
+  Zs    Space separator
+</pre>
+The special property L& is also supported: it matches a character that has
+the Lu, Ll, or Lt property, in other words, a letter that is not classified as
+a modifier or "other".
+</P>
+<P>
+The Cs (Surrogate) property applies only to characters in the range U+D800 to
+U+DFFF. Such characters are not valid in UTF-8 strings (see RFC 3629) and so
+cannot be tested by PCRE, unless UTF-8 validity checking has been turned off
+(see the discussion of PCRE_NO_UTF8_CHECK in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+page). Perl does not support the Cs property.
+</P>
+<P>
+The long synonyms for property names that Perl supports (such as \p{Letter})
+are not supported by PCRE, nor is it permitted to prefix any of these
+properties with "Is".
+</P>
+<P>
+No character that is in the Unicode table has the Cn (unassigned) property.
+Instead, this property is assumed for any code point that is not in the
+Unicode table.
+</P>
+<P>
+Specifying caseless matching does not affect these escape sequences. For
+example, \p{Lu} always matches only upper case letters.
+</P>
+<P>
+The \X escape matches any number of Unicode characters that form an extended
+Unicode sequence. \X is equivalent to
+<pre>
+  (?&#62;\PM\pM*)
+</pre>
+That is, it matches a character without the "mark" property, followed by zero
+or more characters with the "mark" property, and treats the sequence as an
+atomic group
+<a href="#atomicgroup">(see below).</a>
+Characters with the "mark" property are typically accents that affect the
+preceding character. None of them have codepoints less than 256, so in
+non-UTF-8 mode \X matches any one character.
+</P>
+<P>
+Note that recent versions of Perl have changed \X to match what Unicode calls
+an "extended grapheme cluster", which has a more complicated definition.
+</P>
+<P>
+Matching characters by Unicode property is not fast, because PCRE has to search
+a structure that contains data for over fifteen thousand characters. That is
+why the traditional escape sequences such as \d and \w do not use Unicode
+properties in PCRE by default, though you can make them do so by setting the
+PCRE_UCP option for <b>pcre_compile()</b> or by starting the pattern with
+(*UCP).
+<a name="extraprops"></a></P>
+<br><b>
+PCRE's additional properties
+</b><br>
+<P>
+As well as the standard Unicode properties described in the previous
+section, PCRE supports four more that make it possible to convert traditional
+escape sequences such as \w and \s and POSIX character classes to use Unicode
+properties. PCRE uses these non-standard, non-Perl properties internally when
+PCRE_UCP is set. They are:
+<pre>
+  Xan   Any alphanumeric character
+  Xps   Any POSIX space character
+  Xsp   Any Perl space character
+  Xwd   Any Perl "word" character
+</pre>
+Xan matches characters that have either the L (letter) or the N (number)
+property. Xps matches the characters tab, linefeed, vertical tab, formfeed, or
+carriage return, and any other character that has the Z (separator) property.
+Xsp is the same as Xps, except that vertical tab is excluded. Xwd matches the
+same characters as Xan, plus underscore.
+<a name="resetmatchstart"></a></P>
+<br><b>
+Resetting the match start
+</b><br>
+<P>
+The escape sequence \K causes any previously matched characters not to be
+included in the final matched sequence. For example, the pattern:
+<pre>
+  foo\Kbar
+</pre>
+matches "foobar", but reports that it has matched "bar". This feature is
+similar to a lookbehind assertion
+<a href="#lookbehind">(described below).</a>
+However, in this case, the part of the subject before the real match does not
+have to be of fixed length, as lookbehind assertions do. The use of \K does
+not interfere with the setting of
+<a href="#subpattern">captured substrings.</a>
+For example, when the pattern
+<pre>
+  (foo)\Kbar
+</pre>
+matches "foobar", the first substring is still set to "foo".
+</P>
+<P>
+Perl documents that the use of \K within assertions is "not well defined". In
+PCRE, \K is acted upon when it occurs inside positive assertions, but is
+ignored in negative assertions.
+<a name="smallassertions"></a></P>
+<br><b>
+Simple assertions
+</b><br>
+<P>
+The final use of backslash is for certain simple assertions. An assertion
+specifies a condition that has to be met at a particular point in a match,
+without consuming any characters from the subject string. The use of
+subpatterns for more complicated assertions is described
+<a href="#bigassertions">below.</a>
+The backslashed assertions are:
+<pre>
+  \b     matches at a word boundary
+  \B     matches when not at a word boundary
+  \A     matches at the start of the subject
+  \Z     matches at the end of the subject
+          also matches before a newline at the end of the subject
+  \z     matches only at the end of the subject
+  \G     matches at the first matching position in the subject
+</pre>
+Inside a character class, \b has a different meaning; it matches the backspace
+character. If any other of these assertions appears in a character class, by
+default it matches the corresponding literal character (for example, \B
+matches the letter B). However, if the PCRE_EXTRA option is set, an "invalid
+escape sequence" error is generated instead.
+</P>
+<P>
+A word boundary is a position in the subject string where the current character
+and the previous character do not both match \w or \W (i.e. one matches
+\w and the other matches \W), or the start or end of the string if the
+first or last character matches \w, respectively. In UTF-8 mode, the meanings
+of \w and \W can be changed by setting the PCRE_UCP option. When this is
+done, it also affects \b and \B. Neither PCRE nor Perl has a separate "start
+of word" or "end of word" metasequence. However, whatever follows \b normally
+determines which it is. For example, the fragment \ba matches "a" at the start
+of a word.
+</P>
+<P>
+The \A, \Z, and \z assertions differ from the traditional circumflex and
+dollar (described in the next section) in that they only ever match at the very
+start and end of the subject string, whatever options are set. Thus, they are
+independent of multiline mode. These three assertions are not affected by the
+PCRE_NOTBOL or PCRE_NOTEOL options, which affect only the behaviour of the
+circumflex and dollar metacharacters. However, if the <i>startoffset</i>
+argument of <b>pcre_exec()</b> is non-zero, indicating that matching is to start
+at a point other than the beginning of the subject, \A can never match. The
+difference between \Z and \z is that \Z matches before a newline at the end
+of the string as well as at the very end, whereas \z matches only at the end.
+</P>
+<P>
+The \G assertion is true only when the current matching position is at the
+start point of the match, as specified by the <i>startoffset</i> argument of
+<b>pcre_exec()</b>. It differs from \A when the value of <i>startoffset</i> is
+non-zero. By calling <b>pcre_exec()</b> multiple times with appropriate
+arguments, you can mimic Perl's /g option, and it is in this kind of
+implementation where \G can be useful.
+</P>
+<P>
+Note, however, that PCRE's interpretation of \G, as the start of the current
+match, is subtly different from Perl's, which defines it as the end of the
+previous match. In Perl, these can be different when the previously matched
+string was empty. Because PCRE does just one match at a time, it cannot
+reproduce this behaviour.
+</P>
+<P>
+If all the alternatives of a pattern begin with \G, the expression is anchored
+to the starting match position, and the "anchored" flag is set in the compiled
+regular expression.
+</P>
+<br><a name="SEC5" href="#TOC1">CIRCUMFLEX AND DOLLAR</a><br>
+<P>
+Outside a character class, in the default matching mode, the circumflex
+character is an assertion that is true only if the current matching point is
+at the start of the subject string. If the <i>startoffset</i> argument of
+<b>pcre_exec()</b> is non-zero, circumflex can never match if the PCRE_MULTILINE
+option is unset. Inside a character class, circumflex has an entirely different
+meaning
+<a href="#characterclass">(see below).</a>
+</P>
+<P>
+Circumflex need not be the first character of the pattern if a number of
+alternatives are involved, but it should be the first thing in each alternative
+in which it appears if the pattern is ever to match that branch. If all
+possible alternatives start with a circumflex, that is, if the pattern is
+constrained to match only at the start of the subject, it is said to be an
+"anchored" pattern. (There are also other constructs that can cause a pattern
+to be anchored.)
+</P>
+<P>
+A dollar character is an assertion that is true only if the current matching
+point is at the end of the subject string, or immediately before a newline
+at the end of the string (by default). Dollar need not be the last character of
+the pattern if a number of alternatives are involved, but it should be the last
+item in any branch in which it appears. Dollar has no special meaning in a
+character class.
+</P>
+<P>
+The meaning of dollar can be changed so that it matches only at the very end of
+the string, by setting the PCRE_DOLLAR_ENDONLY option at compile time. This
+does not affect the \Z assertion.
+</P>
+<P>
+The meanings of the circumflex and dollar characters are changed if the
+PCRE_MULTILINE option is set. When this is the case, a circumflex matches
+immediately after internal newlines as well as at the start of the subject
+string. It does not match after a newline that ends the string. A dollar
+matches before any newlines in the string, as well as at the very end, when
+PCRE_MULTILINE is set. When newline is specified as the two-character
+sequence CRLF, isolated CR and LF characters do not indicate newlines.
+</P>
+<P>
+For example, the pattern /^abc$/ matches the subject string "def\nabc" (where
+\n represents a newline) in multiline mode, but not otherwise. Consequently,
+patterns that are anchored in single line mode because all branches start with
+^ are not anchored in multiline mode, and a match for circumflex is possible
+when the <i>startoffset</i> argument of <b>pcre_exec()</b> is non-zero. The
+PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE is set.
+</P>
+<P>
+Note that the sequences \A, \Z, and \z can be used to match the start and
+end of the subject in both modes, and if all branches of a pattern start with
+\A it is always anchored, whether or not PCRE_MULTILINE is set.
+<a name="fullstopdot"></a></P>
+<br><a name="SEC6" href="#TOC1">FULL STOP (PERIOD, DOT) AND \N</a><br>
+<P>
+Outside a character class, a dot in the pattern matches any one character in
+the subject string except (by default) a character that signifies the end of a
+line. In UTF-8 mode, the matched character may be more than one byte long.
+</P>
+<P>
+When a line ending is defined as a single character, dot never matches that
+character; when the two-character sequence CRLF is used, dot does not match CR
+if it is immediately followed by LF, but otherwise it matches all characters
+(including isolated CRs and LFs). When any Unicode line endings are being
+recognized, dot does not match CR or LF or any of the other line ending
+characters.
+</P>
+<P>
+The behaviour of dot with regard to newlines can be changed. If the PCRE_DOTALL
+option is set, a dot matches any one character, without exception. If the
+two-character sequence CRLF is present in the subject string, it takes two dots
+to match it.
+</P>
+<P>
+The handling of dot is entirely independent of the handling of circumflex and
+dollar, the only relationship being that they both involve newlines. Dot has no
+special meaning in a character class.
+</P>
+<P>
+The escape sequence \N behaves like a dot, except that it is not affected by
+the PCRE_DOTALL option. In other words, it matches any character except one
+that signifies the end of a line. Perl also uses \N to match characters by
+name; PCRE does not support this.
+</P>
+<br><a name="SEC7" href="#TOC1">MATCHING A SINGLE BYTE</a><br>
+<P>
+Outside a character class, the escape sequence \C matches any one byte, both
+in and out of UTF-8 mode. Unlike a dot, it always matches line-ending
+characters. The feature is provided in Perl in order to match individual bytes
+in UTF-8 mode, but it is unclear how it can usefully be used. Because \C
+breaks up characters into individual bytes, matching one byte with \C in UTF-8
+mode means that the rest of the string may start with a malformed UTF-8
+character. This has undefined results, because PCRE assumes that it is dealing
+with valid UTF-8 strings (and by default it checks this at the start of
+processing unless the PCRE_NO_UTF8_CHECK option is used).
+</P>
+<P>
+PCRE does not allow \C to appear in lookbehind assertions
+<a href="#lookbehind">(described below)</a>
+in UTF-8 mode, because this would make it impossible to calculate the length of
+the lookbehind.
+</P>
+<P>
+In general, the \C escape sequence is best avoided in UTF-8 mode. However, one
+way of using it that avoids the problem of malformed UTF-8 characters is to
+use a lookahead to check the length of the next character, as in this pattern
+(ignore white space and line breaks):
+<pre>
+  (?| (?=[\x00-\x7f])(\C) |
+      (?=[\x80-\x{7ff}])(\C)(\C) |
+      (?=[\x{800}-\x{ffff}])(\C)(\C)(\C) |
+      (?=[\x{10000}-\x{1fffff}])(\C)(\C)(\C)(\C))
+</pre>
+A group that starts with (?| resets the capturing parentheses numbers in each
+alternative (see
+<a href="#dupsubpatternnumber">"Duplicate Subpattern Numbers"</a>
+below). The assertions at the start of each branch check the next UTF-8
+character for values whose encoding uses 1, 2, 3, or 4 bytes, respectively. The
+character's individual bytes are then captured by the appropriate number of
+groups.
+<a name="characterclass"></a></P>
+<br><a name="SEC8" href="#TOC1">SQUARE BRACKETS AND CHARACTER CLASSES</a><br>
+<P>
+An opening square bracket introduces a character class, terminated by a closing
+square bracket. A closing square bracket on its own is not special by default.
+However, if the PCRE_JAVASCRIPT_COMPAT option is set, a lone closing square
+bracket causes a compile-time error. If a closing square bracket is required as
+a member of the class, it should be the first data character in the class
+(after an initial circumflex, if present) or escaped with a backslash.
+</P>
+<P>
+A character class matches a single character in the subject. In UTF-8 mode, the
+character may be more than one byte long. A matched character must be in the
+set of characters defined by the class, unless the first character in the class
+definition is a circumflex, in which case the subject character must not be in
+the set defined by the class. If a circumflex is actually required as a member
+of the class, ensure it is not the first character, or escape it with a
+backslash.
+</P>
+<P>
+For example, the character class [aeiou] matches any lower case vowel, while
+[^aeiou] matches any character that is not a lower case vowel. Note that a
+circumflex is just a convenient notation for specifying the characters that
+are in the class by enumerating those that are not. A class that starts with a
+circumflex is not an assertion; it still consumes a character from the subject
+string, and therefore it fails if the current pointer is at the end of the
+string.
+</P>
+<P>
+In UTF-8 mode, characters with values greater than 255 can be included in a
+class as a literal string of bytes, or by using the \x{ escaping mechanism.
+</P>
+<P>
+When caseless matching is set, any letters in a class represent both their
+upper case and lower case versions, so for example, a caseless [aeiou] matches
+"A" as well as "a", and a caseless [^aeiou] does not match "A", whereas a
+caseful version would. In UTF-8 mode, PCRE always understands the concept of
+case for characters whose values are less than 128, so caseless matching is
+always possible. For characters with higher values, the concept of case is
+supported if PCRE is compiled with Unicode property support, but not otherwise.
+If you want to use caseless matching in UTF8-mode for characters 128 and above,
+you must ensure that PCRE is compiled with Unicode property support as well as
+with UTF-8 support.
+</P>
+<P>
+Characters that might indicate line breaks are never treated in any special way
+when matching character classes, whatever line-ending sequence is in use, and
+whatever setting of the PCRE_DOTALL and PCRE_MULTILINE options is used. A class
+such as [^a] always matches one of these characters.
+</P>
+<P>
+The minus (hyphen) character can be used to specify a range of characters in a
+character class. For example, [d-m] matches any letter between d and m,
+inclusive. If a minus character is required in a class, it must be escaped with
+a backslash or appear in a position where it cannot be interpreted as
+indicating a range, typically as the first or last character in the class.
+</P>
+<P>
+It is not possible to have the literal character "]" as the end character of a
+range. A pattern such as [W-]46] is interpreted as a class of two characters
+("W" and "-") followed by a literal string "46]", so it would match "W46]" or
+"-46]". However, if the "]" is escaped with a backslash it is interpreted as
+the end of range, so [W-\]46] is interpreted as a class containing a range
+followed by two other characters. The octal or hexadecimal representation of
+"]" can also be used to end a range.
+</P>
+<P>
+Ranges operate in the collating sequence of character values. They can also be
+used for characters specified numerically, for example [\000-\037]. In UTF-8
+mode, ranges can include characters whose values are greater than 255, for
+example [\x{100}-\x{2ff}].
+</P>
+<P>
+If a range that includes letters is used when caseless matching is set, it
+matches the letters in either case. For example, [W-c] is equivalent to
+[][\\^_`wxyzabc], matched caselessly, and in non-UTF-8 mode, if character
+tables for a French locale are in use, [\xc8-\xcb] matches accented E
+characters in both cases. In UTF-8 mode, PCRE supports the concept of case for
+characters with values greater than 128 only when it is compiled with Unicode
+property support.
+</P>
+<P>
+The character escape sequences \d, \D, \h, \H, \p, \P, \s, \S, \v,
+\V, \w, and \W may appear in a character class, and add the characters that
+they match to the class. For example, [\dABCDEF] matches any hexadecimal
+digit. In UTF-8 mode, the PCRE_UCP option affects the meanings of \d, \s, \w
+and their upper case partners, just as it does when they appear outside a
+character class, as described in the section entitled
+<a href="#genericchartypes">"Generic character types"</a>
+above. The escape sequence \b has a different meaning inside a character
+class; it matches the backspace character. The sequences \B, \N, \R, and \X
+are not special inside a character class. Like any other unrecognized escape
+sequences, they are treated as the literal characters "B", "N", "R", and "X" by
+default, but cause an error if the PCRE_EXTRA option is set.
+</P>
+<P>
+A circumflex can conveniently be used with the upper case character types to
+specify a more restricted set of characters than the matching lower case type.
+For example, the class [^\W_] matches any letter or digit, but not underscore,
+whereas [\w] includes underscore. A positive character class should be read as
+"something OR something OR ..." and a negative class as "NOT something AND NOT
+something AND NOT ...".
+</P>
+<P>
+The only metacharacters that are recognized in character classes are backslash,
+hyphen (only where it can be interpreted as specifying a range), circumflex
+(only at the start), opening square bracket (only when it can be interpreted as
+introducing a POSIX class name - see the next section), and the terminating
+closing square bracket. However, escaping other non-alphanumeric characters
+does no harm.
+</P>
+<br><a name="SEC9" href="#TOC1">POSIX CHARACTER CLASSES</a><br>
+<P>
+Perl supports the POSIX notation for character classes. This uses names
+enclosed by [: and :] within the enclosing square brackets. PCRE also supports
+this notation. For example,
+<pre>
+  [01[:alpha:]%]
+</pre>
+matches "0", "1", any alphabetic character, or "%". The supported class names
+are:
+<pre>
+  alnum    letters and digits
+  alpha    letters
+  ascii    character codes 0 - 127
+  blank    space or tab only
+  cntrl    control characters
+  digit    decimal digits (same as \d)
+  graph    printing characters, excluding space
+  lower    lower case letters
+  print    printing characters, including space
+  punct    printing characters, excluding letters and digits and space
+  space    white space (not quite the same as \s)
+  upper    upper case letters
+  word     "word" characters (same as \w)
+  xdigit   hexadecimal digits
+</pre>
+The "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13), and
+space (32). Notice that this list includes the VT character (code 11). This
+makes "space" different to \s, which does not include VT (for Perl
+compatibility).
+</P>
+<P>
+The name "word" is a Perl extension, and "blank" is a GNU extension from Perl
+5.8. Another Perl extension is negation, which is indicated by a ^ character
+after the colon. For example,
+<pre>
+  [12[:^digit:]]
+</pre>
+matches "1", "2", or any non-digit. PCRE (and Perl) also recognize the POSIX
+syntax [.ch.] and [=ch=] where "ch" is a "collating element", but these are not
+supported, and an error is given if they are encountered.
+</P>
+<P>
+By default, in UTF-8 mode, characters with values greater than 128 do not match
+any of the POSIX character classes. However, if the PCRE_UCP option is passed
+to <b>pcre_compile()</b>, some of the classes are changed so that Unicode
+character properties are used. This is achieved by replacing the POSIX classes
+by other sequences, as follows:
+<pre>
+  [:alnum:]  becomes  \p{Xan}
+  [:alpha:]  becomes  \p{L}
+  [:blank:]  becomes  \h
+  [:digit:]  becomes  \p{Nd}
+  [:lower:]  becomes  \p{Ll}
+  [:space:]  becomes  \p{Xps}
+  [:upper:]  becomes  \p{Lu}
+  [:word:]   becomes  \p{Xwd}
+</pre>
+Negated versions, such as [:^alpha:] use \P instead of \p. The other POSIX
+classes are unchanged, and match only characters with code points less than
+128.
+</P>
+<br><a name="SEC10" href="#TOC1">VERTICAL BAR</a><br>
+<P>
+Vertical bar characters are used to separate alternative patterns. For example,
+the pattern
+<pre>
+  gilbert|sullivan
+</pre>
+matches either "gilbert" or "sullivan". Any number of alternatives may appear,
+and an empty alternative is permitted (matching the empty string). The matching
+process tries each alternative in turn, from left to right, and the first one
+that succeeds is used. If the alternatives are within a subpattern
+<a href="#subpattern">(defined below),</a>
+"succeeds" means matching the rest of the main pattern as well as the
+alternative in the subpattern.
+</P>
+<br><a name="SEC11" href="#TOC1">INTERNAL OPTION SETTING</a><br>
+<P>
+The settings of the PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
+PCRE_EXTENDED options (which are Perl-compatible) can be changed from within
+the pattern by a sequence of Perl option letters enclosed between "(?" and ")".
+The option letters are
+<pre>
+  i  for PCRE_CASELESS
+  m  for PCRE_MULTILINE
+  s  for PCRE_DOTALL
+  x  for PCRE_EXTENDED
+</pre>
+For example, (?im) sets caseless, multiline matching. It is also possible to
+unset these options by preceding the letter with a hyphen, and a combined
+setting and unsetting such as (?im-sx), which sets PCRE_CASELESS and
+PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED, is also
+permitted. If a letter appears both before and after the hyphen, the option is
+unset.
+</P>
+<P>
+The PCRE-specific options PCRE_DUPNAMES, PCRE_UNGREEDY, and PCRE_EXTRA can be
+changed in the same way as the Perl-compatible options by using the characters
+J, U and X respectively.
+</P>
+<P>
+When one of these option changes occurs at top level (that is, not inside
+subpattern parentheses), the change applies to the remainder of the pattern
+that follows. If the change is placed right at the start of a pattern, PCRE
+extracts it into the global options (and it will therefore show up in data
+extracted by the <b>pcre_fullinfo()</b> function).
+</P>
+<P>
+An option change within a subpattern (see below for a description of
+subpatterns) affects only that part of the subpattern that follows it, so
+<pre>
+  (a(?i)b)c
+</pre>
+matches abc and aBc and no other strings (assuming PCRE_CASELESS is not used).
+By this means, options can be made to have different settings in different
+parts of the pattern. Any changes made in one alternative do carry on
+into subsequent branches within the same subpattern. For example,
+<pre>
+  (a(?i)b|c)
+</pre>
+matches "ab", "aB", "c", and "C", even though when matching "C" the first
+branch is abandoned before the option setting. This is because the effects of
+option settings happen at compile time. There would be some very weird
+behaviour otherwise.
+</P>
+<P>
+<b>Note:</b> There are other PCRE-specific options that can be set by the
+application when the compile or match functions are called. In some cases the
+pattern can contain special leading sequences such as (*CRLF) to override what
+the application has set or what has been defaulted. Details are given in the
+section entitled
+<a href="#newlineseq">"Newline sequences"</a>
+above. There are also the (*UTF8) and (*UCP) leading sequences that can be used
+to set UTF-8 and Unicode property modes; they are equivalent to setting the
+PCRE_UTF8 and the PCRE_UCP options, respectively.
+<a name="subpattern"></a></P>
+<br><a name="SEC12" href="#TOC1">SUBPATTERNS</a><br>
+<P>
+Subpatterns are delimited by parentheses (round brackets), which can be nested.
+Turning part of a pattern into a subpattern does two things:
+<br>
+<br>
+1. It localizes a set of alternatives. For example, the pattern
+<pre>
+  cat(aract|erpillar|)
+</pre>
+matches "cataract", "caterpillar", or "cat". Without the parentheses, it would
+match "cataract", "erpillar" or an empty string.
+<br>
+<br>
+2. It sets up the subpattern as a capturing subpattern. This means that, when
+the whole pattern matches, that portion of the subject string that matched the
+subpattern is passed back to the caller via the <i>ovector</i> argument of
+<b>pcre_exec()</b>. Opening parentheses are counted from left to right (starting
+from 1) to obtain numbers for the capturing subpatterns. For example, if the
+string "the red king" is matched against the pattern
+<pre>
+  the ((red|white) (king|queen))
+</pre>
+the captured substrings are "red king", "red", and "king", and are numbered 1,
+2, and 3, respectively.
+</P>
+<P>
+The fact that plain parentheses fulfil two functions is not always helpful.
+There are often times when a grouping subpattern is required without a
+capturing requirement. If an opening parenthesis is followed by a question mark
+and a colon, the subpattern does not do any capturing, and is not counted when
+computing the number of any subsequent capturing subpatterns. For example, if
+the string "the white queen" is matched against the pattern
+<pre>
+  the ((?:red|white) (king|queen))
+</pre>
+the captured substrings are "white queen" and "queen", and are numbered 1 and
+2. The maximum number of capturing subpatterns is 65535.
+</P>
+<P>
+As a convenient shorthand, if any option settings are required at the start of
+a non-capturing subpattern, the option letters may appear between the "?" and
+the ":". Thus the two patterns
+<pre>
+  (?i:saturday|sunday)
+  (?:(?i)saturday|sunday)
+</pre>
+match exactly the same set of strings. Because alternative branches are tried
+from left to right, and options are not reset until the end of the subpattern
+is reached, an option setting in one branch does affect subsequent branches, so
+the above patterns match "SUNDAY" as well as "Saturday".
+<a name="dupsubpatternnumber"></a></P>
+<br><a name="SEC13" href="#TOC1">DUPLICATE SUBPATTERN NUMBERS</a><br>
+<P>
+Perl 5.10 introduced a feature whereby each alternative in a subpattern uses
+the same numbers for its capturing parentheses. Such a subpattern starts with
+(?| and is itself a non-capturing subpattern. For example, consider this
+pattern:
+<pre>
+  (?|(Sat)ur|(Sun))day
+</pre>
+Because the two alternatives are inside a (?| group, both sets of capturing
+parentheses are numbered one. Thus, when the pattern matches, you can look
+at captured substring number one, whichever alternative matched. This construct
+is useful when you want to capture part, but not all, of one of a number of
+alternatives. Inside a (?| group, parentheses are numbered as usual, but the
+number is reset at the start of each branch. The numbers of any capturing
+parentheses that follow the subpattern start after the highest number used in
+any branch. The following example is taken from the Perl documentation. The
+numbers underneath show in which buffer the captured content will be stored.
+<pre>
+  # before  ---------------branch-reset----------- after
+  / ( a )  (?| x ( y ) z | (p (q) r) | (t) u (v) ) ( z ) /x
+  # 1            2         2  3        2     3     4
+</pre>
+A back reference to a numbered subpattern uses the most recent value that is
+set for that number by any subpattern. The following pattern matches "abcabc"
+or "defdef":
+<pre>
+  /(?|(abc)|(def))\1/
+</pre>
+In contrast, a subroutine call to a numbered subpattern always refers to the
+first one in the pattern with the given number. The following pattern matches
+"abcabc" or "defabc":
+<pre>
+  /(?|(abc)|(def))(?1)/
+</pre>
+If a
+<a href="#conditions">condition test</a>
+for a subpattern's having matched refers to a non-unique number, the test is
+true if any of the subpatterns of that number have matched.
+</P>
+<P>
+An alternative approach to using this "branch reset" feature is to use
+duplicate named subpatterns, as described in the next section.
+</P>
+<br><a name="SEC14" href="#TOC1">NAMED SUBPATTERNS</a><br>
+<P>
+Identifying capturing parentheses by number is simple, but it can be very hard
+to keep track of the numbers in complicated regular expressions. Furthermore,
+if an expression is modified, the numbers may change. To help with this
+difficulty, PCRE supports the naming of subpatterns. This feature was not
+added to Perl until release 5.10. Python had the feature earlier, and PCRE
+introduced it at release 4.0, using the Python syntax. PCRE now supports both
+the Perl and the Python syntax. Perl allows identically numbered subpatterns to
+have different names, but PCRE does not.
+</P>
+<P>
+In PCRE, a subpattern can be named in one of three ways: (?&#60;name&#62;...) or
+(?'name'...) as in Perl, or (?P&#60;name&#62;...) as in Python. References to capturing
+parentheses from other parts of the pattern, such as
+<a href="#backreferences">back references,</a>
+<a href="#recursion">recursion,</a>
+and
+<a href="#conditions">conditions,</a>
+can be made by name as well as by number.
+</P>
+<P>
+Names consist of up to 32 alphanumeric characters and underscores. Named
+capturing parentheses are still allocated numbers as well as names, exactly as
+if the names were not present. The PCRE API provides function calls for
+extracting the name-to-number translation table from a compiled pattern. There
+is also a convenience function for extracting a captured substring by name.
+</P>
+<P>
+By default, a name must be unique within a pattern, but it is possible to relax
+this constraint by setting the PCRE_DUPNAMES option at compile time. (Duplicate
+names are also always permitted for subpatterns with the same number, set up as
+described in the previous section.) Duplicate names can be useful for patterns
+where only one instance of the named parentheses can match. Suppose you want to
+match the name of a weekday, either as a 3-letter abbreviation or as the full
+name, and in both cases you want to extract the abbreviation. This pattern
+(ignoring the line breaks) does the job:
+<pre>
+  (?&#60;DN&#62;Mon|Fri|Sun)(?:day)?|
+  (?&#60;DN&#62;Tue)(?:sday)?|
+  (?&#60;DN&#62;Wed)(?:nesday)?|
+  (?&#60;DN&#62;Thu)(?:rsday)?|
+  (?&#60;DN&#62;Sat)(?:urday)?
+</pre>
+There are five capturing substrings, but only one is ever set after a match.
+(An alternative way of solving this problem is to use a "branch reset"
+subpattern, as described in the previous section.)
+</P>
+<P>
+The convenience function for extracting the data by name returns the substring
+for the first (and in this example, the only) subpattern of that name that
+matched. This saves searching to find which numbered subpattern it was.
+</P>
+<P>
+If you make a back reference to a non-unique named subpattern from elsewhere in
+the pattern, the one that corresponds to the first occurrence of the name is
+used. In the absence of duplicate numbers (see the previous section) this is
+the one with the lowest number. If you use a named reference in a condition
+test (see the
+<a href="#conditions">section about conditions</a>
+below), either to check whether a subpattern has matched, or to check for
+recursion, all subpatterns with the same name are tested. If the condition is
+true for any one of them, the overall condition is true. This is the same
+behaviour as testing by number. For further details of the interfaces for
+handling named subpatterns, see the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+documentation.
+</P>
+<P>
+<b>Warning:</b> You cannot use different names to distinguish between two
+subpatterns with the same number because PCRE uses only the numbers when
+matching. For this reason, an error is given at compile time if different names
+are given to subpatterns with the same number. However, you can give the same
+name to subpatterns with the same number, even when PCRE_DUPNAMES is not set.
+</P>
+<br><a name="SEC15" href="#TOC1">REPETITION</a><br>
+<P>
+Repetition is specified by quantifiers, which can follow any of the following
+items:
+<pre>
+  a literal data character
+  the dot metacharacter
+  the \C escape sequence
+  the \X escape sequence (in UTF-8 mode with Unicode properties)
+  the \R escape sequence
+  an escape such as \d or \pL that matches a single character
+  a character class
+  a back reference (see next section)
+  a parenthesized subpattern (including assertions)
+  a subroutine call to a subpattern (recursive or otherwise)
+</pre>
+The general repetition quantifier specifies a minimum and maximum number of
+permitted matches, by giving the two numbers in curly brackets (braces),
+separated by a comma. The numbers must be less than 65536, and the first must
+be less than or equal to the second. For example:
+<pre>
+  z{2,4}
+</pre>
+matches "zz", "zzz", or "zzzz". A closing brace on its own is not a special
+character. If the second number is omitted, but the comma is present, there is
+no upper limit; if the second number and the comma are both omitted, the
+quantifier specifies an exact number of required matches. Thus
+<pre>
+  [aeiou]{3,}
+</pre>
+matches at least 3 successive vowels, but may match many more, while
+<pre>
+  \d{8}
+</pre>
+matches exactly 8 digits. An opening curly bracket that appears in a position
+where a quantifier is not allowed, or one that does not match the syntax of a
+quantifier, is taken as a literal character. For example, {,6} is not a
+quantifier, but a literal string of four characters.
+</P>
+<P>
+In UTF-8 mode, quantifiers apply to UTF-8 characters rather than to individual
+bytes. Thus, for example, \x{100}{2} matches two UTF-8 characters, each of
+which is represented by a two-byte sequence. Similarly, when Unicode property
+support is available, \X{3} matches three Unicode extended sequences, each of
+which may be several bytes long (and they may be of different lengths).
+</P>
+<P>
+The quantifier {0} is permitted, causing the expression to behave as if the
+previous item and the quantifier were not present. This may be useful for
+subpatterns that are referenced as
+<a href="#subpatternsassubroutines">subroutines</a>
+from elsewhere in the pattern (but see also the section entitled
+<a href="#subdefine">"Defining subpatterns for use by reference only"</a>
+below). Items other than subpatterns that have a {0} quantifier are omitted
+from the compiled pattern.
+</P>
+<P>
+For convenience, the three most common quantifiers have single-character
+abbreviations:
+<pre>
+  *    is equivalent to {0,}
+  +    is equivalent to {1,}
+  ?    is equivalent to {0,1}
+</pre>
+It is possible to construct infinite loops by following a subpattern that can
+match no characters with a quantifier that has no upper limit, for example:
+<pre>
+  (a?)*
+</pre>
+Earlier versions of Perl and PCRE used to give an error at compile time for
+such patterns. However, because there are cases where this can be useful, such
+patterns are now accepted, but if any repetition of the subpattern does in fact
+match no characters, the loop is forcibly broken.
+</P>
+<P>
+By default, the quantifiers are "greedy", that is, they match as much as
+possible (up to the maximum number of permitted times), without causing the
+rest of the pattern to fail. The classic example of where this gives problems
+is in trying to match comments in C programs. These appear between /* and */
+and within the comment, individual * and / characters may appear. An attempt to
+match C comments by applying the pattern
+<pre>
+  /\*.*\*/
+</pre>
+to the string
+<pre>
+  /* first comment */  not comment  /* second comment */
+</pre>
+fails, because it matches the entire string owing to the greediness of the .*
+item.
+</P>
+<P>
+However, if a quantifier is followed by a question mark, it ceases to be
+greedy, and instead matches the minimum number of times possible, so the
+pattern
+<pre>
+  /\*.*?\*/
+</pre>
+does the right thing with the C comments. The meaning of the various
+quantifiers is not otherwise changed, just the preferred number of matches.
+Do not confuse this use of question mark with its use as a quantifier in its
+own right. Because it has two uses, it can sometimes appear doubled, as in
+<pre>
+  \d??\d
+</pre>
+which matches one digit by preference, but can match two if that is the only
+way the rest of the pattern matches.
+</P>
+<P>
+If the PCRE_UNGREEDY option is set (an option that is not available in Perl),
+the quantifiers are not greedy by default, but individual ones can be made
+greedy by following them with a question mark. In other words, it inverts the
+default behaviour.
+</P>
+<P>
+When a parenthesized subpattern is quantified with a minimum repeat count that
+is greater than 1 or with a limited maximum, more memory is required for the
+compiled pattern, in proportion to the size of the minimum or maximum.
+</P>
+<P>
+If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent
+to Perl's /s) is set, thus allowing the dot to match newlines, the pattern is
+implicitly anchored, because whatever follows will be tried against every
+character position in the subject string, so there is no point in retrying the
+overall match at any position after the first. PCRE normally treats such a
+pattern as though it were preceded by \A.
+</P>
+<P>
+In cases where it is known that the subject string contains no newlines, it is
+worth setting PCRE_DOTALL in order to obtain this optimization, or
+alternatively using ^ to indicate anchoring explicitly.
+</P>
+<P>
+However, there is one situation where the optimization cannot be used. When .*
+is inside capturing parentheses that are the subject of a back reference
+elsewhere in the pattern, a match at the start may fail where a later one
+succeeds. Consider, for example:
+<pre>
+  (.*)abc\1
+</pre>
+If the subject is "xyz123abc123" the match point is the fourth character. For
+this reason, such a pattern is not implicitly anchored.
+</P>
+<P>
+When a capturing subpattern is repeated, the value captured is the substring
+that matched the final iteration. For example, after
+<pre>
+  (tweedle[dume]{3}\s*)+
+</pre>
+has matched "tweedledum tweedledee" the value of the captured substring is
+"tweedledee". However, if there are nested capturing subpatterns, the
+corresponding captured values may have been set in previous iterations. For
+example, after
+<pre>
+  /(a|(b))+/
+</pre>
+matches "aba" the value of the second captured substring is "b".
+<a name="atomicgroup"></a></P>
+<br><a name="SEC16" href="#TOC1">ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS</a><br>
+<P>
+With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy")
+repetition, failure of what follows normally causes the repeated item to be
+re-evaluated to see if a different number of repeats allows the rest of the
+pattern to match. Sometimes it is useful to prevent this, either to change the
+nature of the match, or to cause it fail earlier than it otherwise might, when
+the author of the pattern knows there is no point in carrying on.
+</P>
+<P>
+Consider, for example, the pattern \d+foo when applied to the subject line
+<pre>
+  123456bar
+</pre>
+After matching all 6 digits and then failing to match "foo", the normal
+action of the matcher is to try again with only 5 digits matching the \d+
+item, and then with 4, and so on, before ultimately failing. "Atomic grouping"
+(a term taken from Jeffrey Friedl's book) provides the means for specifying
+that once a subpattern has matched, it is not to be re-evaluated in this way.
+</P>
+<P>
+If we use atomic grouping for the previous example, the matcher gives up
+immediately on failing to match "foo" the first time. The notation is a kind of
+special parenthesis, starting with (?&#62; as in this example:
+<pre>
+  (?&#62;\d+)foo
+</pre>
+This kind of parenthesis "locks up" the  part of the pattern it contains once
+it has matched, and a failure further into the pattern is prevented from
+backtracking into it. Backtracking past it to previous items, however, works as
+normal.
+</P>
+<P>
+An alternative description is that a subpattern of this type matches the string
+of characters that an identical standalone pattern would match, if anchored at
+the current point in the subject string.
+</P>
+<P>
+Atomic grouping subpatterns are not capturing subpatterns. Simple cases such as
+the above example can be thought of as a maximizing repeat that must swallow
+everything it can. So, while both \d+ and \d+? are prepared to adjust the
+number of digits they match in order to make the rest of the pattern match,
+(?&#62;\d+) can only match an entire sequence of digits.
+</P>
+<P>
+Atomic groups in general can of course contain arbitrarily complicated
+subpatterns, and can be nested. However, when the subpattern for an atomic
+group is just a single repeated item, as in the example above, a simpler
+notation, called a "possessive quantifier" can be used. This consists of an
+additional + character following a quantifier. Using this notation, the
+previous example can be rewritten as
+<pre>
+  \d++foo
+</pre>
+Note that a possessive quantifier can be used with an entire group, for
+example:
+<pre>
+  (abc|xyz){2,3}+
+</pre>
+Possessive quantifiers are always greedy; the setting of the PCRE_UNGREEDY
+option is ignored. They are a convenient notation for the simpler forms of
+atomic group. However, there is no difference in the meaning of a possessive
+quantifier and the equivalent atomic group, though there may be a performance
+difference; possessive quantifiers should be slightly faster.
+</P>
+<P>
+The possessive quantifier syntax is an extension to the Perl 5.8 syntax.
+Jeffrey Friedl originated the idea (and the name) in the first edition of his
+book. Mike McCloskey liked it, so implemented it when he built Sun's Java
+package, and PCRE copied it from there. It ultimately found its way into Perl
+at release 5.10.
+</P>
+<P>
+PCRE has an optimization that automatically "possessifies" certain simple
+pattern constructs. For example, the sequence A+B is treated as A++B because
+there is no point in backtracking into a sequence of A's when B must follow.
+</P>
+<P>
+When a pattern contains an unlimited repeat inside a subpattern that can itself
+be repeated an unlimited number of times, the use of an atomic group is the
+only way to avoid some failing matches taking a very long time indeed. The
+pattern
+<pre>
+  (\D+|&#60;\d+&#62;)*[!?]
+</pre>
+matches an unlimited number of substrings that either consist of non-digits, or
+digits enclosed in &#60;&#62;, followed by either ! or ?. When it matches, it runs
+quickly. However, if it is applied to
+<pre>
+  aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
+</pre>
+it takes a long time before reporting failure. This is because the string can
+be divided between the internal \D+ repeat and the external * repeat in a
+large number of ways, and all have to be tried. (The example uses [!?] rather
+than a single character at the end, because both PCRE and Perl have an
+optimization that allows for fast failure when a single character is used. They
+remember the last single character that is required for a match, and fail early
+if it is not present in the string.) If the pattern is changed so that it uses
+an atomic group, like this:
+<pre>
+  ((?&#62;\D+)|&#60;\d+&#62;)*[!?]
+</pre>
+sequences of non-digits cannot be broken, and failure happens quickly.
+<a name="backreferences"></a></P>
+<br><a name="SEC17" href="#TOC1">BACK REFERENCES</a><br>
+<P>
+Outside a character class, a backslash followed by a digit greater than 0 (and
+possibly further digits) is a back reference to a capturing subpattern earlier
+(that is, to its left) in the pattern, provided there have been that many
+previous capturing left parentheses.
+</P>
+<P>
+However, if the decimal number following the backslash is less than 10, it is
+always taken as a back reference, and causes an error only if there are not
+that many capturing left parentheses in the entire pattern. In other words, the
+parentheses that are referenced need not be to the left of the reference for
+numbers less than 10. A "forward back reference" of this type can make sense
+when a repetition is involved and the subpattern to the right has participated
+in an earlier iteration.
+</P>
+<P>
+It is not possible to have a numerical "forward back reference" to a subpattern
+whose number is 10 or more using this syntax because a sequence such as \50 is
+interpreted as a character defined in octal. See the subsection entitled
+"Non-printing characters"
+<a href="#digitsafterbackslash">above</a>
+for further details of the handling of digits following a backslash. There is
+no such problem when named parentheses are used. A back reference to any
+subpattern is possible using named parentheses (see below).
+</P>
+<P>
+Another way of avoiding the ambiguity inherent in the use of digits following a
+backslash is to use the \g escape sequence. This escape must be followed by an
+unsigned number or a negative number, optionally enclosed in braces. These
+examples are all identical:
+<pre>
+  (ring), \1
+  (ring), \g1
+  (ring), \g{1}
+</pre>
+An unsigned number specifies an absolute reference without the ambiguity that
+is present in the older syntax. It is also useful when literal digits follow
+the reference. A negative number is a relative reference. Consider this
+example:
+<pre>
+  (abc(def)ghi)\g{-1}
+</pre>
+The sequence \g{-1} is a reference to the most recently started capturing
+subpattern before \g, that is, is it equivalent to \2 in this example.
+Similarly, \g{-2} would be equivalent to \1. The use of relative references
+can be helpful in long patterns, and also in patterns that are created by
+joining together fragments that contain references within themselves.
+</P>
+<P>
+A back reference matches whatever actually matched the capturing subpattern in
+the current subject string, rather than anything matching the subpattern
+itself (see
+<a href="#subpatternsassubroutines">"Subpatterns as subroutines"</a>
+below for a way of doing that). So the pattern
+<pre>
+  (sens|respons)e and \1ibility
+</pre>
+matches "sense and sensibility" and "response and responsibility", but not
+"sense and responsibility". If caseful matching is in force at the time of the
+back reference, the case of letters is relevant. For example,
+<pre>
+  ((?i)rah)\s+\1
+</pre>
+matches "rah rah" and "RAH RAH", but not "RAH rah", even though the original
+capturing subpattern is matched caselessly.
+</P>
+<P>
+There are several different ways of writing back references to named
+subpatterns. The .NET syntax \k{name} and the Perl syntax \k&#60;name&#62; or
+\k'name' are supported, as is the Python syntax (?P=name). Perl 5.10's unified
+back reference syntax, in which \g can be used for both numeric and named
+references, is also supported. We could rewrite the above example in any of
+the following ways:
+<pre>
+  (?&#60;p1&#62;(?i)rah)\s+\k&#60;p1&#62;
+  (?'p1'(?i)rah)\s+\k{p1}
+  (?P&#60;p1&#62;(?i)rah)\s+(?P=p1)
+  (?&#60;p1&#62;(?i)rah)\s+\g{p1}
+</pre>
+A subpattern that is referenced by name may appear in the pattern before or
+after the reference.
+</P>
+<P>
+There may be more than one back reference to the same subpattern. If a
+subpattern has not actually been used in a particular match, any back
+references to it always fail by default. For example, the pattern
+<pre>
+  (a|(bc))\2
+</pre>
+always fails if it starts to match "a" rather than "bc". However, if the
+PCRE_JAVASCRIPT_COMPAT option is set at compile time, a back reference to an
+unset value matches an empty string.
+</P>
+<P>
+Because there may be many capturing parentheses in a pattern, all digits
+following a backslash are taken as part of a potential back reference number.
+If the pattern continues with a digit character, some delimiter must be used to
+terminate the back reference. If the PCRE_EXTENDED option is set, this can be
+whitespace. Otherwise, the \g{ syntax or an empty comment (see
+<a href="#comments">"Comments"</a>
+below) can be used.
+</P>
+<br><b>
+Recursive back references
+</b><br>
+<P>
+A back reference that occurs inside the parentheses to which it refers fails
+when the subpattern is first used, so, for example, (a\1) never matches.
+However, such references can be useful inside repeated subpatterns. For
+example, the pattern
+<pre>
+  (a|b\1)+
+</pre>
+matches any number of "a"s and also "aba", "ababbaa" etc. At each iteration of
+the subpattern, the back reference matches the character string corresponding
+to the previous iteration. In order for this to work, the pattern must be such
+that the first iteration does not need to match the back reference. This can be
+done using alternation, as in the example above, or by a quantifier with a
+minimum of zero.
+</P>
+<P>
+Back references of this type cause the group that they reference to be treated
+as an
+<a href="#atomicgroup">atomic group.</a>
+Once the whole group has been matched, a subsequent matching failure cannot
+cause backtracking into the middle of the group.
+<a name="bigassertions"></a></P>
+<br><a name="SEC18" href="#TOC1">ASSERTIONS</a><br>
+<P>
+An assertion is a test on the characters following or preceding the current
+matching point that does not actually consume any characters. The simple
+assertions coded as \b, \B, \A, \G, \Z, \z, ^ and $ are described
+<a href="#smallassertions">above.</a>
+</P>
+<P>
+More complicated assertions are coded as subpatterns. There are two kinds:
+those that look ahead of the current position in the subject string, and those
+that look behind it. An assertion subpattern is matched in the normal way,
+except that it does not cause the current matching position to be changed.
+</P>
+<P>
+Assertion subpatterns are not capturing subpatterns. If such an assertion
+contains capturing subpatterns within it, these are counted for the purposes of
+numbering the capturing subpatterns in the whole pattern. However, substring
+capturing is carried out only for positive assertions, because it does not make
+sense for negative assertions.
+</P>
+<P>
+For compatibility with Perl, assertion subpatterns may be repeated; though
+it makes no sense to assert the same thing several times, the side effect of
+capturing parentheses may occasionally be useful. In practice, there only three
+cases:
+<br>
+<br>
+(1) If the quantifier is {0}, the assertion is never obeyed during matching.
+However, it may contain internal capturing parenthesized groups that are called
+from elsewhere via the
+<a href="#subpatternsassubroutines">subroutine mechanism.</a>
+<br>
+<br>
+(2) If quantifier is {0,n} where n is greater than zero, it is treated as if it
+were {0,1}. At run time, the rest of the pattern match is tried with and
+without the assertion, the order depending on the greediness of the quantifier.
+<br>
+<br>
+(3) If the minimum repetition is greater than zero, the quantifier is ignored.
+The assertion is obeyed just once when encountered during matching.
+</P>
+<br><b>
+Lookahead assertions
+</b><br>
+<P>
+Lookahead assertions start with (?= for positive assertions and (?! for
+negative assertions. For example,
+<pre>
+  \w+(?=;)
+</pre>
+matches a word followed by a semicolon, but does not include the semicolon in
+the match, and
+<pre>
+  foo(?!bar)
+</pre>
+matches any occurrence of "foo" that is not followed by "bar". Note that the
+apparently similar pattern
+<pre>
+  (?!foo)bar
+</pre>
+does not find an occurrence of "bar" that is preceded by something other than
+"foo"; it finds any occurrence of "bar" whatsoever, because the assertion
+(?!foo) is always true when the next three characters are "bar". A
+lookbehind assertion is needed to achieve the other effect.
+</P>
+<P>
+If you want to force a matching failure at some point in a pattern, the most
+convenient way to do it is with (?!) because an empty string always matches, so
+an assertion that requires there not to be an empty string must always fail.
+The backtracking control verb (*FAIL) or (*F) is a synonym for (?!).
+<a name="lookbehind"></a></P>
+<br><b>
+Lookbehind assertions
+</b><br>
+<P>
+Lookbehind assertions start with (?&#60;= for positive assertions and (?&#60;! for
+negative assertions. For example,
+<pre>
+  (?&#60;!foo)bar
+</pre>
+does find an occurrence of "bar" that is not preceded by "foo". The contents of
+a lookbehind assertion are restricted such that all the strings it matches must
+have a fixed length. However, if there are several top-level alternatives, they
+do not all have to have the same fixed length. Thus
+<pre>
+  (?&#60;=bullock|donkey)
+</pre>
+is permitted, but
+<pre>
+  (?&#60;!dogs?|cats?)
+</pre>
+causes an error at compile time. Branches that match different length strings
+are permitted only at the top level of a lookbehind assertion. This is an
+extension compared with Perl, which requires all branches to match the same
+length of string. An assertion such as
+<pre>
+  (?&#60;=ab(c|de))
+</pre>
+is not permitted, because its single top-level branch can match two different
+lengths, but it is acceptable to PCRE if rewritten to use two top-level
+branches:
+<pre>
+  (?&#60;=abc|abde)
+</pre>
+In some cases, the escape sequence \K
+<a href="#resetmatchstart">(see above)</a>
+can be used instead of a lookbehind assertion to get round the fixed-length
+restriction.
+</P>
+<P>
+The implementation of lookbehind assertions is, for each alternative, to
+temporarily move the current position back by the fixed length and then try to
+match. If there are insufficient characters before the current position, the
+assertion fails.
+</P>
+<P>
+In UTF-8 mode, PCRE does not allow the \C escape (which matches a single byte,
+even in UTF-8 mode) to appear in lookbehind assertions, because it makes it
+impossible to calculate the length of the lookbehind. The \X and \R escapes,
+which can match different numbers of bytes, are also not permitted.
+</P>
+<P>
+<a href="#subpatternsassubroutines">"Subroutine"</a>
+calls (see below) such as (?2) or (?&X) are permitted in lookbehinds, as long
+as the subpattern matches a fixed-length string.
+<a href="#recursion">Recursion,</a>
+however, is not supported.
+</P>
+<P>
+Possessive quantifiers can be used in conjunction with lookbehind assertions to
+specify efficient matching of fixed-length strings at the end of subject
+strings. Consider a simple pattern such as
+<pre>
+  abcd$
+</pre>
+when applied to a long string that does not match. Because matching proceeds
+from left to right, PCRE will look for each "a" in the subject and then see if
+what follows matches the rest of the pattern. If the pattern is specified as
+<pre>
+  ^.*abcd$
+</pre>
+the initial .* matches the entire string at first, but when this fails (because
+there is no following "a"), it backtracks to match all but the last character,
+then all but the last two characters, and so on. Once again the search for "a"
+covers the entire string, from right to left, so we are no better off. However,
+if the pattern is written as
+<pre>
+  ^.*+(?&#60;=abcd)
+</pre>
+there can be no backtracking for the .*+ item; it can match only the entire
+string. The subsequent lookbehind assertion does a single test on the last four
+characters. If it fails, the match fails immediately. For long strings, this
+approach makes a significant difference to the processing time.
+</P>
+<br><b>
+Using multiple assertions
+</b><br>
+<P>
+Several assertions (of any sort) may occur in succession. For example,
+<pre>
+  (?&#60;=\d{3})(?&#60;!999)foo
+</pre>
+matches "foo" preceded by three digits that are not "999". Notice that each of
+the assertions is applied independently at the same point in the subject
+string. First there is a check that the previous three characters are all
+digits, and then there is a check that the same three characters are not "999".
+This pattern does <i>not</i> match "foo" preceded by six characters, the first
+of which are digits and the last three of which are not "999". For example, it
+doesn't match "123abcfoo". A pattern to do that is
+<pre>
+  (?&#60;=\d{3}...)(?&#60;!999)foo
+</pre>
+This time the first assertion looks at the preceding six characters, checking
+that the first three are digits, and then the second assertion checks that the
+preceding three characters are not "999".
+</P>
+<P>
+Assertions can be nested in any combination. For example,
+<pre>
+  (?&#60;=(?&#60;!foo)bar)baz
+</pre>
+matches an occurrence of "baz" that is preceded by "bar" which in turn is not
+preceded by "foo", while
+<pre>
+  (?&#60;=\d{3}(?!999)...)foo
+</pre>
+is another pattern that matches "foo" preceded by three digits and any three
+characters that are not "999".
+<a name="conditions"></a></P>
+<br><a name="SEC19" href="#TOC1">CONDITIONAL SUBPATTERNS</a><br>
+<P>
+It is possible to cause the matching process to obey a subpattern
+conditionally or to choose between two alternative subpatterns, depending on
+the result of an assertion, or whether a specific capturing subpattern has
+already been matched. The two possible forms of conditional subpattern are:
+<pre>
+  (?(condition)yes-pattern)
+  (?(condition)yes-pattern|no-pattern)
+</pre>
+If the condition is satisfied, the yes-pattern is used; otherwise the
+no-pattern (if present) is used. If there are more than two alternatives in the
+subpattern, a compile-time error occurs. Each of the two alternatives may
+itself contain nested subpatterns of any form, including conditional
+subpatterns; the restriction to two alternatives applies only at the level of
+the condition. This pattern fragment is an example where the alternatives are
+complex:
+<pre>
+  (?(1) (A|B|C) | (D | (?(2)E|F) | E) )
+
+</PRE>
+</P>
+<P>
+There are four kinds of condition: references to subpatterns, references to
+recursion, a pseudo-condition called DEFINE, and assertions.
+</P>
+<br><b>
+Checking for a used subpattern by number
+</b><br>
+<P>
+If the text between the parentheses consists of a sequence of digits, the
+condition is true if a capturing subpattern of that number has previously
+matched. If there is more than one capturing subpattern with the same number
+(see the earlier
+<a href="#recursion">section about duplicate subpattern numbers),</a>
+the condition is true if any of them have matched. An alternative notation is
+to precede the digits with a plus or minus sign. In this case, the subpattern
+number is relative rather than absolute. The most recently opened parentheses
+can be referenced by (?(-1), the next most recent by (?(-2), and so on. Inside
+loops it can also make sense to refer to subsequent groups. The next
+parentheses to be opened can be referenced as (?(+1), and so on. (The value
+zero in any of these forms is not used; it provokes a compile-time error.)
+</P>
+<P>
+Consider the following pattern, which contains non-significant white space to
+make it more readable (assume the PCRE_EXTENDED option) and to divide it into
+three parts for ease of discussion:
+<pre>
+  ( \( )?    [^()]+    (?(1) \) )
+</pre>
+The first part matches an optional opening parenthesis, and if that
+character is present, sets it as the first captured substring. The second part
+matches one or more characters that are not parentheses. The third part is a
+conditional subpattern that tests whether or not the first set of parentheses
+matched. If they did, that is, if subject started with an opening parenthesis,
+the condition is true, and so the yes-pattern is executed and a closing
+parenthesis is required. Otherwise, since no-pattern is not present, the
+subpattern matches nothing. In other words, this pattern matches a sequence of
+non-parentheses, optionally enclosed in parentheses.
+</P>
+<P>
+If you were embedding this pattern in a larger one, you could use a relative
+reference:
+<pre>
+  ...other stuff... ( \( )?    [^()]+    (?(-1) \) ) ...
+</pre>
+This makes the fragment independent of the parentheses in the larger pattern.
+</P>
+<br><b>
+Checking for a used subpattern by name
+</b><br>
+<P>
+Perl uses the syntax (?(&#60;name&#62;)...) or (?('name')...) to test for a used
+subpattern by name. For compatibility with earlier versions of PCRE, which had
+this facility before Perl, the syntax (?(name)...) is also recognized. However,
+there is a possible ambiguity with this syntax, because subpattern names may
+consist entirely of digits. PCRE looks first for a named subpattern; if it
+cannot find one and the name consists entirely of digits, PCRE looks for a
+subpattern of that number, which must be greater than zero. Using subpattern
+names that consist entirely of digits is not recommended.
+</P>
+<P>
+Rewriting the above example to use a named subpattern gives this:
+<pre>
+  (?&#60;OPEN&#62; \( )?    [^()]+    (?(&#60;OPEN&#62;) \) )
+</pre>
+If the name used in a condition of this kind is a duplicate, the test is
+applied to all subpatterns of the same name, and is true if any one of them has
+matched.
+</P>
+<br><b>
+Checking for pattern recursion
+</b><br>
+<P>
+If the condition is the string (R), and there is no subpattern with the name R,
+the condition is true if a recursive call to the whole pattern or any
+subpattern has been made. If digits or a name preceded by ampersand follow the
+letter R, for example:
+<pre>
+  (?(R3)...) or (?(R&name)...)
+</pre>
+the condition is true if the most recent recursion is into a subpattern whose
+number or name is given. This condition does not check the entire recursion
+stack. If the name used in a condition of this kind is a duplicate, the test is
+applied to all subpatterns of the same name, and is true if any one of them is
+the most recent recursion.
+</P>
+<P>
+At "top level", all these recursion test conditions are false.
+<a href="#recursion">The syntax for recursive patterns</a>
+is described below.
+<a name="subdefine"></a></P>
+<br><b>
+Defining subpatterns for use by reference only
+</b><br>
+<P>
+If the condition is the string (DEFINE), and there is no subpattern with the
+name DEFINE, the condition is always false. In this case, there may be only one
+alternative in the subpattern. It is always skipped if control reaches this
+point in the pattern; the idea of DEFINE is that it can be used to define
+subroutines that can be referenced from elsewhere. (The use of
+<a href="#subpatternsassubroutines">subroutines</a>
+is described below.) For example, a pattern to match an IPv4 address such as
+"192.168.23.245" could be written like this (ignore whitespace and line
+breaks):
+<pre>
+  (?(DEFINE) (?&#60;byte&#62; 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d) )
+  \b (?&byte) (\.(?&byte)){3} \b
+</pre>
+The first part of the pattern is a DEFINE group inside which a another group
+named "byte" is defined. This matches an individual component of an IPv4
+address (a number less than 256). When matching takes place, this part of the
+pattern is skipped because DEFINE acts like a false condition. The rest of the
+pattern uses references to the named group to match the four dot-separated
+components of an IPv4 address, insisting on a word boundary at each end.
+</P>
+<br><b>
+Assertion conditions
+</b><br>
+<P>
+If the condition is not in any of the above formats, it must be an assertion.
+This may be a positive or negative lookahead or lookbehind assertion. Consider
+this pattern, again containing non-significant white space, and with the two
+alternatives on the second line:
+<pre>
+  (?(?=[^a-z]*[a-z])
+  \d{2}-[a-z]{3}-\d{2}  |  \d{2}-\d{2}-\d{2} )
+</pre>
+The condition is a positive lookahead assertion that matches an optional
+sequence of non-letters followed by a letter. In other words, it tests for the
+presence of at least one letter in the subject. If a letter is found, the
+subject is matched against the first alternative; otherwise it is matched
+against the second. This pattern matches strings in one of the two forms
+dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are digits.
+<a name="comments"></a></P>
+<br><a name="SEC20" href="#TOC1">COMMENTS</a><br>
+<P>
+There are two ways of including comments in patterns that are processed by
+PCRE. In both cases, the start of the comment must not be in a character class,
+nor in the middle of any other sequence of related characters such as (?: or a
+subpattern name or number. The characters that make up a comment play no part
+in the pattern matching.
+</P>
+<P>
+The sequence (?# marks the start of a comment that continues up to the next
+closing parenthesis. Nested parentheses are not permitted. If the PCRE_EXTENDED
+option is set, an unescaped # character also introduces a comment, which in
+this case continues to immediately after the next newline character or
+character sequence in the pattern. Which characters are interpreted as newlines
+is controlled by the options passed to <b>pcre_compile()</b> or by a special
+sequence at the start of the pattern, as described in the section entitled
+<a href="#newlines">"Newline conventions"</a>
+above. Note that the end of this type of comment is a literal newline sequence
+in the pattern; escape sequences that happen to represent a newline do not
+count. For example, consider this pattern when PCRE_EXTENDED is set, and the
+default newline convention is in force:
+<pre>
+  abc #comment \n still comment
+</pre>
+On encountering the # character, <b>pcre_compile()</b> skips along, looking for
+a newline in the pattern. The sequence \n is still literal at this stage, so
+it does not terminate the comment. Only an actual character with the code value
+0x0a (the default newline) does so.
+<a name="recursion"></a></P>
+<br><a name="SEC21" href="#TOC1">RECURSIVE PATTERNS</a><br>
+<P>
+Consider the problem of matching a string in parentheses, allowing for
+unlimited nested parentheses. Without the use of recursion, the best that can
+be done is to use a pattern that matches up to some fixed depth of nesting. It
+is not possible to handle an arbitrary nesting depth.
+</P>
+<P>
+For some time, Perl has provided a facility that allows regular expressions to
+recurse (amongst other things). It does this by interpolating Perl code in the
+expression at run time, and the code can refer to the expression itself. A Perl
+pattern using code interpolation to solve the parentheses problem can be
+created like this:
+<pre>
+  $re = qr{\( (?: (?&#62;[^()]+) | (?p{$re}) )* \)}x;
+</pre>
+The (?p{...}) item interpolates Perl code at run time, and in this case refers
+recursively to the pattern in which it appears.
+</P>
+<P>
+Obviously, PCRE cannot support the interpolation of Perl code. Instead, it
+supports special syntax for recursion of the entire pattern, and also for
+individual subpattern recursion. After its introduction in PCRE and Python,
+this kind of recursion was subsequently introduced into Perl at release 5.10.
+</P>
+<P>
+A special item that consists of (? followed by a number greater than zero and a
+closing parenthesis is a recursive subroutine call of the subpattern of the
+given number, provided that it occurs inside that subpattern. (If not, it is a
+<a href="#subpatternsassubroutines">non-recursive subroutine</a>
+call, which is described in the next section.) The special item (?R) or (?0) is
+a recursive call of the entire regular expression.
+</P>
+<P>
+This PCRE pattern solves the nested parentheses problem (assume the
+PCRE_EXTENDED option is set so that white space is ignored):
+<pre>
+  \( ( [^()]++ | (?R) )* \)
+</pre>
+First it matches an opening parenthesis. Then it matches any number of
+substrings which can either be a sequence of non-parentheses, or a recursive
+match of the pattern itself (that is, a correctly parenthesized substring).
+Finally there is a closing parenthesis. Note the use of a possessive quantifier
+to avoid backtracking into sequences of non-parentheses.
+</P>
+<P>
+If this were part of a larger pattern, you would not want to recurse the entire
+pattern, so instead you could use this:
+<pre>
+  ( \( ( [^()]++ | (?1) )* \) )
+</pre>
+We have put the pattern into parentheses, and caused the recursion to refer to
+them instead of the whole pattern.
+</P>
+<P>
+In a larger pattern, keeping track of parenthesis numbers can be tricky. This
+is made easier by the use of relative references. Instead of (?1) in the
+pattern above you can write (?-2) to refer to the second most recently opened
+parentheses preceding the recursion. In other words, a negative number counts
+capturing parentheses leftwards from the point at which it is encountered.
+</P>
+<P>
+It is also possible to refer to subsequently opened parentheses, by writing
+references such as (?+2). However, these cannot be recursive because the
+reference is not inside the parentheses that are referenced. They are always
+<a href="#subpatternsassubroutines">non-recursive subroutine</a>
+calls, as described in the next section.
+</P>
+<P>
+An alternative approach is to use named parentheses instead. The Perl syntax
+for this is (?&name); PCRE's earlier syntax (?P&#62;name) is also supported. We
+could rewrite the above example as follows:
+<pre>
+  (?&#60;pn&#62; \( ( [^()]++ | (?&pn) )* \) )
+</pre>
+If there is more than one subpattern with the same name, the earliest one is
+used.
+</P>
+<P>
+This particular example pattern that we have been looking at contains nested
+unlimited repeats, and so the use of a possessive quantifier for matching
+strings of non-parentheses is important when applying the pattern to strings
+that do not match. For example, when this pattern is applied to
+<pre>
+  (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()
+</pre>
+it yields "no match" quickly. However, if a possessive quantifier is not used,
+the match runs for a very long time indeed because there are so many different
+ways the + and * repeats can carve up the subject, and all have to be tested
+before failure can be reported.
+</P>
+<P>
+At the end of a match, the values of capturing parentheses are those from
+the outermost level. If you want to obtain intermediate values, a callout
+function can be used (see below and the
+<a href="pcrecallout.html"><b>pcrecallout</b></a>
+documentation). If the pattern above is matched against
+<pre>
+  (ab(cd)ef)
+</pre>
+the value for the inner capturing parentheses (numbered 2) is "ef", which is
+the last value taken on at the top level. If a capturing subpattern is not
+matched at the top level, its final captured value is unset, even if it was
+(temporarily) set at a deeper level during the matching process.
+</P>
+<P>
+If there are more than 15 capturing parentheses in a pattern, PCRE has to
+obtain extra memory to store data during a recursion, which it does by using
+<b>pcre_malloc</b>, freeing it via <b>pcre_free</b> afterwards. If no memory can
+be obtained, the match fails with the PCRE_ERROR_NOMEMORY error.
+</P>
+<P>
+Do not confuse the (?R) item with the condition (R), which tests for recursion.
+Consider this pattern, which matches text in angle brackets, allowing for
+arbitrary nesting. Only digits are allowed in nested brackets (that is, when
+recursing), whereas any characters are permitted at the outer level.
+<pre>
+  &#60; (?: (?(R) \d++  | [^&#60;&#62;]*+) | (?R)) * &#62;
+</pre>
+In this pattern, (?(R) is the start of a conditional subpattern, with two
+different alternatives for the recursive and non-recursive cases. The (?R) item
+is the actual recursive call.
+<a name="recursiondifference"></a></P>
+<br><b>
+Differences in recursion processing between PCRE and Perl
+</b><br>
+<P>
+Recursion processing in PCRE differs from Perl in two important ways. In PCRE
+(like Python, but unlike Perl), a recursive subpattern call is always treated
+as an atomic group. That is, once it has matched some of the subject string, it
+is never re-entered, even if it contains untried alternatives and there is a
+subsequent matching failure. This can be illustrated by the following pattern,
+which purports to match a palindromic string that contains an odd number of
+characters (for example, "a", "aba", "abcba", "abcdcba"):
+<pre>
+  ^(.|(.)(?1)\2)$
+</pre>
+The idea is that it either matches a single character, or two identical
+characters surrounding a sub-palindrome. In Perl, this pattern works; in PCRE
+it does not if the pattern is longer than three characters. Consider the
+subject string "abcba":
+</P>
+<P>
+At the top level, the first character is matched, but as it is not at the end
+of the string, the first alternative fails; the second alternative is taken
+and the recursion kicks in. The recursive call to subpattern 1 successfully
+matches the next character ("b"). (Note that the beginning and end of line
+tests are not part of the recursion).
+</P>
+<P>
+Back at the top level, the next character ("c") is compared with what
+subpattern 2 matched, which was "a". This fails. Because the recursion is
+treated as an atomic group, there are now no backtracking points, and so the
+entire match fails. (Perl is able, at this point, to re-enter the recursion and
+try the second alternative.) However, if the pattern is written with the
+alternatives in the other order, things are different:
+<pre>
+  ^((.)(?1)\2|.)$
+</pre>
+This time, the recursing alternative is tried first, and continues to recurse
+until it runs out of characters, at which point the recursion fails. But this
+time we do have another alternative to try at the higher level. That is the big
+difference: in the previous case the remaining alternative is at a deeper
+recursion level, which PCRE cannot use.
+</P>
+<P>
+To change the pattern so that it matches all palindromic strings, not just
+those with an odd number of characters, it is tempting to change the pattern to
+this:
+<pre>
+  ^((.)(?1)\2|.?)$
+</pre>
+Again, this works in Perl, but not in PCRE, and for the same reason. When a
+deeper recursion has matched a single character, it cannot be entered again in
+order to match an empty string. The solution is to separate the two cases, and
+write out the odd and even cases as alternatives at the higher level:
+<pre>
+  ^(?:((.)(?1)\2|)|((.)(?3)\4|.))
+</pre>
+If you want to match typical palindromic phrases, the pattern has to ignore all
+non-word characters, which can be done like this:
+<pre>
+  ^\W*+(?:((.)\W*+(?1)\W*+\2|)|((.)\W*+(?3)\W*+\4|\W*+.\W*+))\W*+$
+</pre>
+If run with the PCRE_CASELESS option, this pattern matches phrases such as "A
+man, a plan, a canal: Panama!" and it works well in both PCRE and Perl. Note
+the use of the possessive quantifier *+ to avoid backtracking into sequences of
+non-word characters. Without this, PCRE takes a great deal longer (ten times or
+more) to match typical phrases, and Perl takes so long that you think it has
+gone into a loop.
+</P>
+<P>
+<b>WARNING</b>: The palindrome-matching patterns above work only if the subject
+string does not start with a palindrome that is shorter than the entire string.
+For example, although "abcba" is correctly matched, if the subject is "ababa",
+PCRE finds the palindrome "aba" at the start, then fails at top level because
+the end of the string does not follow. Once again, it cannot jump back into the
+recursion to try other alternatives, so the entire match fails.
+</P>
+<P>
+The second way in which PCRE and Perl differ in their recursion processing is
+in the handling of captured values. In Perl, when a subpattern is called
+recursively or as a subpattern (see the next section), it has no access to any
+values that were captured outside the recursion, whereas in PCRE these values
+can be referenced. Consider this pattern:
+<pre>
+  ^(.)(\1|a(?2))
+</pre>
+In PCRE, this pattern matches "bab". The first capturing parentheses match "b",
+then in the second group, when the back reference \1 fails to match "b", the
+second alternative matches "a" and then recurses. In the recursion, \1 does
+now match "b" and so the whole match succeeds. In Perl, the pattern fails to
+match because inside the recursive call \1 cannot access the externally set
+value.
+<a name="subpatternsassubroutines"></a></P>
+<br><a name="SEC22" href="#TOC1">SUBPATTERNS AS SUBROUTINES</a><br>
+<P>
+If the syntax for a recursive subpattern call (either by number or by
+name) is used outside the parentheses to which it refers, it operates like a
+subroutine in a programming language. The called subpattern may be defined
+before or after the reference. A numbered reference can be absolute or
+relative, as in these examples:
+<pre>
+  (...(absolute)...)...(?2)...
+  (...(relative)...)...(?-1)...
+  (...(?+1)...(relative)...
+</pre>
+An earlier example pointed out that the pattern
+<pre>
+  (sens|respons)e and \1ibility
+</pre>
+matches "sense and sensibility" and "response and responsibility", but not
+"sense and responsibility". If instead the pattern
+<pre>
+  (sens|respons)e and (?1)ibility
+</pre>
+is used, it does match "sense and responsibility" as well as the other two
+strings. Another example is given in the discussion of DEFINE above.
+</P>
+<P>
+All subroutine calls, whether recursive or not, are always treated as atomic
+groups. That is, once a subroutine has matched some of the subject string, it
+is never re-entered, even if it contains untried alternatives and there is a
+subsequent matching failure. Any capturing parentheses that are set during the
+subroutine call revert to their previous values afterwards.
+</P>
+<P>
+Processing options such as case-independence are fixed when a subpattern is
+defined, so if it is used as a subroutine, such options cannot be changed for
+different calls. For example, consider this pattern:
+<pre>
+  (abc)(?i:(?-1))
+</pre>
+It matches "abcabc". It does not match "abcABC" because the change of
+processing option does not affect the called subpattern.
+<a name="onigurumasubroutines"></a></P>
+<br><a name="SEC23" href="#TOC1">ONIGURUMA SUBROUTINE SYNTAX</a><br>
+<P>
+For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or
+a number enclosed either in angle brackets or single quotes, is an alternative
+syntax for referencing a subpattern as a subroutine, possibly recursively. Here
+are two of the examples used above, rewritten using this syntax:
+<pre>
+  (?&#60;pn&#62; \( ( (?&#62;[^()]+) | \g&#60;pn&#62; )* \) )
+  (sens|respons)e and \g'1'ibility
+</pre>
+PCRE supports an extension to Oniguruma: if a number is preceded by a
+plus or a minus sign it is taken as a relative reference. For example:
+<pre>
+  (abc)(?i:\g&#60;-1&#62;)
+</pre>
+Note that \g{...} (Perl syntax) and \g&#60;...&#62; (Oniguruma syntax) are <i>not</i>
+synonymous. The former is a back reference; the latter is a subroutine call.
+</P>
+<br><a name="SEC24" href="#TOC1">CALLOUTS</a><br>
+<P>
+Perl has a feature whereby using the sequence (?{...}) causes arbitrary Perl
+code to be obeyed in the middle of matching a regular expression. This makes it
+possible, amongst other things, to extract different substrings that match the
+same pair of parentheses when there is a repetition.
+</P>
+<P>
+PCRE provides a similar feature, but of course it cannot obey arbitrary Perl
+code. The feature is called "callout". The caller of PCRE provides an external
+function by putting its entry point in the global variable <i>pcre_callout</i>.
+By default, this variable contains NULL, which disables all calling out.
+</P>
+<P>
+Within a regular expression, (?C) indicates the points at which the external
+function is to be called. If you want to identify different callout points, you
+can put a number less than 256 after the letter C. The default value is zero.
+For example, this pattern has two callout points:
+<pre>
+  (?C1)abc(?C2)def
+</pre>
+If the PCRE_AUTO_CALLOUT flag is passed to <b>pcre_compile()</b>, callouts are
+automatically installed before each item in the pattern. They are all numbered
+255.
+</P>
+<P>
+During matching, when PCRE reaches a callout point (and <i>pcre_callout</i> is
+set), the external function is called. It is provided with the number of the
+callout, the position in the pattern, and, optionally, one item of data
+originally supplied by the caller of <b>pcre_exec()</b>. The callout function
+may cause matching to proceed, to backtrack, or to fail altogether. A complete
+description of the interface to the callout function is given in the
+<a href="pcrecallout.html"><b>pcrecallout</b></a>
+documentation.
+<a name="backtrackcontrol"></a></P>
+<br><a name="SEC25" href="#TOC1">BACKTRACKING CONTROL</a><br>
+<P>
+Perl 5.10 introduced a number of "Special Backtracking Control Verbs", which
+are described in the Perl documentation as "experimental and subject to change
+or removal in a future version of Perl". It goes on to say: "Their usage in
+production code should be noted to avoid problems during upgrades." The same
+remarks apply to the PCRE features described in this section.
+</P>
+<P>
+Since these verbs are specifically related to backtracking, most of them can be
+used only when the pattern is to be matched using <b>pcre_exec()</b>, which uses
+a backtracking algorithm. With the exception of (*FAIL), which behaves like a
+failing negative assertion, they cause an error if encountered by
+<b>pcre_dfa_exec()</b>.
+</P>
+<P>
+If any of these verbs are used in an assertion or in a subpattern that is
+called as a subroutine (whether or not recursively), their effect is confined
+to that subpattern; it does not extend to the surrounding pattern, with one
+exception: the name from a *(MARK), (*PRUNE), or (*THEN) that is encountered in
+a successful positive assertion <i>is</i> passed back when a match succeeds
+(compare capturing parentheses in assertions). Note that such subpatterns are
+processed as anchored at the point where they are tested. Note also that Perl's
+treatment of subroutines is different in some cases.
+</P>
+<P>
+The new verbs make use of what was previously invalid syntax: an opening
+parenthesis followed by an asterisk. They are generally of the form
+(*VERB) or (*VERB:NAME). Some may take either form, with differing behaviour,
+depending on whether or not an argument is present. A name is any sequence of
+characters that does not include a closing parenthesis. If the name is empty,
+that is, if the closing parenthesis immediately follows the colon, the effect
+is as if the colon were not there. Any number of these verbs may occur in a
+pattern.
+</P>
+<P>
+PCRE contains some optimizations that are used to speed up matching by running
+some checks at the start of each match attempt. For example, it may know the
+minimum length of matching subject, or that a particular character must be
+present. When one of these optimizations suppresses the running of a match, any
+included backtracking verbs will not, of course, be processed. You can suppress
+the start-of-match optimizations by setting the PCRE_NO_START_OPTIMIZE option
+when calling <b>pcre_compile()</b> or <b>pcre_exec()</b>, or by starting the
+pattern with (*NO_START_OPT).
+</P>
+<P>
+Experiments with Perl suggest that it too has similar optimizations, sometimes
+leading to anomalous results.
+</P>
+<br><b>
+Verbs that act immediately
+</b><br>
+<P>
+The following verbs act as soon as they are encountered. They may not be
+followed by a name.
+<pre>
+   (*ACCEPT)
+</pre>
+This verb causes the match to end successfully, skipping the remainder of the
+pattern. However, when it is inside a subpattern that is called as a
+subroutine, only that subpattern is ended successfully. Matching then continues
+at the outer level. If (*ACCEPT) is inside capturing parentheses, the data so
+far is captured. For example:
+<pre>
+  A((?:A|B(*ACCEPT)|C)D)
+</pre>
+This matches "AB", "AAD", or "ACD"; when it matches "AB", "B" is captured by
+the outer parentheses.
+<pre>
+  (*FAIL) or (*F)
+</pre>
+This verb causes a matching failure, forcing backtracking to occur. It is
+equivalent to (?!) but easier to read. The Perl documentation notes that it is
+probably useful only when combined with (?{}) or (??{}). Those are, of course,
+Perl features that are not present in PCRE. The nearest equivalent is the
+callout feature, as for example in this pattern:
+<pre>
+  a+(?C)(*FAIL)
+</pre>
+A match with the string "aaaa" always fails, but the callout is taken before
+each backtrack happens (in this example, 10 times).
+</P>
+<br><b>
+Recording which path was taken
+</b><br>
+<P>
+There is one verb whose main purpose is to track how a match was arrived at,
+though it also has a secondary use in conjunction with advancing the match
+starting point (see (*SKIP) below).
+<pre>
+  (*MARK:NAME) or (*:NAME)
+</pre>
+A name is always required with this verb. There may be as many instances of
+(*MARK) as you like in a pattern, and their names do not have to be unique.
+</P>
+<P>
+When a match succeeds, the name of the last-encountered (*MARK) on the matching
+path is passed back to the caller via the <i>pcre_extra</i> data structure, as
+described in the
+<a href="pcreapi.html#extradata">section on <i>pcre_extra</i></a>
+in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+documentation. Here is an example of <b>pcretest</b> output, where the /K
+modifier requests the retrieval and outputting of (*MARK) data:
+<pre>
+    re&#62; /X(*MARK:A)Y|X(*MARK:B)Z/K
+  data&#62; XY
+   0: XY
+  MK: A
+  XZ
+   0: XZ
+  MK: B
+</pre>
+The (*MARK) name is tagged with "MK:" in this output, and in this example it
+indicates which of the two alternatives matched. This is a more efficient way
+of obtaining this information than putting each alternative in its own
+capturing parentheses.
+</P>
+<P>
+If (*MARK) is encountered in a positive assertion, its name is recorded and
+passed back if it is the last-encountered. This does not happen for negative
+assertions.
+</P>
+<P>
+After a partial match or a failed match, the name of the last encountered
+(*MARK) in the entire match process is returned. For example:
+<pre>
+    re&#62; /X(*MARK:A)Y|X(*MARK:B)Z/K
+  data&#62; XP
+  No match, mark = B
+</pre>
+Note that in this unanchored example the mark is retained from the match
+attempt that started at the letter "X". Subsequent match attempts starting at
+"P" and then with an empty string do not get as far as the (*MARK) item, but
+nevertheless do not reset it.
+</P>
+<br><b>
+Verbs that act after backtracking
+</b><br>
+<P>
+The following verbs do nothing when they are encountered. Matching continues
+with what follows, but if there is no subsequent match, causing a backtrack to
+the verb, a failure is forced. That is, backtracking cannot pass to the left of
+the verb. However, when one of these verbs appears inside an atomic group, its
+effect is confined to that group, because once the group has been matched,
+there is never any backtracking into it. In this situation, backtracking can
+"jump back" to the left of the entire atomic group. (Remember also, as stated
+above, that this localization also applies in subroutine calls and assertions.)
+</P>
+<P>
+These verbs differ in exactly what kind of failure occurs when backtracking
+reaches them.
+<pre>
+  (*COMMIT)
+</pre>
+This verb, which may not be followed by a name, causes the whole match to fail
+outright if the rest of the pattern does not match. Even if the pattern is
+unanchored, no further attempts to find a match by advancing the starting point
+take place. Once (*COMMIT) has been passed, <b>pcre_exec()</b> is committed to
+finding a match at the current starting point, or not at all. For example:
+<pre>
+  a+(*COMMIT)b
+</pre>
+This matches "xxaab" but not "aacaab". It can be thought of as a kind of
+dynamic anchor, or "I've started, so I must finish." The name of the most
+recently passed (*MARK) in the path is passed back when (*COMMIT) forces a
+match failure.
+</P>
+<P>
+Note that (*COMMIT) at the start of a pattern is not the same as an anchor,
+unless PCRE's start-of-match optimizations are turned off, as shown in this
+<b>pcretest</b> example:
+<pre>
+    re&#62; /(*COMMIT)abc/
+  data&#62; xyzabc
+   0: abc
+  xyzabc\Y
+  No match
+</pre>
+PCRE knows that any match must start with "a", so the optimization skips along
+the subject to "a" before running the first match attempt, which succeeds. When
+the optimization is disabled by the \Y escape in the second subject, the match
+starts at "x" and so the (*COMMIT) causes it to fail without trying any other
+starting points.
+<pre>
+  (*PRUNE) or (*PRUNE:NAME)
+</pre>
+This verb causes the match to fail at the current starting position in the
+subject if the rest of the pattern does not match. If the pattern is
+unanchored, the normal "bumpalong" advance to the next starting character then
+happens. Backtracking can occur as usual to the left of (*PRUNE), before it is
+reached, or when matching to the right of (*PRUNE), but if there is no match to
+the right, backtracking cannot cross (*PRUNE). In simple cases, the use of
+(*PRUNE) is just an alternative to an atomic group or possessive quantifier,
+but there are some uses of (*PRUNE) that cannot be expressed in any other way.
+The behaviour of (*PRUNE:NAME) is the same as (*MARK:NAME)(*PRUNE). In an
+anchored pattern (*PRUNE) has the same effect as (*COMMIT).
+<pre>
+  (*SKIP)
+</pre>
+This verb, when given without a name, is like (*PRUNE), except that if the
+pattern is unanchored, the "bumpalong" advance is not to the next character,
+but to the position in the subject where (*SKIP) was encountered. (*SKIP)
+signifies that whatever text was matched leading up to it cannot be part of a
+successful match. Consider:
+<pre>
+  a+(*SKIP)b
+</pre>
+If the subject is "aaaac...", after the first match attempt fails (starting at
+the first character in the string), the starting point skips on to start the
+next attempt at "c". Note that a possessive quantifer does not have the same
+effect as this example; although it would suppress backtracking during the
+first match attempt, the second attempt would start at the second character
+instead of skipping on to "c".
+<pre>
+  (*SKIP:NAME)
+</pre>
+When (*SKIP) has an associated name, its behaviour is modified. If the
+following pattern fails to match, the previous path through the pattern is
+searched for the most recent (*MARK) that has the same name. If one is found,
+the "bumpalong" advance is to the subject position that corresponds to that
+(*MARK) instead of to where (*SKIP) was encountered. If no (*MARK) with a
+matching name is found, the (*SKIP) is ignored.
+<pre>
+  (*THEN) or (*THEN:NAME)
+</pre>
+This verb causes a skip to the next innermost alternative if the rest of the
+pattern does not match. That is, it cancels pending backtracking, but only
+within the current alternative. Its name comes from the observation that it can
+be used for a pattern-based if-then-else block:
+<pre>
+  ( COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ ) ...
+</pre>
+If the COND1 pattern matches, FOO is tried (and possibly further items after
+the end of the group if FOO succeeds); on failure, the matcher skips to the
+second alternative and tries COND2, without backtracking into COND1. The
+behaviour of (*THEN:NAME) is exactly the same as (*MARK:NAME)(*THEN).
+If (*THEN) is not inside an alternation, it acts like (*PRUNE).
+</P>
+<P>
+Note that a subpattern that does not contain a | character is just a part of
+the enclosing alternative; it is not a nested alternation with only one
+alternative. The effect of (*THEN) extends beyond such a subpattern to the
+enclosing alternative. Consider this pattern, where A, B, etc. are complex
+pattern fragments that do not contain any | characters at this level:
+<pre>
+  A (B(*THEN)C) | D
+</pre>
+If A and B are matched, but there is a failure in C, matching does not
+backtrack into A; instead it moves to the next alternative, that is, D.
+However, if the subpattern containing (*THEN) is given an alternative, it
+behaves differently:
+<pre>
+  A (B(*THEN)C | (*FAIL)) | D
+</pre>
+The effect of (*THEN) is now confined to the inner subpattern. After a failure
+in C, matching moves to (*FAIL), which causes the whole subpattern to fail
+because there are no more alternatives to try. In this case, matching does now
+backtrack into A.
+</P>
+<P>
+Note also that a conditional subpattern is not considered as having two
+alternatives, because only one is ever used. In other words, the | character in
+a conditional subpattern has a different meaning. Ignoring white space,
+consider:
+<pre>
+  ^.*? (?(?=a) a | b(*THEN)c )
+</pre>
+If the subject is "ba", this pattern does not match. Because .*? is ungreedy,
+it initially matches zero characters. The condition (?=a) then fails, the
+character "b" is matched, but "c" is not. At this point, matching does not
+backtrack to .*? as might perhaps be expected from the presence of the |
+character. The conditional subpattern is part of the single alternative that
+comprises the whole pattern, and so the match fails. (If there was a backtrack
+into .*?, allowing it to match "b", the match would succeed.)
+</P>
+<P>
+The verbs just described provide four different "strengths" of control when
+subsequent matching fails. (*THEN) is the weakest, carrying on the match at the
+next alternative. (*PRUNE) comes next, failing the match at the current
+starting position, but allowing an advance to the next character (for an
+unanchored pattern). (*SKIP) is similar, except that the advance may be more
+than one character. (*COMMIT) is the strongest, causing the entire match to
+fail.
+</P>
+<P>
+If more than one such verb is present in a pattern, the "strongest" one wins.
+For example, consider this pattern, where A, B, etc. are complex pattern
+fragments:
+<pre>
+  (A(*COMMIT)B(*THEN)C|D)
+</pre>
+Once A has matched, PCRE is committed to this match, at the current starting
+position. If subsequently B matches, but C does not, the normal (*THEN) action
+of trying the next alternative (that is, D) does not happen because (*COMMIT)
+overrides.
+</P>
+<br><a name="SEC26" href="#TOC1">SEE ALSO</a><br>
+<P>
+<b>pcreapi</b>(3), <b>pcrecallout</b>(3), <b>pcrematching</b>(3),
+<b>pcresyntax</b>(3), <b>pcre</b>(3).
+</P>
+<br><a name="SEC27" href="#TOC1">AUTHOR</a><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><a name="SEC28" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 29 November 2011
+<br>
+Copyright &copy; 1997-2011 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcreperform.html b/jni/libpcre/doc/html/pcreperform.html
new file mode 100644
index 0000000..3c60ebc
--- /dev/null
+++ b/jni/libpcre/doc/html/pcreperform.html
@@ -0,0 +1,195 @@
+<html>
+<head>
+<title>pcreperform specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcreperform man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+PCRE PERFORMANCE
+</b><br>
+<P>
+Two aspects of performance are discussed below: memory usage and processing
+time. The way you express your pattern as a regular expression can affect both
+of them.
+</P>
+<br><b>
+COMPILED PATTERN MEMORY USAGE
+</b><br>
+<P>
+Patterns are compiled by PCRE into a reasonably efficient byte code, so that
+most simple patterns do not use much memory. However, there is one case where
+the memory usage of a compiled pattern can be unexpectedly large. If a
+parenthesized subpattern has a quantifier with a minimum greater than 1 and/or
+a limited maximum, the whole subpattern is repeated in the compiled code. For
+example, the pattern
+<pre>
+  (abc|def){2,4}
+</pre>
+is compiled as if it were
+<pre>
+  (abc|def)(abc|def)((abc|def)(abc|def)?)?
+</pre>
+(Technical aside: It is done this way so that backtrack points within each of
+the repetitions can be independently maintained.)
+</P>
+<P>
+For regular expressions whose quantifiers use only small numbers, this is not
+usually a problem. However, if the numbers are large, and particularly if such
+repetitions are nested, the memory usage can become an embarrassment. For
+example, the very simple pattern
+<pre>
+  ((ab){1,1000}c){1,3}
+</pre>
+uses 51K bytes when compiled. When PCRE is compiled with its default internal
+pointer size of two bytes, the size limit on a compiled pattern is 64K, and
+this is reached with the above pattern if the outer repetition is increased
+from 3 to 4. PCRE can be compiled to use larger internal pointers and thus
+handle larger compiled patterns, but it is better to try to rewrite your
+pattern to use less memory if you can.
+</P>
+<P>
+One way of reducing the memory usage for such patterns is to make use of PCRE's
+<a href="pcrepattern.html#subpatternsassubroutines">"subroutine"</a>
+facility. Re-writing the above pattern as
+<pre>
+  ((ab)(?2){0,999}c)(?1){0,2}
+</pre>
+reduces the memory requirements to 18K, and indeed it remains under 20K even
+with the outer repetition increased to 100. However, this pattern is not
+exactly equivalent, because the "subroutine" calls are treated as
+<a href="pcrepattern.html#atomicgroup">atomic groups</a>
+into which there can be no backtracking if there is a subsequent matching
+failure. Therefore, PCRE cannot do this kind of rewriting automatically.
+Furthermore, there is a noticeable loss of speed when executing the modified
+pattern. Nevertheless, if the atomic grouping is not a problem and the loss of
+speed is acceptable, this kind of rewriting will allow you to process patterns
+that PCRE cannot otherwise handle.
+</P>
+<br><b>
+STACK USAGE AT RUN TIME
+</b><br>
+<P>
+When <b>pcre_exec()</b> is used for matching, certain kinds of pattern can cause
+it to use large amounts of the process stack. In some environments the default
+process stack is quite small, and if it runs out the result is often SIGSEGV.
+This issue is probably the most frequently raised problem with PCRE. Rewriting
+your pattern can often help. The
+<a href="pcrestack.html"><b>pcrestack</b></a>
+documentation discusses this issue in detail.
+</P>
+<br><b>
+PROCESSING TIME
+</b><br>
+<P>
+Certain items in regular expression patterns are processed more efficiently
+than others. It is more efficient to use a character class like [aeiou] than a
+set of single-character alternatives such as (a|e|i|o|u). In general, the
+simplest construction that provides the required behaviour is usually the most
+efficient. Jeffrey Friedl's book contains a lot of useful general discussion
+about optimizing regular expressions for efficient performance. This document
+contains a few observations about PCRE.
+</P>
+<P>
+Using Unicode character properties (the \p, \P, and \X escapes) is slow,
+because PCRE has to scan a structure that contains data for over fifteen
+thousand characters whenever it needs a character's property. If you can find
+an alternative pattern that does not use character properties, it will probably
+be faster.
+</P>
+<P>
+By default, the escape sequences \b, \d, \s, and \w, and the POSIX
+character classes such as [:alpha:] do not use Unicode properties, partly for
+backwards compatibility, and partly for performance reasons. However, you can
+set PCRE_UCP if you want Unicode character properties to be used. This can
+double the matching time for items such as \d, when matched with
+<b>pcre_exec()</b>; the performance loss is less with <b>pcre_dfa_exec()</b>, and
+in both cases there is not much difference for \b.
+</P>
+<P>
+When a pattern begins with .* not in parentheses, or in parentheses that are
+not the subject of a backreference, and the PCRE_DOTALL option is set, the
+pattern is implicitly anchored by PCRE, since it can match only at the start of
+a subject string. However, if PCRE_DOTALL is not set, PCRE cannot make this
+optimization, because the . metacharacter does not then match a newline, and if
+the subject string contains newlines, the pattern may match from the character
+immediately following one of them instead of from the very start. For example,
+the pattern
+<pre>
+  .*second
+</pre>
+matches the subject "first\nand second" (where \n stands for a newline
+character), with the match starting at the seventh character. In order to do
+this, PCRE has to retry the match starting after every newline in the subject.
+</P>
+<P>
+If you are using such a pattern with subject strings that do not contain
+newlines, the best performance is obtained by setting PCRE_DOTALL, or starting
+the pattern with ^.* or ^.*? to indicate explicit anchoring. That saves PCRE
+from having to scan along the subject looking for a newline to restart at.
+</P>
+<P>
+Beware of patterns that contain nested indefinite repeats. These can take a
+long time to run when applied to a string that does not match. Consider the
+pattern fragment
+<pre>
+  ^(a+)*
+</pre>
+This can match "aaaa" in 16 different ways, and this number increases very
+rapidly as the string gets longer. (The * repeat can match 0, 1, 2, 3, or 4
+times, and for each of those cases other than 0 or 4, the + repeats can match
+different numbers of times.) When the remainder of the pattern is such that the
+entire match is going to fail, PCRE has in principle to try every possible
+variation, and this can take an extremely long time, even for relatively short
+strings.
+</P>
+<P>
+An optimization catches some of the more simple cases such as
+<pre>
+  (a+)*b
+</pre>
+where a literal character follows. Before embarking on the standard matching
+procedure, PCRE checks that there is a "b" later in the subject string, and if
+there is not, it fails the match immediately. However, when there is no
+following literal this optimization cannot be used. You can see the difference
+by comparing the behaviour of
+<pre>
+  (a+)*\d
+</pre>
+with the pattern above. The former gives a failure almost instantly when
+applied to a whole line of "a" characters, whereas the latter takes an
+appreciable time with strings longer than about 20 characters.
+</P>
+<P>
+In many cases, the solution to this kind of performance issue is to use an
+atomic group or a possessive quantifier.
+</P>
+<br><b>
+AUTHOR
+</b><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><b>
+REVISION
+</b><br>
+<P>
+Last updated: 16 May 2010
+<br>
+Copyright &copy; 1997-2010 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcreposix.html b/jni/libpcre/doc/html/pcreposix.html
new file mode 100644
index 0000000..6bd4b96
--- /dev/null
+++ b/jni/libpcre/doc/html/pcreposix.html
@@ -0,0 +1,291 @@
+<html>
+<head>
+<title>pcreposix specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcreposix man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">SYNOPSIS OF POSIX API</a>
+<li><a name="TOC2" href="#SEC2">DESCRIPTION</a>
+<li><a name="TOC3" href="#SEC3">COMPILING A PATTERN</a>
+<li><a name="TOC4" href="#SEC4">MATCHING NEWLINE CHARACTERS</a>
+<li><a name="TOC5" href="#SEC5">MATCHING A PATTERN</a>
+<li><a name="TOC6" href="#SEC6">ERROR MESSAGES</a>
+<li><a name="TOC7" href="#SEC7">MEMORY USAGE</a>
+<li><a name="TOC8" href="#SEC8">AUTHOR</a>
+<li><a name="TOC9" href="#SEC9">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">SYNOPSIS OF POSIX API</a><br>
+<P>
+<b>#include &#60;pcreposix.h&#62;</b>
+</P>
+<P>
+<b>int regcomp(regex_t *<i>preg</i>, const char *<i>pattern</i>,</b>
+<b>int <i>cflags</i>);</b>
+</P>
+<P>
+<b>int regexec(regex_t *<i>preg</i>, const char *<i>string</i>,</b>
+<b>size_t <i>nmatch</i>, regmatch_t <i>pmatch</i>[], int <i>eflags</i>);</b>
+</P>
+<P>
+<b>size_t regerror(int <i>errcode</i>, const regex_t *<i>preg</i>,</b>
+<b>char *<i>errbuf</i>, size_t <i>errbuf_size</i>);</b>
+</P>
+<P>
+<b>void regfree(regex_t *<i>preg</i>);</b>
+</P>
+<br><a name="SEC2" href="#TOC1">DESCRIPTION</a><br>
+<P>
+This set of functions provides a POSIX-style API to the PCRE regular expression
+package. See the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+documentation for a description of PCRE's native API, which contains much
+additional functionality.
+</P>
+<P>
+The functions described here are just wrapper functions that ultimately call
+the PCRE native API. Their prototypes are defined in the <b>pcreposix.h</b>
+header file, and on Unix systems the library itself is called
+<b>pcreposix.a</b>, so can be accessed by adding <b>-lpcreposix</b> to the
+command for linking an application that uses them. Because the POSIX functions
+call the native ones, it is also necessary to add <b>-lpcre</b>.
+</P>
+<P>
+I have implemented only those POSIX option bits that can be reasonably mapped
+to PCRE native options. In addition, the option REG_EXTENDED is defined with
+the value zero. This has no effect, but since programs that are written to the
+POSIX interface often use it, this makes it easier to slot in PCRE as a
+replacement library. Other POSIX options are not even defined.
+</P>
+<P>
+There are also some other options that are not defined by POSIX. These have
+been added at the request of users who want to make use of certain
+PCRE-specific features via the POSIX calling interface.
+</P>
+<P>
+When PCRE is called via these functions, it is only the API that is POSIX-like
+in style. The syntax and semantics of the regular expressions themselves are
+still those of Perl, subject to the setting of various PCRE options, as
+described below. "POSIX-like in style" means that the API approximates to the
+POSIX definition; it is not fully POSIX-compatible, and in multi-byte encoding
+domains it is probably even less compatible.
+</P>
+<P>
+The header for these functions is supplied as <b>pcreposix.h</b> to avoid any
+potential clash with other POSIX libraries. It can, of course, be renamed or
+aliased as <b>regex.h</b>, which is the "correct" name. It provides two
+structure types, <i>regex_t</i> for compiled internal forms, and
+<i>regmatch_t</i> for returning captured substrings. It also defines some
+constants whose names start with "REG_"; these are used for setting options and
+identifying error codes.
+</P>
+<br><a name="SEC3" href="#TOC1">COMPILING A PATTERN</a><br>
+<P>
+The function <b>regcomp()</b> is called to compile a pattern into an
+internal form. The pattern is a C string terminated by a binary zero, and
+is passed in the argument <i>pattern</i>. The <i>preg</i> argument is a pointer
+to a <b>regex_t</b> structure that is used as a base for storing information
+about the compiled regular expression.
+</P>
+<P>
+The argument <i>cflags</i> is either zero, or contains one or more of the bits
+defined by the following macros:
+<pre>
+  REG_DOTALL
+</pre>
+The PCRE_DOTALL option is set when the regular expression is passed for
+compilation to the native function. Note that REG_DOTALL is not part of the
+POSIX standard.
+<pre>
+  REG_ICASE
+</pre>
+The PCRE_CASELESS option is set when the regular expression is passed for
+compilation to the native function.
+<pre>
+  REG_NEWLINE
+</pre>
+The PCRE_MULTILINE option is set when the regular expression is passed for
+compilation to the native function. Note that this does <i>not</i> mimic the
+defined POSIX behaviour for REG_NEWLINE (see the following section).
+<pre>
+  REG_NOSUB
+</pre>
+The PCRE_NO_AUTO_CAPTURE option is set when the regular expression is passed
+for compilation to the native function. In addition, when a pattern that is
+compiled with this flag is passed to <b>regexec()</b> for matching, the
+<i>nmatch</i> and <i>pmatch</i> arguments are ignored, and no captured strings
+are returned.
+<pre>
+  REG_UCP
+</pre>
+The PCRE_UCP option is set when the regular expression is passed for
+compilation to the native function. This causes PCRE to use Unicode properties
+when matchine \d, \w, etc., instead of just recognizing ASCII values. Note
+that REG_UTF8 is not part of the POSIX standard.
+<pre>
+  REG_UNGREEDY
+</pre>
+The PCRE_UNGREEDY option is set when the regular expression is passed for
+compilation to the native function. Note that REG_UNGREEDY is not part of the
+POSIX standard.
+<pre>
+  REG_UTF8
+</pre>
+The PCRE_UTF8 option is set when the regular expression is passed for
+compilation to the native function. This causes the pattern itself and all data
+strings used for matching it to be treated as UTF-8 strings. Note that REG_UTF8
+is not part of the POSIX standard.
+</P>
+<P>
+In the absence of these flags, no options are passed to the native function.
+This means the the regex is compiled with PCRE default semantics. In
+particular, the way it handles newline characters in the subject string is the
+Perl way, not the POSIX way. Note that setting PCRE_MULTILINE has only
+<i>some</i> of the effects specified for REG_NEWLINE. It does not affect the way
+newlines are matched by . (they are not) or by a negative class such as [^a]
+(they are).
+</P>
+<P>
+The yield of <b>regcomp()</b> is zero on success, and non-zero otherwise. The
+<i>preg</i> structure is filled in on success, and one member of the structure
+is public: <i>re_nsub</i> contains the number of capturing subpatterns in
+the regular expression. Various error codes are defined in the header file.
+</P>
+<P>
+NOTE: If the yield of <b>regcomp()</b> is non-zero, you must not attempt to
+use the contents of the <i>preg</i> structure. If, for example, you pass it to
+<b>regexec()</b>, the result is undefined and your program is likely to crash.
+</P>
+<br><a name="SEC4" href="#TOC1">MATCHING NEWLINE CHARACTERS</a><br>
+<P>
+This area is not simple, because POSIX and Perl take different views of things.
+It is not possible to get PCRE to obey POSIX semantics, but then PCRE was never
+intended to be a POSIX engine. The following table lists the different
+possibilities for matching newline characters in PCRE:
+<pre>
+                          Default   Change with
+
+  . matches newline          no     PCRE_DOTALL
+  newline matches [^a]       yes    not changeable
+  $ matches \n at end        yes    PCRE_DOLLARENDONLY
+  $ matches \n in middle     no     PCRE_MULTILINE
+  ^ matches \n in middle     no     PCRE_MULTILINE
+</pre>
+This is the equivalent table for POSIX:
+<pre>
+                          Default   Change with
+
+  . matches newline          yes    REG_NEWLINE
+  newline matches [^a]       yes    REG_NEWLINE
+  $ matches \n at end        no     REG_NEWLINE
+  $ matches \n in middle     no     REG_NEWLINE
+  ^ matches \n in middle     no     REG_NEWLINE
+</pre>
+PCRE's behaviour is the same as Perl's, except that there is no equivalent for
+PCRE_DOLLAR_ENDONLY in Perl. In both PCRE and Perl, there is no way to stop
+newline from matching [^a].
+</P>
+<P>
+The default POSIX newline handling can be obtained by setting PCRE_DOTALL and
+PCRE_DOLLAR_ENDONLY, but there is no way to make PCRE behave exactly as for the
+REG_NEWLINE action.
+</P>
+<br><a name="SEC5" href="#TOC1">MATCHING A PATTERN</a><br>
+<P>
+The function <b>regexec()</b> is called to match a compiled pattern <i>preg</i>
+against a given <i>string</i>, which is by default terminated by a zero byte
+(but see REG_STARTEND below), subject to the options in <i>eflags</i>. These can
+be:
+<pre>
+  REG_NOTBOL
+</pre>
+The PCRE_NOTBOL option is set when calling the underlying PCRE matching
+function.
+<pre>
+  REG_NOTEMPTY
+</pre>
+The PCRE_NOTEMPTY option is set when calling the underlying PCRE matching
+function. Note that REG_NOTEMPTY is not part of the POSIX standard. However,
+setting this option can give more POSIX-like behaviour in some situations.
+<pre>
+  REG_NOTEOL
+</pre>
+The PCRE_NOTEOL option is set when calling the underlying PCRE matching
+function.
+<pre>
+  REG_STARTEND
+</pre>
+The string is considered to start at <i>string</i> + <i>pmatch[0].rm_so</i> and
+to have a terminating NUL located at <i>string</i> + <i>pmatch[0].rm_eo</i>
+(there need not actually be a NUL at that location), regardless of the value of
+<i>nmatch</i>. This is a BSD extension, compatible with but not specified by
+IEEE Standard 1003.2 (POSIX.2), and should be used with caution in software
+intended to be portable to other systems. Note that a non-zero <i>rm_so</i> does
+not imply REG_NOTBOL; REG_STARTEND affects only the location of the string, not
+how it is matched.
+</P>
+<P>
+If the pattern was compiled with the REG_NOSUB flag, no data about any matched
+strings is returned. The <i>nmatch</i> and <i>pmatch</i> arguments of
+<b>regexec()</b> are ignored.
+</P>
+<P>
+If the value of <i>nmatch</i> is zero, or if the value <i>pmatch</i> is NULL,
+no data about any matched strings is returned.
+</P>
+<P>
+Otherwise,the portion of the string that was matched, and also any captured
+substrings, are returned via the <i>pmatch</i> argument, which points to an
+array of <i>nmatch</i> structures of type <i>regmatch_t</i>, containing the
+members <i>rm_so</i> and <i>rm_eo</i>. These contain the offset to the first
+character of each substring and the offset to the first character after the end
+of each substring, respectively. The 0th element of the vector relates to the
+entire portion of <i>string</i> that was matched; subsequent elements relate to
+the capturing subpatterns of the regular expression. Unused entries in the
+array have both structure members set to -1.
+</P>
+<P>
+A successful match yields a zero return; various error codes are defined in the
+header file, of which REG_NOMATCH is the "expected" failure code.
+</P>
+<br><a name="SEC6" href="#TOC1">ERROR MESSAGES</a><br>
+<P>
+The <b>regerror()</b> function maps a non-zero errorcode from either
+<b>regcomp()</b> or <b>regexec()</b> to a printable message. If <i>preg</i> is not
+NULL, the error should have arisen from the use of that structure. A message
+terminated by a binary zero is placed in <i>errbuf</i>. The length of the
+message, including the zero, is limited to <i>errbuf_size</i>. The yield of the
+function is the size of buffer needed to hold the whole message.
+</P>
+<br><a name="SEC7" href="#TOC1">MEMORY USAGE</a><br>
+<P>
+Compiling a regular expression causes memory to be allocated and associated
+with the <i>preg</i> structure. The function <b>regfree()</b> frees all such
+memory, after which <i>preg</i> may no longer be used as a compiled expression.
+</P>
+<br><a name="SEC8" href="#TOC1">AUTHOR</a><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><a name="SEC9" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 16 May 2010
+<br>
+Copyright &copy; 1997-2010 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcreprecompile.html b/jni/libpcre/doc/html/pcreprecompile.html
new file mode 100644
index 0000000..8b3e0bc
--- /dev/null
+++ b/jni/libpcre/doc/html/pcreprecompile.html
@@ -0,0 +1,153 @@
+<html>
+<head>
+<title>pcreprecompile specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcreprecompile man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">SAVING AND RE-USING PRECOMPILED PCRE PATTERNS</a>
+<li><a name="TOC2" href="#SEC2">SAVING A COMPILED PATTERN</a>
+<li><a name="TOC3" href="#SEC3">RE-USING A PRECOMPILED PATTERN</a>
+<li><a name="TOC4" href="#SEC4">COMPATIBILITY WITH DIFFERENT PCRE RELEASES</a>
+<li><a name="TOC5" href="#SEC5">AUTHOR</a>
+<li><a name="TOC6" href="#SEC6">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">SAVING AND RE-USING PRECOMPILED PCRE PATTERNS</a><br>
+<P>
+If you are running an application that uses a large number of regular
+expression patterns, it may be useful to store them in a precompiled form
+instead of having to compile them every time the application is run.
+If you are not using any private character tables (see the
+<a href="pcre_maketables.html"><b>pcre_maketables()</b></a>
+documentation), this is relatively straightforward. If you are using private
+tables, it is a little bit more complicated. However, if you are using the
+just-in-time optimization feature of <b>pcre_study()</b>, it is not possible to
+save and reload the JIT data.
+</P>
+<P>
+If you save compiled patterns to a file, you can copy them to a different host
+and run them there. This works even if the new host has the opposite endianness
+to the one on which the patterns were compiled. There may be a small
+performance penalty, but it should be insignificant. However, compiling regular
+expressions with one version of PCRE for use with a different version is not
+guaranteed to work and may cause crashes, and saving and restoring a compiled
+pattern loses any JIT optimization data.
+</P>
+<br><a name="SEC2" href="#TOC1">SAVING A COMPILED PATTERN</a><br>
+<P>
+The value returned by <b>pcre_compile()</b> points to a single block of memory
+that holds the compiled pattern and associated data. You can find the length of
+this block in bytes by calling <b>pcre_fullinfo()</b> with an argument of
+PCRE_INFO_SIZE. You can then save the data in any appropriate manner. Here is
+sample code that compiles a pattern and writes it to a file. It assumes that
+the variable <i>fd</i> refers to a file that is open for output:
+<pre>
+  int erroroffset, rc, size;
+  char *error;
+  pcre *re;
+
+  re = pcre_compile("my pattern", 0, &error, &erroroffset, NULL);
+  if (re == NULL) { ... handle errors ... }
+  rc = pcre_fullinfo(re, NULL, PCRE_INFO_SIZE, &size);
+  if (rc &#60; 0) { ... handle errors ... }
+  rc = fwrite(re, 1, size, fd);
+  if (rc != size) { ... handle errors ... }
+</pre>
+In this example, the bytes that comprise the compiled pattern are copied
+exactly. Note that this is binary data that may contain any of the 256 possible
+byte values. On systems that make a distinction between binary and non-binary
+data, be sure that the file is opened for binary output.
+</P>
+<P>
+If you want to write more than one pattern to a file, you will have to devise a
+way of separating them. For binary data, preceding each pattern with its length
+is probably the most straightforward approach. Another possibility is to write
+out the data in hexadecimal instead of binary, one pattern to a line.
+</P>
+<P>
+Saving compiled patterns in a file is only one possible way of storing them for
+later use. They could equally well be saved in a database, or in the memory of
+some daemon process that passes them via sockets to the processes that want
+them.
+</P>
+<P>
+If the pattern has been studied, it is also possible to save the normal study
+data in a similar way to the compiled pattern itself. However, if the
+PCRE_STUDY_JIT_COMPILE was used, the just-in-time data that is created cannot
+be saved because it is too dependent on the current environment. When studying
+generates additional information, <b>pcre_study()</b> returns a pointer to a
+<b>pcre_extra</b> data block. Its format is defined in the
+<a href="pcreapi.html#extradata">section on matching a pattern</a>
+in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+documentation. The <i>study_data</i> field points to the binary study data, and
+this is what you must save (not the <b>pcre_extra</b> block itself). The length
+of the study data can be obtained by calling <b>pcre_fullinfo()</b> with an
+argument of PCRE_INFO_STUDYSIZE. Remember to check that <b>pcre_study()</b> did
+return a non-NULL value before trying to save the study data.
+</P>
+<br><a name="SEC3" href="#TOC1">RE-USING A PRECOMPILED PATTERN</a><br>
+<P>
+Re-using a precompiled pattern is straightforward. Having reloaded it into main
+memory, you pass its pointer to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b> in
+the usual way. This should work even on another host, and even if that host has
+the opposite endianness to the one where the pattern was compiled.
+</P>
+<P>
+However, if you passed a pointer to custom character tables when the pattern
+was compiled (the <i>tableptr</i> argument of <b>pcre_compile()</b>), you must
+now pass a similar pointer to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>,
+because the value saved with the compiled pattern will obviously be nonsense. A
+field in a <b>pcre_extra()</b> block is used to pass this data, as described in
+the
+<a href="pcreapi.html#extradata">section on matching a pattern</a>
+in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+documentation.
+</P>
+<P>
+If you did not provide custom character tables when the pattern was compiled,
+the pointer in the compiled pattern is NULL, which causes <b>pcre_exec()</b> to
+use PCRE's internal tables. Thus, you do not need to take any special action at
+run time in this case.
+</P>
+<P>
+If you saved study data with the compiled pattern, you need to create your own
+<b>pcre_extra</b> data block and set the <i>study_data</i> field to point to the
+reloaded study data. You must also set the PCRE_EXTRA_STUDY_DATA bit in the
+<i>flags</i> field to indicate that study data is present. Then pass the
+<b>pcre_extra</b> block to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b> in the
+usual way. If the pattern was studied for just-in-time optimization, that data
+cannot be saved, and so is lost by a save/restore cycle.
+</P>
+<br><a name="SEC4" href="#TOC1">COMPATIBILITY WITH DIFFERENT PCRE RELEASES</a><br>
+<P>
+In general, it is safest to recompile all saved patterns when you update to a
+new PCRE release, though not all updates actually require this.
+</P>
+<br><a name="SEC5" href="#TOC1">AUTHOR</a><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><a name="SEC6" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 26 August 2011
+<br>
+Copyright &copy; 1997-2011 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcresample.html b/jni/libpcre/doc/html/pcresample.html
new file mode 100644
index 0000000..dcd69bf
--- /dev/null
+++ b/jni/libpcre/doc/html/pcresample.html
@@ -0,0 +1,109 @@
+<html>
+<head>
+<title>pcresample specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcresample man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+PCRE SAMPLE PROGRAM
+</b><br>
+<P>
+A simple, complete demonstration program, to get you started with using PCRE,
+is supplied in the file <i>pcredemo.c</i> in the PCRE distribution. A listing of
+this program is given in the
+<a href="pcredemo.html"><b>pcredemo</b></a>
+documentation. If you do not have a copy of the PCRE distribution, you can save
+this listing to re-create <i>pcredemo.c</i>.
+</P>
+<P>
+The program compiles the regular expression that is its first argument, and
+matches it against the subject string in its second argument. No PCRE options
+are set, and default character tables are used. If matching succeeds, the
+program outputs the portion of the subject that matched, together with the
+contents of any captured substrings.
+</P>
+<P>
+If the -g option is given on the command line, the program then goes on to
+check for further matches of the same regular expression in the same subject
+string. The logic is a little bit tricky because of the possibility of matching
+an empty string. Comments in the code explain what is going on.
+</P>
+<P>
+If PCRE is installed in the standard include and library directories for your
+operating system, you should be able to compile the demonstration program using
+this command:
+<pre>
+  gcc -o pcredemo pcredemo.c -lpcre
+</pre>
+If PCRE is installed elsewhere, you may need to add additional options to the
+command line. For example, on a Unix-like system that has PCRE installed in
+<i>/usr/local</i>, you can compile the demonstration program using a command
+like this:
+<pre>
+  gcc -o pcredemo -I/usr/local/include pcredemo.c -L/usr/local/lib -lpcre
+</pre>
+In a Windows environment, if you want to statically link the program against a
+non-dll <b>pcre.a</b> file, you must uncomment the line that defines PCRE_STATIC
+before including <b>pcre.h</b>, because otherwise the <b>pcre_malloc()</b> and
+<b>pcre_free()</b> exported functions will be declared
+<b>__declspec(dllimport)</b>, with unwanted results.
+</P>
+<P>
+Once you have compiled and linked the demonstration program, you can run simple
+tests like this:
+<pre>
+  ./pcredemo 'cat|dog' 'the cat sat on the mat'
+  ./pcredemo -g 'cat|dog' 'the dog sat on the cat'
+</pre>
+Note that there is a much more comprehensive test program, called
+<a href="pcretest.html"><b>pcretest</b>,</a>
+which supports many more facilities for testing regular expressions and the
+PCRE library. The
+<a href="pcredemo.html"><b>pcredemo</b></a>
+program is provided as a simple coding example.
+</P>
+<P>
+If you try to run
+<a href="pcredemo.html"><b>pcredemo</b></a>
+when PCRE is not installed in the standard library directory, you may get an
+error like this on some operating systems (e.g. Solaris):
+<pre>
+  ld.so.1: a.out: fatal: libpcre.so.0: open failed: No such file or directory
+</pre>
+This is caused by the way shared library support works on those systems. You
+need to add
+<pre>
+  -R/usr/local/lib
+</pre>
+(for example) to the compile command to get round this problem.
+</P>
+<br><b>
+AUTHOR
+</b><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><b>
+REVISION
+</b><br>
+<P>
+Last updated: 17 November 2010
+<br>
+Copyright &copy; 1997-2010 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcrestack.html b/jni/libpcre/doc/html/pcrestack.html
new file mode 100644
index 0000000..78484de
--- /dev/null
+++ b/jni/libpcre/doc/html/pcrestack.html
@@ -0,0 +1,198 @@
+<html>
+<head>
+<title>pcrestack specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcrestack man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+PCRE DISCUSSION OF STACK USAGE
+</b><br>
+<P>
+When you call <b>pcre_exec()</b>, it makes use of an internal function called
+<b>match()</b>. This calls itself recursively at branch points in the pattern,
+in order to remember the state of the match so that it can back up and try a
+different alternative if the first one fails. As matching proceeds deeper and
+deeper into the tree of possibilities, the recursion depth increases. The
+<b>match()</b> function is also called in other circumstances, for example,
+whenever a parenthesized sub-pattern is entered, and in certain cases of
+repetition.
+</P>
+<P>
+Not all calls of <b>match()</b> increase the recursion depth; for an item such
+as a* it may be called several times at the same level, after matching
+different numbers of a's. Furthermore, in a number of cases where the result of
+the recursive call would immediately be passed back as the result of the
+current call (a "tail recursion"), the function is just restarted instead.
+</P>
+<P>
+The above comments apply when <b>pcre_exec()</b> is run in its normal
+interpretive manner. If the pattern was studied with the
+PCRE_STUDY_JIT_COMPILE option, and just-in-time compiling was successful, and
+the options passed to <b>pcre_exec()</b> were not incompatible, the matching
+process uses the JIT-compiled code instead of the <b>match()</b> function. In
+this case, the memory requirements are handled entirely differently. See the
+<a href="pcrejit.html"><b>pcrejit</b></a>
+documentation for details.
+</P>
+<P>
+The <b>pcre_dfa_exec()</b> function operates in an entirely different way, and
+uses recursion only when there is a regular expression recursion or subroutine
+call in the pattern. This includes the processing of assertion and "once-only"
+subpatterns, which are handled like subroutine calls. Normally, these are never
+very deep, and the limit on the complexity of <b>pcre_dfa_exec()</b> is
+controlled by the amount of workspace it is given. However, it is possible to
+write patterns with runaway infinite recursions; such patterns will cause
+<b>pcre_dfa_exec()</b> to run out of stack. At present, there is no protection
+against this.
+</P>
+<P>
+The comments that follow do NOT apply to <b>pcre_dfa_exec()</b>; they are
+relevant only for <b>pcre_exec()</b> without the JIT optimization.
+</P>
+<br><b>
+Reducing <b>pcre_exec()</b>'s stack usage
+</b><br>
+<P>
+Each time that <b>match()</b> is actually called recursively, it uses memory
+from the process stack. For certain kinds of pattern and data, very large
+amounts of stack may be needed, despite the recognition of "tail recursion".
+You can often reduce the amount of recursion, and therefore the amount of stack
+used, by modifying the pattern that is being matched. Consider, for example,
+this pattern:
+<pre>
+  ([^&#60;]|&#60;(?!inet))+
+</pre>
+It matches from wherever it starts until it encounters "&#60;inet" or the end of
+the data, and is the kind of pattern that might be used when processing an XML
+file. Each iteration of the outer parentheses matches either one character that
+is not "&#60;" or a "&#60;" that is not followed by "inet". However, each time a
+parenthesis is processed, a recursion occurs, so this formulation uses a stack
+frame for each matched character. For a long string, a lot of stack is
+required. Consider now this rewritten pattern, which matches exactly the same
+strings:
+<pre>
+  ([^&#60;]++|&#60;(?!inet))+
+</pre>
+This uses very much less stack, because runs of characters that do not contain
+"&#60;" are "swallowed" in one item inside the parentheses. Recursion happens only
+when a "&#60;" character that is not followed by "inet" is encountered (and we
+assume this is relatively rare). A possessive quantifier is used to stop any
+backtracking into the runs of non-"&#60;" characters, but that is not related to
+stack usage.
+</P>
+<P>
+This example shows that one way of avoiding stack problems when matching long
+subject strings is to write repeated parenthesized subpatterns to match more
+than one character whenever possible.
+</P>
+<br><b>
+Compiling PCRE to use heap instead of stack for <b>pcre_exec()</b>
+</b><br>
+<P>
+In environments where stack memory is constrained, you might want to compile
+PCRE to use heap memory instead of stack for remembering back-up points when
+<b>pcre_exec()</b> is running. This makes it run a lot more slowly, however.
+Details of how to do this are given in the
+<a href="pcrebuild.html"><b>pcrebuild</b></a>
+documentation. When built in this way, instead of using the stack, PCRE obtains
+and frees memory by calling the functions that are pointed to by the
+<b>pcre_stack_malloc</b> and <b>pcre_stack_free</b> variables. By default, these
+point to <b>malloc()</b> and <b>free()</b>, but you can replace the pointers to
+cause PCRE to use your own functions. Since the block sizes are always the
+same, and are always freed in reverse order, it may be possible to implement
+customized memory handlers that are more efficient than the standard functions.
+</P>
+<br><b>
+Limiting <b>pcre_exec()</b>'s stack usage
+</b><br>
+<P>
+You can set limits on the number of times that <b>match()</b> is called, both in
+total and recursively. If a limit is exceeded, <b>pcre_exec()</b> returns an
+error code. Setting suitable limits should prevent it from running out of
+stack. The default values of the limits are very large, and unlikely ever to
+operate. They can be changed when PCRE is built, and they can also be set when
+<b>pcre_exec()</b> is called. For details of these interfaces, see the
+<a href="pcrebuild.html"><b>pcrebuild</b></a>
+documentation and the
+<a href="pcreapi.html#extradata">section on extra data for <b>pcre_exec()</b></a>
+in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+documentation.
+</P>
+<P>
+As a very rough rule of thumb, you should reckon on about 500 bytes per
+recursion. Thus, if you want to limit your stack usage to 8Mb, you
+should set the limit at 16000 recursions. A 64Mb stack, on the other hand, can
+support around 128000 recursions.
+</P>
+<P>
+In Unix-like environments, the <b>pcretest</b> test program has a command line
+option (<b>-S</b>) that can be used to increase the size of its stack. As long
+as the stack is large enough, another option (<b>-M</b>) can be used to find the
+smallest limits that allow a particular pattern to match a given subject
+string. This is done by calling <b>pcre_exec()</b> repeatedly with different
+limits.
+</P>
+<br><b>
+Changing stack size in Unix-like systems
+</b><br>
+<P>
+In Unix-like environments, there is not often a problem with the stack unless
+very long strings are involved, though the default limit on stack size varies
+from system to system. Values from 8Mb to 64Mb are common. You can find your
+default limit by running the command:
+<pre>
+  ulimit -s
+</pre>
+Unfortunately, the effect of running out of stack is often SIGSEGV, though
+sometimes a more explicit error message is given. You can normally increase the
+limit on stack size by code such as this:
+<pre>
+  struct rlimit rlim;
+  getrlimit(RLIMIT_STACK, &rlim);
+  rlim.rlim_cur = 100*1024*1024;
+  setrlimit(RLIMIT_STACK, &rlim);
+</pre>
+This reads the current limits (soft and hard) using <b>getrlimit()</b>, then
+attempts to increase the soft limit to 100Mb using <b>setrlimit()</b>. You must
+do this before calling <b>pcre_exec()</b>.
+</P>
+<br><b>
+Changing stack size in Mac OS X
+</b><br>
+<P>
+Using <b>setrlimit()</b>, as described above, should also work on Mac OS X. It
+is also possible to set a stack size when linking a program. There is a
+discussion about stack sizes in Mac OS X at this web site:
+<a href="http://developer.apple.com/qa/qa2005/qa1419.html">http://developer.apple.com/qa/qa2005/qa1419.html.</a>
+</P>
+<br><b>
+AUTHOR
+</b><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><b>
+REVISION
+</b><br>
+<P>
+Last updated: 26 August 2011
+<br>
+Copyright &copy; 1997-2011 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcresyntax.html b/jni/libpcre/doc/html/pcresyntax.html
new file mode 100644
index 0000000..9fa3ebd
--- /dev/null
+++ b/jni/libpcre/doc/html/pcresyntax.html
@@ -0,0 +1,504 @@
+<html>
+<head>
+<title>pcresyntax specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcresyntax man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">PCRE REGULAR EXPRESSION SYNTAX SUMMARY</a>
+<li><a name="TOC2" href="#SEC2">QUOTING</a>
+<li><a name="TOC3" href="#SEC3">CHARACTERS</a>
+<li><a name="TOC4" href="#SEC4">CHARACTER TYPES</a>
+<li><a name="TOC5" href="#SEC5">GENERAL CATEGORY PROPERTIES FOR \p and \P</a>
+<li><a name="TOC6" href="#SEC6">PCRE SPECIAL CATEGORY PROPERTIES FOR \p and \P</a>
+<li><a name="TOC7" href="#SEC7">SCRIPT NAMES FOR \p AND \P</a>
+<li><a name="TOC8" href="#SEC8">CHARACTER CLASSES</a>
+<li><a name="TOC9" href="#SEC9">QUANTIFIERS</a>
+<li><a name="TOC10" href="#SEC10">ANCHORS AND SIMPLE ASSERTIONS</a>
+<li><a name="TOC11" href="#SEC11">MATCH POINT RESET</a>
+<li><a name="TOC12" href="#SEC12">ALTERNATION</a>
+<li><a name="TOC13" href="#SEC13">CAPTURING</a>
+<li><a name="TOC14" href="#SEC14">ATOMIC GROUPS</a>
+<li><a name="TOC15" href="#SEC15">COMMENT</a>
+<li><a name="TOC16" href="#SEC16">OPTION SETTING</a>
+<li><a name="TOC17" href="#SEC17">LOOKAHEAD AND LOOKBEHIND ASSERTIONS</a>
+<li><a name="TOC18" href="#SEC18">BACKREFERENCES</a>
+<li><a name="TOC19" href="#SEC19">SUBROUTINE REFERENCES (POSSIBLY RECURSIVE)</a>
+<li><a name="TOC20" href="#SEC20">CONDITIONAL PATTERNS</a>
+<li><a name="TOC21" href="#SEC21">BACKTRACKING CONTROL</a>
+<li><a name="TOC22" href="#SEC22">NEWLINE CONVENTIONS</a>
+<li><a name="TOC23" href="#SEC23">WHAT \R MATCHES</a>
+<li><a name="TOC24" href="#SEC24">CALLOUTS</a>
+<li><a name="TOC25" href="#SEC25">SEE ALSO</a>
+<li><a name="TOC26" href="#SEC26">AUTHOR</a>
+<li><a name="TOC27" href="#SEC27">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">PCRE REGULAR EXPRESSION SYNTAX SUMMARY</a><br>
+<P>
+The full syntax and semantics of the regular expressions that are supported by
+PCRE are described in the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+documentation. This document contains just a quick-reference summary of the
+syntax.
+</P>
+<br><a name="SEC2" href="#TOC1">QUOTING</a><br>
+<P>
+<pre>
+  \x         where x is non-alphanumeric is a literal x
+  \Q...\E    treat enclosed characters as literal
+</PRE>
+</P>
+<br><a name="SEC3" href="#TOC1">CHARACTERS</a><br>
+<P>
+<pre>
+  \a         alarm, that is, the BEL character (hex 07)
+  \cx        "control-x", where x is any ASCII character
+  \e         escape (hex 1B)
+  \f         formfeed (hex 0C)
+  \n         newline (hex 0A)
+  \r         carriage return (hex 0D)
+  \t         tab (hex 09)
+  \ddd       character with octal code ddd, or backreference
+  \xhh       character with hex code hh
+  \x{hhh..}  character with hex code hhh..
+</PRE>
+</P>
+<br><a name="SEC4" href="#TOC1">CHARACTER TYPES</a><br>
+<P>
+<pre>
+  .          any character except newline;
+               in dotall mode, any character whatsoever
+  \C         one byte, even in UTF-8 mode (best avoided)
+  \d         a decimal digit
+  \D         a character that is not a decimal digit
+  \h         a horizontal whitespace character
+  \H         a character that is not a horizontal whitespace character
+  \N         a character that is not a newline
+  \p{<i>xx</i>}     a character with the <i>xx</i> property
+  \P{<i>xx</i>}     a character without the <i>xx</i> property
+  \R         a newline sequence
+  \s         a whitespace character
+  \S         a character that is not a whitespace character
+  \v         a vertical whitespace character
+  \V         a character that is not a vertical whitespace character
+  \w         a "word" character
+  \W         a "non-word" character
+  \X         an extended Unicode sequence
+</pre>
+In PCRE, by default, \d, \D, \s, \S, \w, and \W recognize only ASCII
+characters, even in UTF-8 mode. However, this can be changed by setting the
+PCRE_UCP option.
+</P>
+<br><a name="SEC5" href="#TOC1">GENERAL CATEGORY PROPERTIES FOR \p and \P</a><br>
+<P>
+<pre>
+  C          Other
+  Cc         Control
+  Cf         Format
+  Cn         Unassigned
+  Co         Private use
+  Cs         Surrogate
+
+  L          Letter
+  Ll         Lower case letter
+  Lm         Modifier letter
+  Lo         Other letter
+  Lt         Title case letter
+  Lu         Upper case letter
+  L&         Ll, Lu, or Lt
+
+  M          Mark
+  Mc         Spacing mark
+  Me         Enclosing mark
+  Mn         Non-spacing mark
+
+  N          Number
+  Nd         Decimal number
+  Nl         Letter number
+  No         Other number
+
+  P          Punctuation
+  Pc         Connector punctuation
+  Pd         Dash punctuation
+  Pe         Close punctuation
+  Pf         Final punctuation
+  Pi         Initial punctuation
+  Po         Other punctuation
+  Ps         Open punctuation
+
+  S          Symbol
+  Sc         Currency symbol
+  Sk         Modifier symbol
+  Sm         Mathematical symbol
+  So         Other symbol
+
+  Z          Separator
+  Zl         Line separator
+  Zp         Paragraph separator
+  Zs         Space separator
+</PRE>
+</P>
+<br><a name="SEC6" href="#TOC1">PCRE SPECIAL CATEGORY PROPERTIES FOR \p and \P</a><br>
+<P>
+<pre>
+  Xan        Alphanumeric: union of properties L and N
+  Xps        POSIX space: property Z or tab, NL, VT, FF, CR
+  Xsp        Perl space: property Z or tab, NL, FF, CR
+  Xwd        Perl word: property Xan or underscore
+</PRE>
+</P>
+<br><a name="SEC7" href="#TOC1">SCRIPT NAMES FOR \p AND \P</a><br>
+<P>
+Arabic,
+Armenian,
+Avestan,
+Balinese,
+Bamum,
+Bengali,
+Bopomofo,
+Braille,
+Buginese,
+Buhid,
+Canadian_Aboriginal,
+Carian,
+Cham,
+Cherokee,
+Common,
+Coptic,
+Cuneiform,
+Cypriot,
+Cyrillic,
+Deseret,
+Devanagari,
+Egyptian_Hieroglyphs,
+Ethiopic,
+Georgian,
+Glagolitic,
+Gothic,
+Greek,
+Gujarati,
+Gurmukhi,
+Han,
+Hangul,
+Hanunoo,
+Hebrew,
+Hiragana,
+Imperial_Aramaic,
+Inherited,
+Inscriptional_Pahlavi,
+Inscriptional_Parthian,
+Javanese,
+Kaithi,
+Kannada,
+Katakana,
+Kayah_Li,
+Kharoshthi,
+Khmer,
+Lao,
+Latin,
+Lepcha,
+Limbu,
+Linear_B,
+Lisu,
+Lycian,
+Lydian,
+Malayalam,
+Meetei_Mayek,
+Mongolian,
+Myanmar,
+New_Tai_Lue,
+Nko,
+Ogham,
+Old_Italic,
+Old_Persian,
+Old_South_Arabian,
+Old_Turkic,
+Ol_Chiki,
+Oriya,
+Osmanya,
+Phags_Pa,
+Phoenician,
+Rejang,
+Runic,
+Samaritan,
+Saurashtra,
+Shavian,
+Sinhala,
+Sundanese,
+Syloti_Nagri,
+Syriac,
+Tagalog,
+Tagbanwa,
+Tai_Le,
+Tai_Tham,
+Tai_Viet,
+Tamil,
+Telugu,
+Thaana,
+Thai,
+Tibetan,
+Tifinagh,
+Ugaritic,
+Vai,
+Yi.
+</P>
+<br><a name="SEC8" href="#TOC1">CHARACTER CLASSES</a><br>
+<P>
+<pre>
+  [...]       positive character class
+  [^...]      negative character class
+  [x-y]       range (can be used for hex characters)
+  [[:xxx:]]   positive POSIX named set
+  [[:^xxx:]]  negative POSIX named set
+
+  alnum       alphanumeric
+  alpha       alphabetic
+  ascii       0-127
+  blank       space or tab
+  cntrl       control character
+  digit       decimal digit
+  graph       printing, excluding space
+  lower       lower case letter
+  print       printing, including space
+  punct       printing, excluding alphanumeric
+  space       whitespace
+  upper       upper case letter
+  word        same as \w
+  xdigit      hexadecimal digit
+</pre>
+In PCRE, POSIX character set names recognize only ASCII characters by default,
+but some of them use Unicode properties if PCRE_UCP is set. You can use
+\Q...\E inside a character class.
+</P>
+<br><a name="SEC9" href="#TOC1">QUANTIFIERS</a><br>
+<P>
+<pre>
+  ?           0 or 1, greedy
+  ?+          0 or 1, possessive
+  ??          0 or 1, lazy
+  *           0 or more, greedy
+  *+          0 or more, possessive
+  *?          0 or more, lazy
+  +           1 or more, greedy
+  ++          1 or more, possessive
+  +?          1 or more, lazy
+  {n}         exactly n
+  {n,m}       at least n, no more than m, greedy
+  {n,m}+      at least n, no more than m, possessive
+  {n,m}?      at least n, no more than m, lazy
+  {n,}        n or more, greedy
+  {n,}+       n or more, possessive
+  {n,}?       n or more, lazy
+</PRE>
+</P>
+<br><a name="SEC10" href="#TOC1">ANCHORS AND SIMPLE ASSERTIONS</a><br>
+<P>
+<pre>
+  \b          word boundary
+  \B          not a word boundary
+  ^           start of subject
+               also after internal newline in multiline mode
+  \A          start of subject
+  $           end of subject
+               also before newline at end of subject
+               also before internal newline in multiline mode
+  \Z          end of subject
+               also before newline at end of subject
+  \z          end of subject
+  \G          first matching position in subject
+</PRE>
+</P>
+<br><a name="SEC11" href="#TOC1">MATCH POINT RESET</a><br>
+<P>
+<pre>
+  \K          reset start of match
+</PRE>
+</P>
+<br><a name="SEC12" href="#TOC1">ALTERNATION</a><br>
+<P>
+<pre>
+  expr|expr|expr...
+</PRE>
+</P>
+<br><a name="SEC13" href="#TOC1">CAPTURING</a><br>
+<P>
+<pre>
+  (...)           capturing group
+  (?&#60;name&#62;...)    named capturing group (Perl)
+  (?'name'...)    named capturing group (Perl)
+  (?P&#60;name&#62;...)   named capturing group (Python)
+  (?:...)         non-capturing group
+  (?|...)         non-capturing group; reset group numbers for
+                   capturing groups in each alternative
+</PRE>
+</P>
+<br><a name="SEC14" href="#TOC1">ATOMIC GROUPS</a><br>
+<P>
+<pre>
+  (?&#62;...)         atomic, non-capturing group
+</PRE>
+</P>
+<br><a name="SEC15" href="#TOC1">COMMENT</a><br>
+<P>
+<pre>
+  (?#....)        comment (not nestable)
+</PRE>
+</P>
+<br><a name="SEC16" href="#TOC1">OPTION SETTING</a><br>
+<P>
+<pre>
+  (?i)            caseless
+  (?J)            allow duplicate names
+  (?m)            multiline
+  (?s)            single line (dotall)
+  (?U)            default ungreedy (lazy)
+  (?x)            extended (ignore white space)
+  (?-...)         unset option(s)
+</pre>
+The following are recognized only at the start of a pattern or after one of the
+newline-setting options with similar syntax:
+<pre>
+  (*NO_START_OPT) no start-match optimization (PCRE_NO_START_OPTIMIZE)
+  (*UTF8)         set UTF-8 mode (PCRE_UTF8)
+  (*UCP)          set PCRE_UCP (use Unicode properties for \d etc)
+</PRE>
+</P>
+<br><a name="SEC17" href="#TOC1">LOOKAHEAD AND LOOKBEHIND ASSERTIONS</a><br>
+<P>
+<pre>
+  (?=...)         positive look ahead
+  (?!...)         negative look ahead
+  (?&#60;=...)        positive look behind
+  (?&#60;!...)        negative look behind
+</pre>
+Each top-level branch of a look behind must be of a fixed length.
+</P>
+<br><a name="SEC18" href="#TOC1">BACKREFERENCES</a><br>
+<P>
+<pre>
+  \n              reference by number (can be ambiguous)
+  \gn             reference by number
+  \g{n}           reference by number
+  \g{-n}          relative reference by number
+  \k&#60;name&#62;        reference by name (Perl)
+  \k'name'        reference by name (Perl)
+  \g{name}        reference by name (Perl)
+  \k{name}        reference by name (.NET)
+  (?P=name)       reference by name (Python)
+</PRE>
+</P>
+<br><a name="SEC19" href="#TOC1">SUBROUTINE REFERENCES (POSSIBLY RECURSIVE)</a><br>
+<P>
+<pre>
+  (?R)            recurse whole pattern
+  (?n)            call subpattern by absolute number
+  (?+n)           call subpattern by relative number
+  (?-n)           call subpattern by relative number
+  (?&name)        call subpattern by name (Perl)
+  (?P&#62;name)       call subpattern by name (Python)
+  \g&#60;name&#62;        call subpattern by name (Oniguruma)
+  \g'name'        call subpattern by name (Oniguruma)
+  \g&#60;n&#62;           call subpattern by absolute number (Oniguruma)
+  \g'n'           call subpattern by absolute number (Oniguruma)
+  \g&#60;+n&#62;          call subpattern by relative number (PCRE extension)
+  \g'+n'          call subpattern by relative number (PCRE extension)
+  \g&#60;-n&#62;          call subpattern by relative number (PCRE extension)
+  \g'-n'          call subpattern by relative number (PCRE extension)
+</PRE>
+</P>
+<br><a name="SEC20" href="#TOC1">CONDITIONAL PATTERNS</a><br>
+<P>
+<pre>
+  (?(condition)yes-pattern)
+  (?(condition)yes-pattern|no-pattern)
+
+  (?(n)...        absolute reference condition
+  (?(+n)...       relative reference condition
+  (?(-n)...       relative reference condition
+  (?(&#60;name&#62;)...   named reference condition (Perl)
+  (?('name')...   named reference condition (Perl)
+  (?(name)...     named reference condition (PCRE)
+  (?(R)...        overall recursion condition
+  (?(Rn)...       specific group recursion condition
+  (?(R&name)...   specific recursion condition
+  (?(DEFINE)...   define subpattern for reference
+  (?(assert)...   assertion condition
+</PRE>
+</P>
+<br><a name="SEC21" href="#TOC1">BACKTRACKING CONTROL</a><br>
+<P>
+The following act immediately they are reached:
+<pre>
+  (*ACCEPT)       force successful match
+  (*FAIL)         force backtrack; synonym (*F)
+</pre>
+The following act only when a subsequent match failure causes a backtrack to
+reach them. They all force a match failure, but they differ in what happens
+afterwards. Those that advance the start-of-match point do so only if the
+pattern is not anchored.
+<pre>
+  (*COMMIT)       overall failure, no advance of starting point
+  (*PRUNE)        advance to next starting character
+  (*SKIP)         advance start to current matching position
+  (*THEN)         local failure, backtrack to next alternation
+</PRE>
+</P>
+<br><a name="SEC22" href="#TOC1">NEWLINE CONVENTIONS</a><br>
+<P>
+These are recognized only at the very start of the pattern or after a
+(*BSR_...) or (*UTF8) or (*UCP) option.
+<pre>
+  (*CR)           carriage return only
+  (*LF)           linefeed only
+  (*CRLF)         carriage return followed by linefeed
+  (*ANYCRLF)      all three of the above
+  (*ANY)          any Unicode newline sequence
+</PRE>
+</P>
+<br><a name="SEC23" href="#TOC1">WHAT \R MATCHES</a><br>
+<P>
+These are recognized only at the very start of the pattern or after a
+(*...) option that sets the newline convention or UTF-8 or UCP mode.
+<pre>
+  (*BSR_ANYCRLF)  CR, LF, or CRLF
+  (*BSR_UNICODE)  any Unicode newline sequence
+</PRE>
+</P>
+<br><a name="SEC24" href="#TOC1">CALLOUTS</a><br>
+<P>
+<pre>
+  (?C)      callout
+  (?Cn)     callout with data n
+</PRE>
+</P>
+<br><a name="SEC25" href="#TOC1">SEE ALSO</a><br>
+<P>
+<b>pcrepattern</b>(3), <b>pcreapi</b>(3), <b>pcrecallout</b>(3),
+<b>pcrematching</b>(3), <b>pcre</b>(3).
+</P>
+<br><a name="SEC26" href="#TOC1">AUTHOR</a><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><a name="SEC27" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 21 November 2010
+<br>
+Copyright &copy; 1997-2010 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcretest.html b/jni/libpcre/doc/html/pcretest.html
new file mode 100644
index 0000000..c883064
--- /dev/null
+++ b/jni/libpcre/doc/html/pcretest.html
@@ -0,0 +1,868 @@
+<html>
+<head>
+<title>pcretest specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcretest man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<ul>
+<li><a name="TOC1" href="#SEC1">SYNOPSIS</a>
+<li><a name="TOC2" href="#SEC2">COMMAND LINE OPTIONS</a>
+<li><a name="TOC3" href="#SEC3">DESCRIPTION</a>
+<li><a name="TOC4" href="#SEC4">PATTERN MODIFIERS</a>
+<li><a name="TOC5" href="#SEC5">DATA LINES</a>
+<li><a name="TOC6" href="#SEC6">THE ALTERNATIVE MATCHING FUNCTION</a>
+<li><a name="TOC7" href="#SEC7">DEFAULT OUTPUT FROM PCRETEST</a>
+<li><a name="TOC8" href="#SEC8">OUTPUT FROM THE ALTERNATIVE MATCHING FUNCTION</a>
+<li><a name="TOC9" href="#SEC9">RESTARTING AFTER A PARTIAL MATCH</a>
+<li><a name="TOC10" href="#SEC10">CALLOUTS</a>
+<li><a name="TOC11" href="#SEC11">NON-PRINTING CHARACTERS</a>
+<li><a name="TOC12" href="#SEC12">SAVING AND RELOADING COMPILED PATTERNS</a>
+<li><a name="TOC13" href="#SEC13">SEE ALSO</a>
+<li><a name="TOC14" href="#SEC14">AUTHOR</a>
+<li><a name="TOC15" href="#SEC15">REVISION</a>
+</ul>
+<br><a name="SEC1" href="#TOC1">SYNOPSIS</a><br>
+<P>
+<b>pcretest [options] [input file [output file]]</b>
+<br>
+<br>
+<b>pcretest</b> was written as a test program for the PCRE regular expression
+library itself, but it can also be used for experimenting with regular
+expressions. This document describes the features of the test program; for
+details of the regular expressions themselves, see the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+documentation. For details of the PCRE library function calls and their
+options, see the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+documentation. The input for <b>pcretest</b> is a sequence of regular expression
+patterns and strings to be matched, as described below. The output shows the
+result of each match. Options on the command line and the patterns control PCRE
+options and exactly what is output.
+</P>
+<br><a name="SEC2" href="#TOC1">COMMAND LINE OPTIONS</a><br>
+<P>
+<b>-b</b>
+Behave as if each pattern has the <b>/B</b> (show byte code) modifier; the
+internal form is output after compilation.
+</P>
+<P>
+<b>-C</b>
+Output the version number of the PCRE library, and all available information
+about the optional features that are included, and then exit.
+</P>
+<P>
+<b>-d</b>
+Behave as if each pattern has the <b>/D</b> (debug) modifier; the internal
+form and information about the compiled pattern is output after compilation;
+<b>-d</b> is equivalent to <b>-b -i</b>.
+</P>
+<P>
+<b>-dfa</b>
+Behave as if each data line contains the \D escape sequence; this causes the
+alternative matching function, <b>pcre_dfa_exec()</b>, to be used instead of the
+standard <b>pcre_exec()</b> function (more detail is given below).
+</P>
+<P>
+<b>-help</b>
+Output a brief summary these options and then exit.
+</P>
+<P>
+<b>-i</b>
+Behave as if each pattern has the <b>/I</b> modifier; information about the
+compiled pattern is given after compilation.
+</P>
+<P>
+<b>-M</b>
+Behave as if each data line contains the \M escape sequence; this causes
+PCRE to discover the minimum MATCH_LIMIT and MATCH_LIMIT_RECURSION settings by
+calling <b>pcre_exec()</b> repeatedly with different limits.
+</P>
+<P>
+<b>-m</b>
+Output the size of each compiled pattern after it has been compiled. This is
+equivalent to adding <b>/M</b> to each regular expression.
+</P>
+<P>
+<b>-o</b> <i>osize</i>
+Set the number of elements in the output vector that is used when calling
+<b>pcre_exec()</b> or <b>pcre_dfa_exec()</b> to be <i>osize</i>. The default value
+is 45, which is enough for 14 capturing subexpressions for <b>pcre_exec()</b> or
+22 different matches for <b>pcre_dfa_exec()</b>. The vector size can be
+changed for individual matching calls by including \O in the data line (see
+below).
+</P>
+<P>
+<b>-p</b>
+Behave as if each pattern has the <b>/P</b> modifier; the POSIX wrapper API is
+used to call PCRE. None of the other options has any effect when <b>-p</b> is
+set.
+</P>
+<P>
+<b>-q</b>
+Do not output the version number of <b>pcretest</b> at the start of execution.
+</P>
+<P>
+<b>-S</b> <i>size</i>
+On Unix-like systems, set the size of the run-time stack to <i>size</i>
+megabytes.
+</P>
+<P>
+<b>-s</b> or <b>-s+</b>
+Behave as if each pattern has the <b>/S</b> modifier; in other words, force each
+pattern to be studied. If <b>-s+</b> is used, the PCRE_STUDY_JIT_COMPILE flag is
+passed to <b>pcre_study()</b>, causing just-in-time optimization to be set up if
+it is available. If the <b>/I</b> or <b>/D</b> option is present on a pattern
+(requesting output about the compiled pattern), information about the result of
+studying is not included when studying is caused only by <b>-s</b> and neither
+<b>-i</b> nor <b>-d</b> is present on the command line. This behaviour means that
+the output from tests that are run with and without <b>-s</b> should be
+identical, except when options that output information about the actual running
+of a match are set. The <b>-M</b>, <b>-t</b>, and <b>-tm</b> options, which give
+information about resources used, are likely to produce different output with
+and without <b>-s</b>. Output may also differ if the <b>/C</b> option is present
+on an individual pattern. This uses callouts to trace the the matching process,
+and this may be different between studied and non-studied patterns. If the
+pattern contains (*MARK) items there may also be differences, for the same
+reason. The <b>-s</b> command line option can be overridden for specific
+patterns that should never be studied (see the <b>/S</b> pattern modifier
+below).
+</P>
+<P>
+<b>-t</b>
+Run each compile, study, and match many times with a timer, and output
+resulting time per compile or match (in milliseconds). Do not set <b>-m</b> with
+<b>-t</b>, because you will then get the size output a zillion times, and the
+timing will be distorted. You can control the number of iterations that are
+used for timing by following <b>-t</b> with a number (as a separate item on the
+command line). For example, "-t 1000" would iterate 1000 times. The default is
+to iterate 500000 times.
+</P>
+<P>
+<b>-tm</b>
+This is like <b>-t</b> except that it times only the matching phase, not the
+compile or study phases.
+</P>
+<br><a name="SEC3" href="#TOC1">DESCRIPTION</a><br>
+<P>
+If <b>pcretest</b> is given two filename arguments, it reads from the first and
+writes to the second. If it is given only one filename argument, it reads from
+that file and writes to stdout. Otherwise, it reads from stdin and writes to
+stdout, and prompts for each line of input, using "re&#62;" to prompt for regular
+expressions, and "data&#62;" to prompt for data lines.
+</P>
+<P>
+When <b>pcretest</b> is built, a configuration option can specify that it should
+be linked with the <b>libreadline</b> library. When this is done, if the input
+is from a terminal, it is read using the <b>readline()</b> function. This
+provides line-editing and history facilities. The output from the <b>-help</b>
+option states whether or not <b>readline()</b> will be used.
+</P>
+<P>
+The program handles any number of sets of input on a single input file. Each
+set starts with a regular expression, and continues with any number of data
+lines to be matched against the pattern.
+</P>
+<P>
+Each data line is matched separately and independently. If you want to do
+multi-line matches, you have to use the \n escape sequence (or \r or \r\n,
+etc., depending on the newline setting) in a single line of input to encode the
+newline sequences. There is no limit on the length of data lines; the input
+buffer is automatically extended if it is too small.
+</P>
+<P>
+An empty line signals the end of the data lines, at which point a new regular
+expression is read. The regular expressions are given enclosed in any
+non-alphanumeric delimiters other than backslash, for example:
+<pre>
+  /(a|bc)x+yz/
+</pre>
+White space before the initial delimiter is ignored. A regular expression may
+be continued over several input lines, in which case the newline characters are
+included within it. It is possible to include the delimiter within the pattern
+by escaping it, for example
+<pre>
+  /abc\/def/
+</pre>
+If you do so, the escape and the delimiter form part of the pattern, but since
+delimiters are always non-alphanumeric, this does not affect its interpretation.
+If the terminating delimiter is immediately followed by a backslash, for
+example,
+<pre>
+  /abc/\
+</pre>
+then a backslash is added to the end of the pattern. This is done to provide a
+way of testing the error condition that arises if a pattern finishes with a
+backslash, because
+<pre>
+  /abc\/
+</pre>
+is interpreted as the first line of a pattern that starts with "abc/", causing
+pcretest to read the next line as a continuation of the regular expression.
+</P>
+<br><a name="SEC4" href="#TOC1">PATTERN MODIFIERS</a><br>
+<P>
+A pattern may be followed by any number of modifiers, which are mostly single
+characters. Following Perl usage, these are referred to below as, for example,
+"the <b>/i</b> modifier", even though the delimiter of the pattern need not
+always be a slash, and no slash is used when writing modifiers. White space may
+appear between the final pattern delimiter and the first modifier, and between
+the modifiers themselves.
+</P>
+<P>
+The <b>/i</b>, <b>/m</b>, <b>/s</b>, and <b>/x</b> modifiers set the PCRE_CASELESS,
+PCRE_MULTILINE, PCRE_DOTALL, or PCRE_EXTENDED options, respectively, when
+<b>pcre_compile()</b> is called. These four modifier letters have the same
+effect as they do in Perl. For example:
+<pre>
+  /caseless/i
+</pre>
+The following table shows additional modifiers for setting PCRE compile-time
+options that do not correspond to anything in Perl:
+<pre>
+  <b>/8</b>              PCRE_UTF8
+  <b>/?</b>              PCRE_NO_UTF8_CHECK
+  <b>/A</b>              PCRE_ANCHORED
+  <b>/C</b>              PCRE_AUTO_CALLOUT
+  <b>/E</b>              PCRE_DOLLAR_ENDONLY
+  <b>/f</b>              PCRE_FIRSTLINE
+  <b>/J</b>              PCRE_DUPNAMES
+  <b>/N</b>              PCRE_NO_AUTO_CAPTURE
+  <b>/U</b>              PCRE_UNGREEDY
+  <b>/W</b>              PCRE_UCP
+  <b>/X</b>              PCRE_EXTRA
+  <b>/Y</b>              PCRE_NO_START_OPTIMIZE
+  <b>/&#60;JS&#62;</b>           PCRE_JAVASCRIPT_COMPAT
+  <b>/&#60;cr&#62;</b>           PCRE_NEWLINE_CR
+  <b>/&#60;lf&#62;</b>           PCRE_NEWLINE_LF
+  <b>/&#60;crlf&#62;</b>         PCRE_NEWLINE_CRLF
+  <b>/&#60;anycrlf&#62;</b>      PCRE_NEWLINE_ANYCRLF
+  <b>/&#60;any&#62;</b>          PCRE_NEWLINE_ANY
+  <b>/&#60;bsr_anycrlf&#62;</b>  PCRE_BSR_ANYCRLF
+  <b>/&#60;bsr_unicode&#62;</b>  PCRE_BSR_UNICODE
+</pre>
+The modifiers that are enclosed in angle brackets are literal strings as shown,
+including the angle brackets, but the letters within can be in either case.
+This example sets multiline matching with CRLF as the line ending sequence:
+<pre>
+  /^abc/m&#60;CRLF&#62;
+</pre>
+As well as turning on the PCRE_UTF8 option, the <b>/8</b> modifier also causes
+any non-printing characters in output strings to be printed using the
+\x{hh...} notation if they are valid UTF-8 sequences. Full details of the PCRE
+options are given in the
+<a href="pcreapi.html"><b>pcreapi</b></a>
+documentation.
+</P>
+<br><b>
+Finding all matches in a string
+</b><br>
+<P>
+Searching for all possible matches within each subject string can be requested
+by the <b>/g</b> or <b>/G</b> modifier. After finding a match, PCRE is called
+again to search the remainder of the subject string. The difference between
+<b>/g</b> and <b>/G</b> is that the former uses the <i>startoffset</i> argument to
+<b>pcre_exec()</b> to start searching at a new point within the entire string
+(which is in effect what Perl does), whereas the latter passes over a shortened
+substring. This makes a difference to the matching process if the pattern
+begins with a lookbehind assertion (including \b or \B).
+</P>
+<P>
+If any call to <b>pcre_exec()</b> in a <b>/g</b> or <b>/G</b> sequence matches an
+empty string, the next call is done with the PCRE_NOTEMPTY_ATSTART and
+PCRE_ANCHORED flags set in order to search for another, non-empty, match at the
+same point. If this second match fails, the start offset is advanced, and the
+normal match is retried. This imitates the way Perl handles such cases when
+using the <b>/g</b> modifier or the <b>split()</b> function. Normally, the start
+offset is advanced by one character, but if the newline convention recognizes
+CRLF as a newline, and the current character is CR followed by LF, an advance
+of two is used.
+</P>
+<br><b>
+Other modifiers
+</b><br>
+<P>
+There are yet more modifiers for controlling the way <b>pcretest</b>
+operates.
+</P>
+<P>
+The <b>/+</b> modifier requests that as well as outputting the substring that
+matched the entire pattern, <b>pcretest</b> should in addition output the
+remainder of the subject string. This is useful for tests where the subject
+contains multiple copies of the same substring. If the <b>+</b> modifier appears
+twice, the same action is taken for captured substrings. In each case the
+remainder is output on the following line with a plus character following the
+capture number. Note that this modifier must not immediately follow the /S
+modifier because /S+ has another meaning.
+</P>
+<P>
+The <b>/=</b> modifier requests that the values of all potential captured
+parentheses be output after a match by <b>pcre_exec()</b>. By default, only
+those up to the highest one actually used in the match are output
+(corresponding to the return code from <b>pcre_exec()</b>). Values in the
+offsets vector corresponding to higher numbers should be set to -1, and these
+are output as "&#60;unset&#62;". This modifier gives a way of checking that this is
+happening.
+</P>
+<P>
+The <b>/B</b> modifier is a debugging feature. It requests that <b>pcretest</b>
+output a representation of the compiled byte code after compilation. Normally
+this information contains length and offset values; however, if <b>/Z</b> is
+also present, this data is replaced by spaces. This is a special feature for
+use in the automatic test scripts; it ensures that the same output is generated
+for different internal link sizes.
+</P>
+<P>
+The <b>/D</b> modifier is a PCRE debugging feature, and is equivalent to
+<b>/BI</b>, that is, both the <b>/B</b> and the <b>/I</b> modifiers.
+</P>
+<P>
+The <b>/F</b> modifier causes <b>pcretest</b> to flip the byte order of the
+fields in the compiled pattern that contain 2-byte and 4-byte numbers. This
+facility is for testing the feature in PCRE that allows it to execute patterns
+that were compiled on a host with a different endianness. This feature is not
+available when the POSIX interface to PCRE is being used, that is, when the
+<b>/P</b> pattern modifier is specified. See also the section about saving and
+reloading compiled patterns below.
+</P>
+<P>
+The <b>/I</b> modifier requests that <b>pcretest</b> output information about the
+compiled pattern (whether it is anchored, has a fixed first character, and
+so on). It does this by calling <b>pcre_fullinfo()</b> after compiling a
+pattern. If the pattern is studied, the results of that are also output.
+</P>
+<P>
+The <b>/K</b> modifier requests <b>pcretest</b> to show names from backtracking
+control verbs that are returned from calls to <b>pcre_exec()</b>. It causes
+<b>pcretest</b> to create a <b>pcre_extra</b> block if one has not already been
+created by a call to <b>pcre_study()</b>, and to set the PCRE_EXTRA_MARK flag
+and the <b>mark</b> field within it, every time that <b>pcre_exec()</b> is
+called. If the variable that the <b>mark</b> field points to is non-NULL for a
+match, non-match, or partial match, <b>pcretest</b> prints the string to which
+it points. For a match, this is shown on a line by itself, tagged with "MK:".
+For a non-match it is added to the message.
+</P>
+<P>
+The <b>/L</b> modifier must be followed directly by the name of a locale, for
+example,
+<pre>
+  /pattern/Lfr_FR
+</pre>
+For this reason, it must be the last modifier. The given locale is set,
+<b>pcre_maketables()</b> is called to build a set of character tables for the
+locale, and this is then passed to <b>pcre_compile()</b> when compiling the
+regular expression. Without an <b>/L</b> (or <b>/T</b>) modifier, NULL is passed
+as the tables pointer; that is, <b>/L</b> applies only to the expression on
+which it appears.
+</P>
+<P>
+The <b>/M</b> modifier causes the size of memory block used to hold the compiled
+pattern to be output. This does not include the size of the <b>pcre</b> block;
+it is just the actual compiled data. If the pattern is successfully studied
+with the PCRE_STUDY_JIT_COMPILE option, the size of the JIT compiled code is
+also output.
+</P>
+<P>
+If the <b>/S</b> modifier appears once, it causes <b>pcre_study()</b> to be
+called after the expression has been compiled, and the results used when the
+expression is matched. If <b>/S</b> appears twice, it suppresses studying, even
+if it was requested externally by the <b>-s</b> command line option. This makes
+it possible to specify that certain patterns are always studied, and others are
+never studied, independently of <b>-s</b>. This feature is used in the test
+files in a few cases where the output is different when the pattern is studied.
+</P>
+<P>
+If the <b>/S</b> modifier is immediately followed by a + character, the call to
+<b>pcre_study()</b> is made with the PCRE_STUDY_JIT_COMPILE option, requesting
+just-in-time optimization support if it is available. Note that there is also a
+<b>/+</b> modifier; it must not be given immediately after <b>/S</b> because this
+will be misinterpreted. If JIT studying is successful, it will automatically be
+used when <b>pcre_exec()</b> is run, except when incompatible run-time options
+are specified. These include the partial matching options; a complete list is
+given in the
+<a href="pcrejit.html"><b>pcrejit</b></a>
+documentation. See also the <b>\J</b> escape sequence below for a way of
+setting the size of the JIT stack.
+</P>
+<P>
+The <b>/T</b> modifier must be followed by a single digit. It causes a specific
+set of built-in character tables to be passed to <b>pcre_compile()</b>. It is
+used in the standard PCRE tests to check behaviour with different character
+tables. The digit specifies the tables as follows:
+<pre>
+  0   the default ASCII tables, as distributed in
+        pcre_chartables.c.dist
+  1   a set of tables defining ISO 8859 characters
+</pre>
+In table 1, some characters whose codes are greater than 128 are identified as
+letters, digits, spaces, etc.
+</P>
+<br><b>
+Using the POSIX wrapper API
+</b><br>
+<P>
+The <b>/P</b> modifier causes <b>pcretest</b> to call PCRE via the POSIX wrapper
+API rather than its native API. When <b>/P</b> is set, the following modifiers
+set options for the <b>regcomp()</b> function:
+<pre>
+  /i    REG_ICASE
+  /m    REG_NEWLINE
+  /N    REG_NOSUB
+  /s    REG_DOTALL     )
+  /U    REG_UNGREEDY   ) These options are not part of
+  /W    REG_UCP        )   the POSIX standard
+  /8    REG_UTF8       )
+</pre>
+The <b>/+</b> modifier works as described above. All other modifiers are
+ignored.
+</P>
+<br><a name="SEC5" href="#TOC1">DATA LINES</a><br>
+<P>
+Before each data line is passed to <b>pcre_exec()</b>, leading and trailing
+white space is removed, and it is then scanned for \ escapes. Some of these
+are pretty esoteric features, intended for checking out some of the more
+complicated features of PCRE. If you are just testing "ordinary" regular
+expressions, you probably don't need any of these. The following escapes are
+recognized:
+<pre>
+  \a         alarm (BEL, \x07)
+  \b         backspace (\x08)
+  \e         escape (\x27)
+  \f         form feed (\x0c)
+  \n         newline (\x0a)
+  \qdd       set the PCRE_MATCH_LIMIT limit to dd (any number of digits)
+  \r         carriage return (\x0d)
+  \t         tab (\x09)
+  \v         vertical tab (\x0b)
+  \nnn       octal character (up to 3 octal digits)
+               always a byte unless &#62; 255 in UTF-8 mode
+  \xhh       hexadecimal byte (up to 2 hex digits)
+  \x{hh...}  hexadecimal character, any number of digits in UTF-8 mode
+  \A         pass the PCRE_ANCHORED option to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>
+  \B         pass the PCRE_NOTBOL option to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>
+  \Cdd       call pcre_copy_substring() for substring dd after a successful match (number less than 32)
+  \Cname     call pcre_copy_named_substring() for substring "name" after a successful match (name termin-
+               ated by next non alphanumeric character)
+  \C+        show the current captured substrings at callout time
+  \C-        do not supply a callout function
+  \C!n       return 1 instead of 0 when callout number n is reached
+  \C!n!m     return 1 instead of 0 when callout number n is reached for the nth time
+  \C*n       pass the number n (may be negative) as callout data; this is used as the callout return value
+  \D         use the <b>pcre_dfa_exec()</b> match function
+  \F         only shortest match for <b>pcre_dfa_exec()</b>
+  \Gdd       call pcre_get_substring() for substring dd after a successful match (number less than 32)
+  \Gname     call pcre_get_named_substring() for substring "name" after a successful match (name termin-
+               ated by next non-alphanumeric character)
+  \Jdd       set up a JIT stack of dd kilobytes maximum (any number of digits)
+  \L         call pcre_get_substringlist() after a successful match
+  \M         discover the minimum MATCH_LIMIT and MATCH_LIMIT_RECURSION settings
+  \N         pass the PCRE_NOTEMPTY option to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>; if used twice, pass the
+               PCRE_NOTEMPTY_ATSTART option
+  \Odd       set the size of the output vector passed to <b>pcre_exec()</b> to dd (any number of digits)
+  \P         pass the PCRE_PARTIAL_SOFT option to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>; if used twice, pass the
+               PCRE_PARTIAL_HARD option
+  \Qdd       set the PCRE_MATCH_LIMIT_RECURSION limit to dd (any number of digits)
+  \R         pass the PCRE_DFA_RESTART option to <b>pcre_dfa_exec()</b>
+  \S         output details of memory get/free calls during matching
+  \Y         pass the PCRE_NO_START_OPTIMIZE option to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>
+  \Z         pass the PCRE_NOTEOL option to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>
+  \?         pass the PCRE_NO_UTF8_CHECK option to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>
+  \&#62;dd       start the match at offset dd (optional "-"; then any number of digits); this sets the <i>startoffset</i>
+               argument for <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>
+  \&#60;cr&#62;      pass the PCRE_NEWLINE_CR option to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>
+  \&#60;lf&#62;      pass the PCRE_NEWLINE_LF option to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>
+  \&#60;crlf&#62;    pass the PCRE_NEWLINE_CRLF option to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>
+  \&#60;anycrlf&#62; pass the PCRE_NEWLINE_ANYCRLF option to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>
+  \&#60;any&#62;     pass the PCRE_NEWLINE_ANY option to <b>pcre_exec()</b> or <b>pcre_dfa_exec()</b>
+</pre>
+Note that \xhh always specifies one byte, even in UTF-8 mode; this makes it
+possible to construct invalid UTF-8 sequences for testing purposes. On the
+other hand, \x{hh} is interpreted as a UTF-8 character in UTF-8 mode,
+generating more than one byte if the value is greater than 127. When not in
+UTF-8 mode, it generates one byte for values less than 256, and causes an error
+for greater values.
+</P>
+<P>
+The escapes that specify line ending sequences are literal strings, exactly as
+shown. No more than one newline setting should be present in any data line.
+</P>
+<P>
+A backslash followed by anything else just escapes the anything else. If
+the very last character is a backslash, it is ignored. This gives a way of
+passing an empty line as data, since a real empty line terminates the data
+input.
+</P>
+<P>
+The <b>\J</b> escape provides a way of setting the maximum stack size that is
+used by the just-in-time optimization code. It is ignored if JIT optimization
+is not being used. Providing a stack that is larger than the default 32K is
+necessary only for very complicated patterns.
+</P>
+<P>
+If \M is present, <b>pcretest</b> calls <b>pcre_exec()</b> several times, with
+different values in the <i>match_limit</i> and <i>match_limit_recursion</i>
+fields of the <b>pcre_extra</b> data structure, until it finds the minimum
+numbers for each parameter that allow <b>pcre_exec()</b> to complete without
+error. Because this is testing a specific feature of the normal interpretive
+<b>pcre_exec()</b> execution, the use of any JIT optimization that might have
+been set up by the <b>/S+</b> qualifier of <b>-s+</b> option is disabled.
+</P>
+<P>
+The <i>match_limit</i> number is a measure of the amount of backtracking
+that takes place, and checking it out can be instructive. For most simple
+matches, the number is quite small, but for patterns with very large numbers of
+matching possibilities, it can become large very quickly with increasing length
+of subject string. The <i>match_limit_recursion</i> number is a measure of how
+much stack (or, if PCRE is compiled with NO_RECURSE, how much heap) memory is
+needed to complete the match attempt.
+</P>
+<P>
+When \O is used, the value specified may be higher or lower than the size set
+by the <b>-O</b> command line option (or defaulted to 45); \O applies only to
+the call of <b>pcre_exec()</b> for the line in which it appears.
+</P>
+<P>
+If the <b>/P</b> modifier was present on the pattern, causing the POSIX wrapper
+API to be used, the only option-setting sequences that have any effect are \B,
+\N, and \Z, causing REG_NOTBOL, REG_NOTEMPTY, and REG_NOTEOL, respectively,
+to be passed to <b>regexec()</b>.
+</P>
+<P>
+The use of \x{hh...} to represent UTF-8 characters is not dependent on the use
+of the <b>/8</b> modifier on the pattern. It is recognized always. There may be
+any number of hexadecimal digits inside the braces. The result is from one to
+six bytes, encoded according to the original UTF-8 rules of RFC 2279. This
+allows for values in the range 0 to 0x7FFFFFFF. Note that not all of those are
+valid Unicode code points, or indeed valid UTF-8 characters according to the
+later rules in RFC 3629.
+</P>
+<br><a name="SEC6" href="#TOC1">THE ALTERNATIVE MATCHING FUNCTION</a><br>
+<P>
+By default, <b>pcretest</b> uses the standard PCRE matching function,
+<b>pcre_exec()</b> to match each data line. From release 6.0, PCRE supports an
+alternative matching function, <b>pcre_dfa_test()</b>, which operates in a
+different way, and has some restrictions. The differences between the two
+functions are described in the
+<a href="pcrematching.html"><b>pcrematching</b></a>
+documentation.
+</P>
+<P>
+If a data line contains the \D escape sequence, or if the command line
+contains the <b>-dfa</b> option, the alternative matching function is called.
+This function finds all possible matches at a given point. If, however, the \F
+escape sequence is present in the data line, it stops after the first match is
+found. This is always the shortest possible match.
+</P>
+<br><a name="SEC7" href="#TOC1">DEFAULT OUTPUT FROM PCRETEST</a><br>
+<P>
+This section describes the output when the normal matching function,
+<b>pcre_exec()</b>, is being used.
+</P>
+<P>
+When a match succeeds, <b>pcretest</b> outputs the list of captured substrings
+that <b>pcre_exec()</b> returns, starting with number 0 for the string that
+matched the whole pattern. Otherwise, it outputs "No match" when the return is
+PCRE_ERROR_NOMATCH, and "Partial match:" followed by the partially matching
+substring when <b>pcre_exec()</b> returns PCRE_ERROR_PARTIAL. (Note that this is
+the entire substring that was inspected during the partial match; it may
+include characters before the actual match start if a lookbehind assertion,
+\K, \b, or \B was involved.) For any other return, <b>pcretest</b> outputs
+the PCRE negative error number and a short descriptive phrase. If the error is
+a failed UTF-8 string check, the byte offset of the start of the failing
+character and the reason code are also output, provided that the size of the
+output vector is at least two. Here is an example of an interactive
+<b>pcretest</b> run.
+<pre>
+  $ pcretest
+  PCRE version 8.13 2011-04-30
+
+    re&#62; /^abc(\d+)/
+  data&#62; abc123
+   0: abc123
+   1: 123
+  data&#62; xyz
+  No match
+</pre>
+Unset capturing substrings that are not followed by one that is set are not
+returned by <b>pcre_exec()</b>, and are not shown by <b>pcretest</b>. In the
+following example, there are two capturing substrings, but when the first data
+line is matched, the second, unset substring is not shown. An "internal" unset
+substring is shown as "&#60;unset&#62;", as for the second data line.
+<pre>
+    re&#62; /(a)|(b)/
+  data&#62; a
+   0: a
+   1: a
+  data&#62; b
+   0: b
+   1: &#60;unset&#62;
+   2: b
+</pre>
+If the strings contain any non-printing characters, they are output as \0x
+escapes, or as \x{...} escapes if the <b>/8</b> modifier was present on the
+pattern. See below for the definition of non-printing characters. If the
+pattern has the <b>/+</b> modifier, the output for substring 0 is followed by
+the the rest of the subject string, identified by "0+" like this:
+<pre>
+    re&#62; /cat/+
+  data&#62; cataract
+   0: cat
+   0+ aract
+</pre>
+If the pattern has the <b>/g</b> or <b>/G</b> modifier, the results of successive
+matching attempts are output in sequence, like this:
+<pre>
+    re&#62; /\Bi(\w\w)/g
+  data&#62; Mississippi
+   0: iss
+   1: ss
+   0: iss
+   1: ss
+   0: ipp
+   1: pp
+</pre>
+"No match" is output only if the first match attempt fails. Here is an example
+of a failure message (the offset 4 that is specified by \&#62;4 is past the end of
+the subject string):
+<pre>
+    re&#62; /xyz/
+  data&#62; xyz\&#62;4
+  Error -24 (bad offset value)
+</PRE>
+</P>
+<P>
+If any of the sequences <b>\C</b>, <b>\G</b>, or <b>\L</b> are present in a
+data line that is successfully matched, the substrings extracted by the
+convenience functions are output with C, G, or L after the string number
+instead of a colon. This is in addition to the normal full list. The string
+length (that is, the return from the extraction function) is given in
+parentheses after each string for <b>\C</b> and <b>\G</b>.
+</P>
+<P>
+Note that whereas patterns can be continued over several lines (a plain "&#62;"
+prompt is used for continuations), data lines may not. However newlines can be
+included in data by means of the \n escape (or \r, \r\n, etc., depending on
+the newline sequence setting).
+</P>
+<br><a name="SEC8" href="#TOC1">OUTPUT FROM THE ALTERNATIVE MATCHING FUNCTION</a><br>
+<P>
+When the alternative matching function, <b>pcre_dfa_exec()</b>, is used (by
+means of the \D escape sequence or the <b>-dfa</b> command line option), the
+output consists of a list of all the matches that start at the first point in
+the subject where there is at least one match. For example:
+<pre>
+    re&#62; /(tang|tangerine|tan)/
+  data&#62; yellow tangerine\D
+   0: tangerine
+   1: tang
+   2: tan
+</pre>
+(Using the normal matching function on this data finds only "tang".) The
+longest matching string is always given first (and numbered zero). After a
+PCRE_ERROR_PARTIAL return, the output is "Partial match:", followed by the
+partially matching substring. (Note that this is the entire substring that was
+inspected during the partial match; it may include characters before the actual
+match start if a lookbehind assertion, \K, \b, or \B was involved.)
+</P>
+<P>
+If <b>/g</b> is present on the pattern, the search for further matches resumes
+at the end of the longest match. For example:
+<pre>
+    re&#62; /(tang|tangerine|tan)/g
+  data&#62; yellow tangerine and tangy sultana\D
+   0: tangerine
+   1: tang
+   2: tan
+   0: tang
+   1: tan
+   0: tan
+</pre>
+Since the matching function does not support substring capture, the escape
+sequences that are concerned with captured substrings are not relevant.
+</P>
+<br><a name="SEC9" href="#TOC1">RESTARTING AFTER A PARTIAL MATCH</a><br>
+<P>
+When the alternative matching function has given the PCRE_ERROR_PARTIAL return,
+indicating that the subject partially matched the pattern, you can restart the
+match with additional subject data by means of the \R escape sequence. For
+example:
+<pre>
+    re&#62; /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
+  data&#62; 23ja\P\D
+  Partial match: 23ja
+  data&#62; n05\R\D
+   0: n05
+</pre>
+For further information about partial matching, see the
+<a href="pcrepartial.html"><b>pcrepartial</b></a>
+documentation.
+</P>
+<br><a name="SEC10" href="#TOC1">CALLOUTS</a><br>
+<P>
+If the pattern contains any callout requests, <b>pcretest</b>'s callout function
+is called during matching. This works with both matching functions. By default,
+the called function displays the callout number, the start and current
+positions in the text at the callout time, and the next pattern item to be
+tested. For example, the output
+<pre>
+  ---&#62;pqrabcdef
+    0    ^  ^     \d
+</pre>
+indicates that callout number 0 occurred for a match attempt starting at the
+fourth character of the subject string, when the pointer was at the seventh
+character of the data, and when the next pattern item was \d. Just one
+circumflex is output if the start and current positions are the same.
+</P>
+<P>
+Callouts numbered 255 are assumed to be automatic callouts, inserted as a
+result of the <b>/C</b> pattern modifier. In this case, instead of showing the
+callout number, the offset in the pattern, preceded by a plus, is output. For
+example:
+<pre>
+    re&#62; /\d?[A-E]\*/C
+  data&#62; E*
+  ---&#62;E*
+   +0 ^      \d?
+   +3 ^      [A-E]
+   +8 ^^     \*
+  +10 ^ ^
+   0: E*
+</pre>
+If a pattern contains (*MARK) items, an additional line is output whenever
+a change of latest mark is passed to the callout function. For example:
+<pre>
+    re&#62; /a(*MARK:X)bc/C
+  data&#62; abc
+  ---&#62;abc
+   +0 ^       a
+   +1 ^^      (*MARK:X)
+  +10 ^^      b
+  Latest Mark: X
+  +11 ^ ^     c
+  +12 ^  ^
+   0: abc
+</pre>
+The mark changes between matching "a" and "b", but stays the same for the rest
+of the match, so nothing more is output. If, as a result of backtracking, the
+mark reverts to being unset, the text "&#60;unset&#62;" is output.
+</P>
+<P>
+The callout function in <b>pcretest</b> returns zero (carry on matching) by
+default, but you can use a \C item in a data line (as described above) to
+change this and other parameters of the callout.
+</P>
+<P>
+Inserting callouts can be helpful when using <b>pcretest</b> to check
+complicated regular expressions. For further information about callouts, see
+the
+<a href="pcrecallout.html"><b>pcrecallout</b></a>
+documentation.
+</P>
+<br><a name="SEC11" href="#TOC1">NON-PRINTING CHARACTERS</a><br>
+<P>
+When <b>pcretest</b> is outputting text in the compiled version of a pattern,
+bytes other than 32-126 are always treated as non-printing characters are are
+therefore shown as hex escapes.
+</P>
+<P>
+When <b>pcretest</b> is outputting text that is a matched part of a subject
+string, it behaves in the same way, unless a different locale has been set for
+the pattern (using the <b>/L</b> modifier). In this case, the <b>isprint()</b>
+function to distinguish printing and non-printing characters.
+</P>
+<br><a name="SEC12" href="#TOC1">SAVING AND RELOADING COMPILED PATTERNS</a><br>
+<P>
+The facilities described in this section are not available when the POSIX
+interface to PCRE is being used, that is, when the <b>/P</b> pattern modifier is
+specified.
+</P>
+<P>
+When the POSIX interface is not in use, you can cause <b>pcretest</b> to write a
+compiled pattern to a file, by following the modifiers with &#62; and a file name.
+For example:
+<pre>
+  /pattern/im &#62;/some/file
+</pre>
+See the
+<a href="pcreprecompile.html"><b>pcreprecompile</b></a>
+documentation for a discussion about saving and re-using compiled patterns.
+Note that if the pattern was successfully studied with JIT optimization, the
+JIT data cannot be saved.
+</P>
+<P>
+The data that is written is binary. The first eight bytes are the length of the
+compiled pattern data followed by the length of the optional study data, each
+written as four bytes in big-endian order (most significant byte first). If
+there is no study data (either the pattern was not studied, or studying did not
+return any data), the second length is zero. The lengths are followed by an
+exact copy of the compiled pattern. If there is additional study data, this
+(excluding any JIT data) follows immediately after the compiled pattern. After
+writing the file, <b>pcretest</b> expects to read a new pattern.
+</P>
+<P>
+A saved pattern can be reloaded into <b>pcretest</b> by specifying &#60; and a file
+name instead of a pattern. The name of the file must not contain a &#60; character,
+as otherwise <b>pcretest</b> will interpret the line as a pattern delimited by &#60;
+characters.
+For example:
+<pre>
+   re&#62; &#60;/some/file
+  Compiled pattern loaded from /some/file
+  No study data
+</pre>
+If the pattern was previously studied with the JIT optimization, the JIT
+information cannot be saved and restored, and so is lost. When the pattern has
+been loaded, <b>pcretest</b> proceeds to read data lines in the usual way.
+</P>
+<P>
+You can copy a file written by <b>pcretest</b> to a different host and reload it
+there, even if the new host has opposite endianness to the one on which the
+pattern was compiled. For example, you can compile on an i86 machine and run on
+a SPARC machine.
+</P>
+<P>
+File names for saving and reloading can be absolute or relative, but note that
+the shell facility of expanding a file name that starts with a tilde (~) is not
+available.
+</P>
+<P>
+The ability to save and reload files in <b>pcretest</b> is intended for testing
+and experimentation. It is not intended for production use because only a
+single pattern can be written to a file. Furthermore, there is no facility for
+supplying custom character tables for use with a reloaded pattern. If the
+original pattern was compiled with custom tables, an attempt to match a subject
+string using a reloaded pattern is likely to cause <b>pcretest</b> to crash.
+Finally, if you attempt to load a file that is not in the correct format, the
+result is undefined.
+</P>
+<br><a name="SEC13" href="#TOC1">SEE ALSO</a><br>
+<P>
+<b>pcre</b>(3), <b>pcreapi</b>(3), <b>pcrecallout</b>(3), <b>pcrejit</b>,
+<b>pcrematching</b>(3), <b>pcrepartial</b>(d), <b>pcrepattern</b>(3),
+<b>pcreprecompile</b>(3).
+</P>
+<br><a name="SEC14" href="#TOC1">AUTHOR</a><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><a name="SEC15" href="#TOC1">REVISION</a><br>
+<P>
+Last updated: 02 December 2011
+<br>
+Copyright &copy; 1997-2011 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
diff --git a/jni/libpcre/doc/html/pcreunicode.html b/jni/libpcre/doc/html/pcreunicode.html
new file mode 100644
index 0000000..96fa62e
--- /dev/null
+++ b/jni/libpcre/doc/html/pcreunicode.html
@@ -0,0 +1,187 @@
+<html>
+<head>
+<title>pcreunicode specification</title>
+</head>
+<body bgcolor="#FFFFFF" text="#00005A" link="#0066FF" alink="#3399FF" vlink="#2222BB">
+<h1>pcreunicode man page</h1>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>
+<p>
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+<br>
+<br><b>
+UTF-8 AND UNICODE PROPERTY SUPPORT
+</b><br>
+<P>
+In order process UTF-8 strings, you must build PCRE to include UTF-8 support in
+the code, and, in addition, you must call
+<a href="pcre_compile.html"><b>pcre_compile()</b></a>
+with the PCRE_UTF8 option flag, or the pattern must start with the sequence
+(*UTF8). When either of these is the case, both the pattern and any subject
+strings that are matched against it are treated as UTF-8 strings instead of
+strings of 1-byte characters. PCRE does not support any other formats (in
+particular, it does not support UTF-16).
+</P>
+<P>
+If you compile PCRE with UTF-8 support, but do not use it at run time, the
+library will be a bit bigger, but the additional run time overhead is limited
+to testing the PCRE_UTF8 flag occasionally, so should not be very big.
+</P>
+<P>
+If PCRE is built with Unicode character property support (which implies UTF-8
+support), the escape sequences \p{..}, \P{..}, and \X are supported.
+The available properties that can be tested are limited to the general
+category properties such as Lu for an upper case letter or Nd for a decimal
+number, the Unicode script names such as Arabic or Han, and the derived
+properties Any and L&. A full list is given in the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+documentation. Only the short names for properties are supported. For example,
+\p{L} matches a letter. Its Perl synonym, \p{Letter}, is not supported.
+Furthermore, in Perl, many properties may optionally be prefixed by "Is", for
+compatibility with Perl 5.6. PCRE does not support this.
+<a name="utf8strings"></a></P>
+<br><b>
+Validity of UTF-8 strings
+</b><br>
+<P>
+When you set the PCRE_UTF8 flag, the strings passed as patterns and subjects
+are (by default) checked for validity on entry to the relevant functions. From
+release 7.3 of PCRE, the check is according the rules of RFC 3629, which are
+themselves derived from the Unicode specification. Earlier releases of PCRE
+followed the rules of RFC 2279, which allows the full range of 31-bit values (0
+to 0x7FFFFFFF). The current check allows only values in the range U+0 to
+U+10FFFF, excluding U+D800 to U+DFFF.
+</P>
+<P>
+The excluded code points are the "Low Surrogate Area" of Unicode, of which the
+Unicode Standard says this: "The Low Surrogate Area does not contain any
+character assignments, consequently no character code charts or namelists are
+provided for this area. Surrogates are reserved for use with UTF-16 and then
+must be used in pairs." The code points that are encoded by UTF-16 pairs are
+available as independent code points in the UTF-8 encoding. (In other words,
+the whole surrogate thing is a fudge for UTF-16 which unfortunately messes up
+UTF-8.)
+</P>
+<P>
+If an invalid UTF-8 string is passed to PCRE, an error return is given. At
+compile time, the only additional information is the offset to the first byte
+of the failing character. The runtime functions <b>pcre_exec()</b> and
+<b>pcre_dfa_exec()</b> also pass back this information, as well as a more
+detailed reason code if the caller has provided memory in which to do this.
+</P>
+<P>
+In some situations, you may already know that your strings are valid, and
+therefore want to skip these checks in order to improve performance. If you set
+the PCRE_NO_UTF8_CHECK flag at compile time or at run time, PCRE assumes that
+the pattern or subject it is given (respectively) contains only valid UTF-8
+codes. In this case, it does not diagnose an invalid UTF-8 string.
+</P>
+<P>
+If you pass an invalid UTF-8 string when PCRE_NO_UTF8_CHECK is set, what
+happens depends on why the string is invalid. If the string conforms to the
+"old" definition of UTF-8 (RFC 2279), it is processed as a string of characters
+in the range 0 to 0x7FFFFFFF by <b>pcre_dfa_exec()</b> and the interpreted
+version of <b>pcre_exec()</b>. In other words, apart from the initial validity
+test, these functions (when in UTF-8 mode) handle strings according to the more
+liberal rules of RFC 2279. However, the just-in-time (JIT) optimization for
+<b>pcre_exec()</b> supports only RFC 3629. If you are using JIT optimization, or
+if the string does not even conform to RFC 2279, the result is undefined. Your
+program may crash.
+</P>
+<P>
+If you want to process strings of values in the full range 0 to 0x7FFFFFFF,
+encoded in a UTF-8-like manner as per the old RFC, you can set
+PCRE_NO_UTF8_CHECK to bypass the more restrictive test. However, in this
+situation, you will have to apply your own validity check, and avoid the use of
+JIT optimization.
+</P>
+<br><b>
+General comments about UTF-8 mode
+</b><br>
+<P>
+1. An unbraced hexadecimal escape sequence (such as \xb3) matches a two-byte
+UTF-8 character if the value is greater than 127.
+</P>
+<P>
+2. Octal numbers up to \777 are recognized, and match two-byte UTF-8
+characters for values greater than \177.
+</P>
+<P>
+3. Repeat quantifiers apply to complete UTF-8 characters, not to individual
+bytes, for example: \x{100}{3}.
+</P>
+<P>
+4. The dot metacharacter matches one UTF-8 character instead of a single byte.
+</P>
+<P>
+5. The escape sequence \C can be used to match a single byte in UTF-8 mode,
+but its use can lead to some strange effects because it breaks up multibyte
+characters (see the description of \C in the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+documentation). The use of \C is not supported in the alternative matching
+function <b>pcre_dfa_exec()</b>, nor is it supported in UTF-8 mode by the JIT
+optimization of <b>pcre_exec()</b>. If JIT optimization is requested for a UTF-8
+pattern that contains \C, it will not succeed, and so the matching will be
+carried out by the normal interpretive function.
+</P>
+<P>
+6. The character escapes \b, \B, \d, \D, \s, \S, \w, and \W correctly
+test characters of any code value, but, by default, the characters that PCRE
+recognizes as digits, spaces, or word characters remain the same set as before,
+all with values less than 256. This remains true even when PCRE is built to
+include Unicode property support, because to do otherwise would slow down PCRE
+in many common cases. Note in particular that this applies to \b and \B,
+because they are defined in terms of \w and \W. If you really want to test
+for a wider sense of, say, "digit", you can use explicit Unicode property tests
+such as \p{Nd}. Alternatively, if you set the PCRE_UCP option, the way that
+the character escapes work is changed so that Unicode properties are used to
+determine which characters match. There are more details in the section on
+<a href="pcrepattern.html#genericchartypes">generic character types</a>
+in the
+<a href="pcrepattern.html"><b>pcrepattern</b></a>
+documentation.
+</P>
+<P>
+7. Similarly, characters that match the POSIX named character classes are all
+low-valued characters, unless the PCRE_UCP option is set.
+</P>
+<P>
+8. However, the horizontal and vertical whitespace matching escapes (\h, \H,
+\v, and \V) do match all the appropriate Unicode characters, whether or not
+PCRE_UCP is set.
+</P>
+<P>
+9. Case-insensitive matching applies only to characters whose values are less
+than 128, unless PCRE is built with Unicode property support. Even when Unicode
+property support is available, PCRE still uses its own character tables when
+checking the case of low-valued characters, so as not to degrade performance.
+The Unicode property information is used only for characters with higher
+values. Furthermore, PCRE supports case-insensitive matching only when there is
+a one-to-one mapping between a letter's cases. There are a small number of
+many-to-one mappings in Unicode; these are not supported by PCRE.
+</P>
+<br><b>
+AUTHOR
+</b><br>
+<P>
+Philip Hazel
+<br>
+University Computing Service
+<br>
+Cambridge CB2 3QH, England.
+<br>
+</P>
+<br><b>
+REVISION
+</b><br>
+<P>
+Last updated: 19 October 2011
+<br>
+Copyright &copy; 1997-2011 University of Cambridge.
+<br>
+<p>
+Return to the <a href="index.html">PCRE index page</a>.
+</p>